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Abstract: 20	
  

Genetic and environmental factors both contribute to islet dysfunction and failure, 21	
  

resulting in type 2 diabetes (T2D). The islet epigenome integrates these cues and can 22	
  

be remodeled by genetic and environmental variation. However, our knowledge of how 23	
  

genetic variants and T2D disease state alter human islet chromatin landscape and cis-24	
  

regulatory element (RE) use is lacking. To fill this gap, we profiled and analyzed human 25	
  

islet chromatin accessibility maps from 19 genotyped individuals (5 with T2D) using 26	
  

ATAC-seq technology. Chromatin accessibility quantitative trait locus (caQTL) analyses 27	
  

identified 3001 sequence variants (FDR<10%) altering putative cis-RE use/activity. Islet 28	
  

caQTL were significantly and specifically enriched in islet stretch enhancers and islet-29	
  

specific transcription factor binding motifs, such as FOXA2, NKX6.1, RFX5/6 and PDX1. 30	
  

Importantly, these analyses identified putative functional single nucleotide variants 31	
  

(SNVs) in 13 T2D-associated GWAS loci, including those previously associated with 32	
  

altered ZMIZ1, MTNR1B, RNF6, and ADCY5 islet expression, and linked the risk alleles 33	
  

to increased (n=8) or decreased (n=5) islet chromatin accessibility. Luciferase reporter 34	
  

assays confirmed allelic differences in cis-RE activity for 5/9 caQTL sequences tested, 35	
  

including a T2D-associated SNV in the IL20RA locus. Comparison of T2D and non-36	
  

diabetic islets revealed 1882 open chromatin sites exhibiting T2D-associated chromatin 37	
  

accessibility changes (FDR<10%). Together, this study provides new insights into 38	
  

genetic variant and T2D disease state effects on islet cis-RE use and serves as an 39	
  

important resource to identify putative functional variants in T2D- and islet dysfunction-40	
  

associated GWAS loci and link their risk allele to in vivo loss or gain of chromatin 41	
  

accessibility. 42	
  

	
  43	
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Introduction  46	
  

Pancreatic islet function is central to maintaining glucose homeostasis. T2D is a 47	
  

complex disease resulting from the combined effects of genetic susceptibility and 48	
  

environmental exposures. Genome-wide association studies (GWAS) have associated 49	
  

single nucleotide variants (SNVs) in >100 loci with increased susceptibility to type 2 50	
  

diabetes (T2D) and related quantitative measures of islet dysfunction (Fuchsberger et al. 51	
  

2016; Mohlke and Boehnke 2015). The majority of these variants overlap islet-specific 52	
  

enhancer elements (Parker et al. 2013; Fuchsberger et al. 2016; Pasquali et al. 2014). 53	
  

This enrichment establishes perturbed islet transcriptional regulation in the genetic 54	
  

etiology of islet dysfunction and T2D (Lawlor et al. 2017). In addition to individual genetic 55	
  

variation, environmental insults to islet functions such as oxidative, endoplasmic 56	
  

reticulum (ER), and inflammatory stresses, have also been linked to T2D.  57	
  

Genetic and environmental factors shape the epigenome to modulate the 58	
  

transcriptional programs governing steady state and stress responsive-factors. Common 59	
  

genetic variants in the human population, contributing to complex phenotypes and 60	
  

disease susceptibility, have been linked to alterations in regulatory element use, as 61	
  

monitored by changes in chromatin accessibility (Degner et al. 2012; Pique-Regi et al. 62	
  

2011; Kumasaka et al. 2016; McDaniell et al. 2010; Alasoo et al. 2017) and histone 63	
  

modifications (McVicker et al. 2013; Ng et al. 2017) in diverse cell types. Moreover, cis-64	
  

regulatory element use in a given cell type can be modified by its local environment 65	
  

(Lavin et al. 2014) and cellular responses to stimuli (Ostuni et al. 2013) and stressors 66	
  

(Brown et al. 2014). Currently, our understanding of how individual genetic variation and 67	
  

the type 2 diabetic disease state alter cis-regulatory element use in human pancreatic 68	
  

islets is limited. 69	
  

In this study, we sought to understand how (1) genetic variants, particularly those 70	
  

associated with T2D susceptibility and quantitative measures of islet dysfunction; and (2) 71	
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T2D state alter chromatin accessibility and cis-regulatory element use in human islets. 72	
  

Using the assay for transposase-accessible chromatin with sequencing (ATAC-seq), we 73	
  

studied the chromatin accessibility patterns in human islets obtained from 19 individuals, 74	
  

five of whom were type 2 diabetic. Using RASQUAL (Kumasaka et al. 2016), we 75	
  

integrated genotypes generated in each individual with their corresponding open 76	
  

chromatin profiles to identify chromatin accessibility quantitative trait loci (caQTLs), i.e., 77	
  

genetic variants that alter chromatin accessibility and cis-RE use in islets. Finally, by 78	
  

comparing ATAC-seq profiles between diabetic and normal donors, we identified 79	
  

changes in chromatin accessibility and putative cis-RE use associated with the T2D 80	
  

disease state. 81	
  

 82	
  

Results  83	
  

Chromatin accessibility maps in human pancreatic islets  84	
  

To determine the genome-wide location of cis-regulatory elements in human 85	
  

islets, we transposed the nuclei of islet samples obtained from 23 cadaveric organ 86	
  

donors (Table 1; 18 non-diabetic (ND) and 5 T2D) and measured chromatin accessibility 87	
  

using ATAC-seq. 19/23 (n=14 ND, 5 T2D) donor islet ATAC-seq datasets passed quality 88	
  

control filters (Methods) and were used in subsequent analyses (Figures 1A, S1A; 89	
  

Supplemental Table 1). As shown in Figure 1B, the genome-wide chromatin accessibility 90	
  

profiles of these islets were highly correlated and all islet profiles clustered separately 91	
  

from other cell types, including T2D-relevant skeletal muscle and adipose tissues. 92	
  

Notably, T2D donor islet profiles (n=5) did not cluster distinctly from those of ND donor 93	
  

islets (n=14), suggesting that the T2D disease state itself does not lead to global 94	
  

restructuring of islet chromatin accessibility. ATAC-seq profiles of representative islets 95	
  

for the GCK locus are shown in Figure 1C, revealing both common (gray) and islet-96	
  

specific (orange) ATAC-seq peaks.  97	
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 99	
  

Collectively, 154,438 ATAC-seq peaks were identified across the 19 islet donors 100	
  

(see Methods), representing putative cis-REs (i.e., promoter, enhancer, repressor, and 101	
  

insulator elements). 40% of these putative islet REs were detected in only 1 out of 19 102	
  

individuals in the cohort (Supplementary Figure S1B). Not surprisingly, 45% of these 103	
  

individual-specific peaks were un-annotated in reference islet ChromHMM states (i.e., 104	
  

low signal state) (Supplementary Figure S1C). In contrast, ATAC-seq peaks at gene 105	
  

promoters were consistently accessible across the cohort (Supplementary Figure S1C), 106	
  

suggesting that promoter elements are less variable across individuals compared to 107	
  

other cis-REs.  108	
  

Islet ATAC-seq peaks were compared against previously reported (Varshney et 109	
  

al. 2017) ChromHMM-defined functional states in islets from our previous studies (Stitzel 110	
  

et al. 2010; Parker et al. 2013) and 30 other tissues from the NIH Epigenome Roadmap 111	
  

project (Roadmap Epigenomics Consortium et al. 2015), including adipose, skeletal 112	
  

muscle, liver, and brain.  As anticipated, islet ATAC-seq peaks were most enriched in 113	
  

ChromHMM-defined islet enhancers (Figure 1D). Similarly, we compared the islet ATAC-114	
  

seq peaks with stretch enhancers (SEs) in 31 tissues. SEs are long (>3kb) stretches of 115	
  

contiguous cell-specific enhancer chromatin states that are enriched for disease-116	
  

associated SNVs relevant to the cognate cell type (Parker et al. 2013). 90% of islet SEs 117	
  

overlapped islet ATAC-seq peaks (Figure 1E); this overlap was significantly greater 118	
  

Figure 1. Chromatin accessibility maps in human islets. (A) Schematic of study design. (B) 
Spearman correlation between genome-wide ATAC-seq read distributions of islets and other cell 
types. Islets from type 2 diabetic donors are marked with asterisk. (PBMC->peripheral blood 
mononuclear cells). (C) An example locus in and around the GCK gene representing chromatin 
accessibility landscapes in 3 ND and 3 T2D islets, and other tissues. The regions marked in 
orange are specifically accessible in islet cells, whereas regions marked in gray are ubiquitously 
accessible. All chromatin accessibility maps are normalized to the same depth and have the same 
scale. (D) Overlap of islet ATAC-seq peaks with chromatin states in islets and 30 other cell types. 
Tissues are sorted from highest to lowest overlap between ATAC-seq peaks and enhancer states. 
(TSS = Transcription Start Site). (E) Percent of tissue-specific stretch enhancers (SEs) 
overlapping islet ATAC-seq peaks. Fisher’s exact test p-values are shown to represent 
enrichment. (F) Enrichment of transcription factor (TF) motifs in islet-specific ATAC-seq peaks. 
TFs are clustered with respect to the similarity of their position weight matrices (PWMs).	
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(Fisher’s Exact p<2.2e-16 for islet SEs) than that observed for other tissue SEs. 119	
  

Moreover, islet-specific peaks (i.e., those that do not overlap open chromatin sites in 120	
  

Skeletal Muscle, Adipose, GM12878, CD4+ T cells, PBMCs), were enriched in motifs of 121	
  

islet cell-specific transcription factors, such as PDX1 and NKX6.1, when compared to 122	
  

ATAC-seq peaks that were common across tissues (Figure 1F). These data thus 123	
  

represent high quality chromatin accessibility maps of human islets and captures islet-124	
  

specific regulatory elements.  125	
  

 126	
  

Identification of genetic variants affecting islet chromatin accessibility  127	
  

Since genetic variation in cis-RE use/activity has been implicated in diverse 128	
  

phenotypes and complex diseases, including T2D, we sought to identify genetic variants 129	
  

that alter chromatin accessibility in human islets (Figure 2A). Chromatin accessibility 130	
  

QTL (caQTL) analysis (Kumasaka et al. 2016) was used to identify the genetic variants 131	
  

within each ATAC-seq peak that correlated with changes in its accessibility (see 132	
  

Methods). In total, we uncovered 3001 SNVs significantly associated (FDR<0.10; Fig 133	
  

S2A) with chromatin accessibility changes in this cohort. Figure 2B highlights an 134	
  

example caQTL overlapping an intronic islet SE in the CELF4 gene, which exhibits islet-135	
  

selective expression (Varshney et al. 2017). Islet chromatin accessibility was reduced in 136	
  

rs488797 CC homozygotes, potentially by disrupting a FOXA2 binding motif (Ward and 137	
  

Kellis 2016).  In agreement, almost all ATAC-seq reads overlapping this variant in CT 138	
  

heterozygous islets contain the T allele (Figure 2B, inset).  139	
  

 140	
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 141	
  

 142	
  

Figure 2. Identification of genetic variants affecting islet chromatin accessibility. (A) Schematic of 
chromatin accessibility quantitative trait locus (caQTL) analyses linking genotype to chromatin accessibility 
changes.  (B) An example caQTL in an islet-SE within an intron of CELF4. Aggregate ATAC-seq profiles of 
individuals with C/C (red), C/T (blue), and T/T (black) genotypes at rs488797 are displayed. The inset 
boxplot shows the fraction of ATAC-seq reads containing the T allele at rs488797 in each C/T 
heterozygous islet (n=11). Sequence logo for FOXA2 TF is displayed, which is predicted by HaploReg to 
be altered by this variant. (C) Distance between caQTLs and the transcription start site (TSS) of the 
nearest expressed gene versus the significance of the caQTL association. The majority of caQTLs are 
within 200 kb of the TSS of the nearest expressed gene. (D) Percent of tissue-specific SEs overlapping 
caQTLs. Fisher’s exact test p-values are shown for enrichment. (E) TF motifs enriched in islet caQTLs. TFs 
are clustered based on their PWM similarity using hierarchical clustering, resulting in four major TF groups. 
Bar plots of p-values are color coded according to this clustering. A representative PWM logo is 
represented for each cluster, where the corresponding TF is marked with an asterisk.	
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The majority of islet caQTLs (97%) were within 200 kilobases (kb) of the 143	
  

transcription start site (TSS) of an islet-expressed gene. (Figure 2C). Approximately 30% 144	
  

of islet caQTLs overlapped islet enhancer chromatin states (Supplementary Figure 145	
  

S2C). When compared to tissue SEs, the islet caQTLs were specifically enriched in islet 146	
  

SEs only (Figure 2E). Peaks containing caQTLs were also significantly enriched in islet 147	
  

SEs when compared to all islet ATAC-seq peaks (p=0.0024; OR=1.18; Fisher’s exact 148	
  

test), suggesting that islet caQTLs alter cis-REs encoding important islet-specific 149	
  

functions. Consistently, sequence motifs for islet-specific TFs, such as NKX6.1, PDX1, 150	
  

and MAFA, and not for general TFs, were enriched in caQTL-containing ATAC-seq 151	
  

peaks (Figure 2F). Surprisingly, sequence motifs of oxidative stress-responsive TFs (Ma 152	
  

2013; Dhakshinamoorthy et al. 2005), such as BACH1, BACH2, and NRF2, were also 153	
  

enriched in caQTL peaks. Together, these data and analyses enumerate sequence 154	
  

variants that alter chromatin accessibility of islet cis-REs and suggest that these 155	
  

changes may be associated with altered binding of TFs governing islet cell identity, 156	
  

function, and stress response.  157	
  

 158	
  

T2D-associated GWAS SNVs alter chromatin accessibility in islets 159	
  

The large majority (>90%) of common variants associated with T2D and 160	
  

quantitative measures of islet dysfunction, such as fasting plasma glucose and insulin 161	
  

levels, reside in non-coding loci and significantly and specifically overlap islet SEs. 162	
  

However, in vivo effects of these GWAS SNV alleles on cis-regulatory element use, as 163	
  

assessed by chromatin accessibility, islet TF ChIP, or active enhancer histone 164	
  

modifications such as H3K27ac, have been assessed and reported at only a handful of 165	
  

loci (Gaulton et al. 2010; Roman et al. 2017) to date. We hypothesized that T2D- and 166	
  

islet (dys)function-associated GWAS SNVs alter chromatin accessibility in islets, and 167	
  

exhibit significant and specific overlap with islet caQTLs. To test this, we assessed the 168	
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enrichment (Schmidt et al. 2015) of islet caQTLs for SNVs exhibiting genome-wide 169	
  

significant (p<5e-8) associations with 184 diverse traits and diseases retrieved from the 170	
  

NHGRI/EBI GWAS Catalog (Methods). Among all GWAS traits and diseases assessed, 171	
  

islet caQTLs only exhibited significant enrichment of GWAS SNVs associated with T2D 172	
  

(2.97-fold), fasting glucose (13.46-fold), and BMI-adjusted fasting glucose (7.43-fold) 173	
  

(Figure 3A, p<5.43e-04, < 0.10 after Bonferroni correction).  174	
  

These analyses highlighted 13 T2D-associated variants overlapping islet caQTLs 175	
  

(Figure 3B). They included 4 loci (ADCY5, ZMIZ1, MTNR1B, and RNF6) in which the 176	
  

caQTL SNV has been previously linked to altered in vitro enhancer activity or in vivo 177	
  

steady state gene expression in islets (van de Bunt et al. 2015; Roman et al. 2017; 178	
  

Lyssenko et al. 2009, 1; Varshney et al. 2017; Fadista et al. 2014). Importantly, for all 179	
  

loci that harbor both islet caQTL and eQTL variants (i.e., ADCY5, ZMIZ1, MTNR1B, and 180	
  

RNF6), the risk alleles have a concordant effect both on chromatin accessibility and 181	
  

gene expression levels (Figure 3B).  182	
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 183	
  

Figure 3. T2D associated caQTLs. (A) Enrichment of caQTLs for disease associated 
GWAS SNVs. The dashed red line represents p=5.43e-4, equivalent to 10% cutoff after 
Bonferroni correction for the number of diseases tested (n=184). (B) Table enumerating 
the 13 caQTLs linked to T2D-associated GWAS SNVs. Asterisks mark those loci that 
were tested for differential luciferase activity in panel E. (C) Average chromatin 
accessibility profiles at the ADCY5 locus (loss-of-function T2D caQTL). The inset boxplot 
shows the fraction of ATAC-seq reads containing the G allele in each of the heterozygous 
islet samples (n=5). (D) Average chromatin accessibility profiles at the IL20RA locus 
(gain-of-function T2D caQTL). The inset boxplot shows the fraction of ATAC-seq reads 
containing the C allele in each of the heterozygous islet samples (n=11). (E) Luciferase 
activity of 9 tested caQTLs with reference and alternate alleles (normalized to empty 
construct) **** and *** indicate p<0.0001 and p<0.001, respectively; two-sided Mann-
Whitney test p-values are shown on boxplots. ns = not significant.	
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 For 5 out of these 13 GWAS loci, the risk allele decreased chromatin accessibility 184	
  

(Figure 3B). This includes the T2D-associated index SNV rs11708067, which resides in 185	
  

the third intron of the ADCY5 gene and overlaps an islet SE. The risk allele for this 186	
  

variant (A) is associated with reduced chromatin accessibility (Figures 3B, 3C). This is 187	
  

consistent with recent reports by us and others linking the rs11708067 risk allele (A) to 188	
  

decreased enhancer activity in luciferase reporter assays in vitro (Roman et al. 2017), to 189	
  

reduced histone H3 lysine 27 acetylation (H3K27ac) (Roman et al. 2017) and to 190	
  

decreased ADCY5 expression in human islets in vivo (van de Bunt et al. 2015; Varshney 191	
  

et al. 2017; Roman et al. 2017). In the remaining 8 T2D-associated caQTL loci (Figures 192	
  

3B, D), the T2D risk allele was associated with higher chromatin accessibility than the 193	
  

non-risk allele, suggesting that the risk allele is associated with a gain-of-function.  194	
  

 To validate a subset (n=9) of the islet caQTLs, we tested whether the human 195	
  

caQTL alleles altered enhancer activity of the sequences overlapping these putative cis-196	
  

REs using luciferase reporter assays in MIN6 beta cells. Comparison of sequences 197	
  

containing either the reference or alternate allele for each caQTL site (Table 4) 198	
  

confirmed differential enhancer activity for 5 out of 9 loci (Figure 3E). For example, the 199	
  

rs6937795 “A” allele in the IL20RA locus, which is associated with increased T2D 200	
  

susceptibility and increased islet chromatin accessibility (Figure 3D), showed 2.5-fold 201	
  

higher enhancer activity than the non-risk “C” allele (Figures 3B, 3D, 3E).  202	
  

 203	
  

Chromatin accessibility changes in T2D versus ND islets 204	
  

To uncover T2D associated changes in chromatin accessibility, we compared 205	
  

chromatin accessibility maps from 5 ND and 5 T2D donors (Figure 4A). Out of 52,387 206	
  

ATAC-seq peaks tested, 1882 differentially accessible peaks between T2D and ND 207	
  

islets were identified (FDR 10%). Of these, 980 showed an increase and 902 showed a 208	
  

decrease in accessibility with the T2D state, hereafter referred to as “opening” and 209	
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“closing” peaks, respectively (Figure 4B). There was a remarkable difference in the 210	
  

functional annotation of differential peaks, where closing peaks were mostly found at 211	
  

enhancers (48%), and opening peaks were mainly at promoters (70%) (Figure 4C). 212	
  

Figure 4D and 4E represents examples of closing and opening peaks respectively.  213	
  

However, when differential peaks were categorized with respect to the presence 214	
  

or absence of ATAC-seq peaks in normal and diabetic donors (Fig S3E), we found that 215	
  

the majority of T2D-associated changes in chromatin accessibility were gradient in 216	
  

nature, i.e., peaks do not completely appear/disappear in T2D islets, with a few 217	
  

exceptions (<1%) (Supplementary Figure S3E). Additionally, we note that a subset of the 218	
  

1882 differentially accessible peaks (42 opening peaks, 51 closing peaks) overlapped 219	
  

caQTLs (Supplementary Figure S3F), suggesting that these T2D associated 220	
  

accessibility changes are driven by genetic factors.  221	
  

The differential peaks were annotated to the closest active genes in islets 222	
  

(Methods), resulting in 898 genes associated with opening and 665 genes associated 223	
  

with closing peaks (Supplemental Table S5). Differential gene expression analyses 224	
  

between ND and T2D samples revealed small changes in gene expression levels, where 225	
  

only 90 (38) genes were significantly up (down) regulated in T2D islets (FDR 10%).  We 226	
  

observed a modest yet positive correlation between T2D-associated chromatin 227	
  

accessibility changes at gene promoters and the changes in the expression levels of 228	
  

these genes (p=0.038, Wilcoxon, Figure 4F). Opening and closing peaks were enriched 229	
  

in different TF motifs (Figure 4G). Interestingly, TFs that regulate stress responses such 230	
  

as ATF3, AP-1 were enriched in closing peaks.  231	
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 232	
  

Discussion 233	
  

Using ATAC-seq, we profiled the chromatin accessibility of human islets from 19 234	
  

individuals. Integration of these open chromatin maps with each individual’s genotypes 235	
  

identified 3001 sequence variants (caQTL) that modulate in vivo islet regulatory element 236	
  

Figure 4. T2D-associated chromatin accessibility changes. (A) Schema summarizing the 
comparison of 5 T2D and 5 ND islets for chromatin accessibility and gene expression 
changes. (B) T2D-associated chromatin accessibility changes at differentially accessible sites 
(FDR 10%). Heat map represents normalized chromatin accessibility levels. (C) Islet 
ChromHMM annotations for ATAC-seq peaks (n=52387), differential peaks (n=1882), opening 
(n=980) and closing (n=902) peaks. Note that closing peaks are primarily at enhancer 
elements, whereas opening peaks are at promoter peaks. (D) Chromatin accessibility levels 
for an example loci around the BHLHE41 gene that contains a closing peak (marked in gray 
bar). (E) Chromatin accessibility levels for an example loci in the TIMM23B gene that contains 
an opening peak. (F) Gene expression changes (measured in log fold change) for promoter 
peaks that are closing or opening in T2D islets. Note that genes with opening peaks have 
positive fold change, i.e., increased expression with T2D, whereas genes with closing peaks 
have negative fold change, i.e., decreased expression in T2D (p=0.038; Mann-Whitney 
test).  (G) TF motif enrichment p-values for opening and closing peaks. 
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use.  These caQTLs were enriched in islet-specific enhancers and TF motifs. 237	
  

Importantly, a subset of these was significantly and specifically enriched for T2D and 238	
  

fasting glucose GWAS index or linked (r2>0.8) sequence variants. Comparison of ATAC-239	
  

seq profiles from T2D and ND individuals revealed quantitative changes in chromatin 240	
  

accessibility at 1882 putative islet cis-REs.  Together, these data and analyses 241	
  

contribute significantly to (1) enumerating the genetic variants that alter islet cis-RE use; 242	
  

(2) delineating putative functional variants among the T2D- and islet dysfunction-243	
  

associated GWAS SNVs; (3) linking the risk allele to in vivo loss or gain of cis-RE use in 244	
  

islets; and (4) assessing the relative chromatin accessibility effects of genetic variation 245	
  

and T2D state on human pancreatic islets. 246	
  

ATAC-seq profiling in islets obtained from multiple cadaveric organ donors 247	
  

identified genetic effects on accessibility of 3.5%  (3001/84499) of putative islet cis-REs 248	
  

genome-wide, and linked the alternate allele to increased chromatin accessibility at 249	
  

43.5% (1307/3001) of sites and decreased accessibility in 56.5% (n=1694/3001) of sites 250	
  

compared to the reference allele.  6.2% (187/3001) of caQTLs variants identified in this 251	
  

study were in linkage disequilibrium (r2>0.8) with previously described islet eQTL 252	
  

(Varshney et al. 2017). Reports studying other cell types from larger cohorts have 253	
  

observed overlaps between chromatin-based QTLs (such as DNase-sensitivity and 254	
  

histone acetylation) and eQTLs ranging from 16%-45% (Degner et al. 2012; Li et al. 255	
  

2016; del Rosario et al. 2015; Ng et al. 2017). Lower overlap observed in our study could 256	
  

be explained, at least in part, by the differences in sample size and resulting disparities 257	
  

in power between these two studies. It may also reflect the effect of the mixed cellular 258	
  

composition of islets, which might be resolved by studies measuring these features in 259	
  

sorted cell types. Finally, this overlap may reflect different inherent features measured by 260	
  

RNA-seq and chromatin-based assays that may contribute to these modest overlaps.  261	
  

For example, features reflected in RNA-seq data such as mRNA stability, 262	
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polyadenylation, and splicing are not captured by chromatin profiling assays. This 263	
  

warrants future studies examining the impact of genetic variation on the ability of islets to 264	
  

respond to environmental changes (response QTLs), alongside islet caQTL studies with 265	
  

higher sample sizes, perhaps in sorted cells.   266	
  

Using luciferase assays, we assessed allelic effects of the sequences 267	
  

overlapping nine of the islet caQTL sites on enhancer activity. Only 3/9 sequences 268	
  

tested exhibited transcriptional enhancer activity compared to the minimal promoter 269	
  

sequence alone, reinforcing the concept that caQTLs capture both enhancer and 270	
  

repressor cis-REs (Petrykowska et al. 2008). Importantly, five of these sites exhibited 271	
  

significant allelic differences in cis-RE activity. In each case, the direction of allelic effect 272	
  

on enhancer activity matched the allelic changes in chromatin accessibility, including for 273	
  

the rs6937795 variant in the T2D-associated IL20RA locus. For the remaining four 274	
  

sequences, lack of allelic differences in in vitro enhancer activity may be due to the 275	
  

human enhancers not being active in the mouse MIN6 beta cell line used for luciferase 276	
  

assays or to REs displaying enhancer activity only under certain conditions, such as 277	
  

oxidative stress and not in baseline conditions.  Indeed, studies in other cell types 278	
  

suggest that regulatory elements can be primed for and activated by specific 279	
  

environmental stimuli or stressors (Ostuni et al. 2013; Alasoo et al. 2017; Brown et al. 280	
  

2014).  281	
  

In this study, we identified SNVs in 13 T2D-associated loci that alter chromatin 282	
  

accessibility.  These include four loci (ZMIZ1, MTNR1B, RNF6, and ADCY5) in which the 283	
  

same or linked (r2>0.8) genetic variant has been identified as an islet eQTL. Importantly, 284	
  

the caQTL and eQTL studies identified a consistent direction-of-effect (e.g., gain- or 285	
  

loss-of-function) for the risk allele in each of these loci. T2D risk alleles in 5/13 loci were 286	
  

associated with reduced chromatin accessibility. For the remaining loci, the risk alleles 287	
  

were associated with increased chromatin accessibility, representing potential gain-of-288	
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function variants. Unfortunately, sequence motif analysis of these caQTL variants did not 289	
  

reveal obvious trans-factors that may be responsible for these accessibility differences 290	
  

or whose binding is affected by this sequence variant. This could be due in part to 291	
  

incomplete information on position weight matrices for TFs, including ARX, which is an 292	
  

islet alpha cell transcription factor. Together, these data and analyses have identified 293	
  

novel SNV effects on islet cis-REs, including their direction-of-effect, that can be further 294	
  

dissected in a site-specific and hypothesis-driven manner. 295	
  

 By comparing ATAC-seq profiles from T2D and ND donors, we identified 980 and 296	
  

902 regulatory elements that exhibit quantitative T2D-associated increases or decreases 297	
  

in chromatin accessibility, respectively. These data suggest that T2D state by itself may 298	
  

not lead to widespread changes in chromatin accessibility. However, we acknowledge 299	
  

that T2D-associated epigenomic changes may be masked by multiple factors, including: 300	
  

1) the small and genetically heterogeneous islet cohort analyzed; (2) cell type-specific 301	
  

changes that are hidden by other islet constituent cells; and (3) steady-state, 302	
  

normoglycemic culture conditions that may mask changes elicited by the diabetic milieu. 303	
  

Moving forward, studies that account for these potential confounders in larger, 304	
  

genetically-stratified islet cohorts will be necessary to further confirm these T2D-305	
  

associated changes and identify novel ones.  306	
  

 307	
  

Methods: 308	
  

Study subjects and primary islet culture:  309	
  

Fresh human cadaveric pancreatic islets were procured from ProdoLabs or the 310	
  

Integrated Islet Distribution Program (IIDP). Upon arrival, cells were transferred into 311	
  

PIM(S) media (ProdoLabs) supplemented with PIM(ABS) (ProdoLabs) and PIM(G) 312	
  

(ProdoLabs) and kept in a T-150 non-tissue culture treated flask (VWR) for recovery at 313	
  

37 C and 5% CO2 overnight. ATAC-seq and RNA-seq were performed the following day 314	
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as described below. For genotyping, genomic DNA was collected from islets cultured in 315	
  

CMRL + 10% FBS + Pen/Strep + Glutamax (Life Technologies) on tissue treated T175 316	
  

until confluent and then prepped with the Qiagen Blood and tissue kit.  317	
  

Islet genotyping and imputation:  318	
  

Islets were genotyped using the Illumina Omni2.5Exome (n=11) or the Omni5Exome 319	
  

chips (n=8) (See Table S1). Genotype calls were made using the Genome Studio 320	
  

software (Illumina). The resulting vcf files were merged using the vcf-merge command in 321	
  

the vcftools/0.1.12a suite, and subsequently filtered for sites with any missing data (--322	
  

max-missing 1). 2.38 million genotyped SNVs passed QC and were used for imputation 323	
  

(1000G Phase 3 v5) (1000 Genomes Project Consortium et al. 2015) and phasing 324	
  

(Eagle v2.3) (Loh et al. 2016) using the Michigan Imputation Server (Das et al. 2016), to 325	
  

get a total of 47 million SNVs. After removing SNVs that were either monomorphic or 326	
  

outside islet ATAC-seq peaks, 1.21 million SNVs were kept for downstream analysis 327	
  

(caQTL/eQTL).  328	
  

Chromatin accessibility analysis (ATAC-seq):  329	
  

Human islet ATAC-seq libraries were prepared as described (Varshney et al. 2017). 330	
  

Approximately 50-100 islet equivalents (50,000-100,000 cells) per sample were 331	
  

transposed in triplicate. Libraries were sequenced on an Illumina NextSeq500 (see 332	
  

Table S2). Paired-end 75-bp ATAC-seq reads were trimmed to remove low quality base 333	
  

calls using trimmomatic, and aligned to the hg19 human genome assembly with the 334	
  

Burrows Wheeler Aligner-MEM (Li and Durbin 2009). For each sample, duplicates were 335	
  

removed and the residual reads were shifted as previously described (Ucar et al. 2017). 336	
  

For each sample, technical replicates were merged using samtools, and peaks were 337	
  

called from the resulting merged bam file for each individual using MACS2 (Zhang et al. 338	
  

2008) (with parameters -callpeak --nomodel -f BAMPE). Islets with less than 30,000 339	
  

peak calls were removed, resulting in 19 islets for downstream analyses. An average 340	
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sequencing depth of 62.6 million (SD=18.6 million) reads was obtained for each of the 341	
  

remaining 19 islets, after merging the 3 technical replicates. ATAC-seq peaks on sex 342	
  

chromosomes and those overlapping regions with low mappability  343	
  

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/) 344	
  

were removed. The remaining autosomal peaks with q-values < 0.01 were selected for 345	
  

downstream analysis. The R Diffbind package (Stark and Brown) was used to define 346	
  

154,437 ATAC-seq peaks for the 19 islets and to obtain read counts for each ATAC-seq 347	
  

peak for all the samples.  348	
  

Islet chromatin accessibility quantitative trait locus (caQTL) analyses: VerifyBamID 349	
  

(Jun et al. 2012) was used to match ATAC-seq bam files for each sample to each 350	
  

individual’s genotypes and ensure no samples were switched. We removed 351	
  

69,939/154,438 islet ATAC-seq peaks containing monomorphic SNVs from the 352	
  

analyses. For the 1.21 million SNVs that were non-monomorphic and found within the 353	
  

remaining 84,499 islet peaks, allele-specific counts were obtained. Along with the read 354	
  

count information for the islet peaks for each sample local caQTLs were mapped using 355	
  

the RASQUAL statistical approach. The first 5 principal components were used as 356	
  

covariates to minimize confounding factors. The Bonferroni method was used to correct 357	
  

for the number of SNVs tested for each ATAC-seq peak. 10 random permutations were 358	
  

generated for each feature, and used to correct for the number of features tested, with 359	
  

an FDR cutoff of 10%.  360	
  

Differential ATAC-seq peak analyses (T2D vs. ND):   361	
  

Islets from 5 T2D individuals and from 5 ND individuals with the best demographic match 362	
  

(e.g., age, sex and race) were selected for comparative/differential analysis (see Table 363	
  

1). The R Diffbind package (Stark and Brown) was used to define 117599 consensus 364	
  

ATAC-seq peaks among these 10 islets and to determine read counts in each ATAC-seq 365	
  

peak for each of the 10 samples. Peaks were excluded from differential analysis if they 366	
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met the following criteria: 1) the peak is present in fewer than three islet donors; 2) it is 367	
  

present in only 1 T2D and 2 ND (or 1ND and 2 T2D) islet donor. Surrogate Variable 368	
  

Analysis (SVA) (Leek et al. 2012) was used to summarize sources of unwanted 369	
  

variability in the read count table for the remaining 52,387 consensus peaks. The two 370	
  

significant surrogate variables were used as covariates in the design matrix to minimize 371	
  

confounding factors. The edgeR package (Robinson et al. 2010) was used to identify 372	
  

1882 differential peaks at FDR 10%.  373	
  

Enrichment of genome-wide association study (GWAS) SNVs in differential (T2D 374	
  

vs. ND) and caQTL open chromatin sites:  375	
  

Lists of reference SNV identifiers were obtained from the NHGRI-EBI Catalog of GWAS 376	
  

SNVs (https://www.ebi.ac.uk/gwas/; accessed on January 19th, 2017) for 642 disease 377	
  

categories. For each disease category, GWAS SNVs were pruned using PLINK (Purcell 378	
  

et al. 2007) version 1.9 and parameters “--maf 0.05 --clump --clump-p1 0.0001 --clump-379	
  

p2 0.01 --clump-r2 0.2 --clump-kb 1000” to ensure that each variant haplotype was 380	
  

tested only once during the enrichment analysis. For each SNV pair in linkage 381	
  

disequilibrium (LD) (R2 > 0.2) the SNV with the less significant p-value was discarded. 382	
  

GREGOR (Schmidt et al. 2015) was used to determine if the LD-pruned GWAS SNVs 383	
  

were enriched (r2 >0.8) in (1) differential or (2) caQTL ATAC-seq peaks. Diseases for 384	
  

which there weren’t any GWAS SNVs in LD (r2 >0.8) with the tested genomic regions 385	
  

were excluded from downstream analysis.  386	
  

Transcription factor (TF) motif enrichment:  387	
  

The findMotifsGenome.pl (with parameters hg19 and –size given) script in the Homer 388	
  

suite (Heinz et al. 2010) was used to identify significantly enriched transcription factor 389	
  

(TF) motifs in islet ATAC-seq data. For Figure 1F, motifs enriched in the islet-specific 390	
  

ATAC-seq peaks were identified using the common ATAC-seq peaks as the background 391	
  

set.  Common (background) peaks were defined as those that overlapped any given 392	
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ATAC-seq peaks for adipose, CD4T, GM12878 and 2 PBMC samples. Islet-specific 393	
  

peaks were those that did not overlap an open chromatin loci in the other tissues. For 394	
  

Figure 4G, motifs enriched in the 1882 differential peaks were identified using the 52387 395	
  

peaks as the background set. For Figure 2E, motifs enriched in the 3001 caQTL peaks 396	
  

were identified using the 154437 peaks as the background set. TFs are clustered based 397	
  

on the similarity of their Position Weight Matrices (PWMs) using Kullback Leibler 398	
  

divergence method as implemented in the TFBSTools R package (Tan and Lenhard 399	
  

2016). 400	
  

ChromHMM annotation:  401	
  

Harmonized ChromHMM files (13 state) for islets, the ENCODE cell lines and the 402	
  

Roadmap tissues were used as previously determined (Varshney et al. 2017). The 403	
  

ggplot2 package was used to plot the overlap of peak sets to the harmonized 404	
  

ChromHMM states. For cases when a peak overlapped two or more ChromHMM states, 405	
  

the order of preference for overlaps were as follows: Active TSS, Bivalent TSS, Weak 406	
  

TSS, Flanking TSS, Active Enhancer-1, Active Enhancer-2, Weak Enhancer, Genic 407	
  

Enhancer, Strong Transcription, Weak Transcription, Repressed Polycomb, Weak 408	
  

Repressed Polycomb, and Quiescent.  409	
  

Stretch enhancer annotation:  410	
  

Stretch enhancers were defined using the harmonized ChromHMM definitions. Briefly, 411	
  

stretch enhancers are defined as > 3kb consecutive segments that overlap and 412	
  

enhancer state including Active Enhancer 1 and 2, Weak Enhancer and Genic Enhancer 413	
  

ChromHMM states. To test whether a peak set is enriched in a given tissue stretch 414	
  

enhancers, fisher’s exact test was performed. The background set was the union of the 415	
  

stretch enhancers of all 31 tissues, except the one being tested.  416	
  

RNA-seq profiling:  417	
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Libraries for the 19 islets exhibiting high-quality ATAC-seq profiles were prepared using 418	
  

the stranded TruSeq kit (Illumina), and had either ERCC Mix 1 or Mix 2 randomly spiked-419	
  

in (ThermoFisher, catalog #4456740; see Supplemental Table S3). The 10 islets used 420	
  

for the T2D vs. ND differential analysis were sequenced on an Illumina NextSeq500 421	
  

sequencer. The remaining 9 islets were sequenced separately on Illumina HiSeq 2500. 422	
  

The paired-end RNA-seq reads for each islet was trimmed for low quality base calls 423	
  

using trimmomatic (Bolger et al. 2014). Bowtie2 (Langmead and Salzberg 2012), in 424	
  

conjunction with RSEM (Li and Dewey 2011) (rsem-calculate-expression), was used to 425	
  

obtain the FPKM and Expected read counts for all genes across the 19 samples. An 426	
  

average depth of 87.2 ± 27.8 million reads was obtained for the 19 islets.  427	
  

Differential gene expression:  428	
  

Only autosomal genes with FPKM>5 in more than 3 islets were included in the analysis. 429	
  

SVA was used to summarize sources of unwanted variability in the expected read count 430	
  

matrix for the remaining 10,116 genes, and minimize confounding factors. Differential 431	
  

gene expression analyses between ND and T2D samples were completed using edgeR 432	
  

at FDR 10%. 433	
  

Expression QTLs analysis: Expected counts from RSEM for 9656 genes expressed 434	
  

(FPKM>5) in the 19 islets were used as input to RASQUAL. Only SNVs within the genes 435	
  

or those flanking 50 kilobases (kb) on either side of the gene body were tested for eQTL 436	
  

activity. The first four principal components and race were used as covariates to 437	
  

minimize confounding factors. Bonferroni correction was used to correct for the number 438	
  

of SNVs tested for each gene. 10 random permutations was generated for each gene, 439	
  

and used to correct for the number of genes tested, with an FDR cutoff of 10%.  440	
  

Luciferase reporter assays: Genomic DNA from individuals homozygous for the 441	
  

reference and alternate alleles was used to amplify the 9 loci (see Supplemental Table 442	
  

S4). The 18 total constructs were cloned into the pDONR vector with BP Clonase 443	
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(Invitrogen), which was then used to transfer the constructs into the Gateway-modified 444	
  

pGL4.23-FWD vector (Stitzel et al. 2010) with LR Clonase. Renilla luciferase (pRL-TK) 445	
  

was co-transfected with equimolar amounts of each pGL4.23 vector into MIN6 was used 446	
  

to normalize differences in transfection efficiencies as previously described (Stitzel et al. 447	
  

2010). Cells were lysed in 1x Passive Lysis Buffer (PLB) 36 hours after transfection and 448	
  

luciferase activity was measured using the Dual Luciferase Reporter (DLR) Assay 449	
  

system (Promega) according to the manufacturer’s instructions. DLR activity was 450	
  

measured using a Synergy2 Microplate Reader (BioTek). The DLR ratio (Firefly/Renilla) 451	
  

for each construct was normalized to the empty pGL4.23 vector. The assay was 452	
  

performed 3 times. Each run included 3 separate mini-preps for each construct, and 3 453	
  

technical replicates for each mini-prep.  454	
  

 455	
  

Supplementary Figure Legends 456	
  

Figure S1. Chromatin accessibility maps in human islets. (A) Insert size distributions 457	
  

of six representative islets (3 non-diabetic (ND), 3 T2D). ATAC-seq libraries capture 458	
  

nucleosome free and mono-, di-nucleosomal regions. (B) Number of ATAC-seq peaks 459	
  

called across the cohort, ranging from individual-specific peaks (n=1) to common peaks 460	
  

(n=19). (C) Islet ChromHMM annotations for ATAC-seq peaks categorized with respect 461	
  

to their frequency in the cohort. Note that common peaks are mostly promoters, whereas 462	
  

individual-specific or rare peaks include more quiescent or low signal regions. (D) TF 463	
  

motifs enriched in islet-specific peaks (from Figure 1F).  464	
  

 465	
  

Figure S2. Chromatin accessibility QTLs in islets. (A) QQ-plot for expected and 466	
  

observed caQTL p-values. (B) Location of caQTLs (marked in green) across the 467	
  

genome. Note that caQTLs are widely distributed across each chromosome. (C) 468	
  

Functional annotation of caQTLs using ChromHMM states in islets and other tissues. 469	
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Tissues are sorted from highest to lowest overlap between ATAC-seq peaks and the 470	
  

‘Quiescent/Low Signal’ state. Note the enrichment of caQTLs in islet enhancers. (D) 471	
  

Overlap of caQTLs with islet eQTLs from the same cohort. (E) Overlap of caQTLs with 472	
  

previously published islet eQTLs from 112 individuals (Varshney et al. 2017). (F) Table 473	
  

enumerating the 9 caQTLs that were tested for luciferase activity. Note that higher 474	
  

accessibility is associated with higher enhancer activity for all the 5 caQTLs displaying 475	
  

differential luciferase activity.  476	
  

 477	
  

Figure S3. T2D-associated chromatin accessibility changes. (A) Principal 478	
  

Components 1 and 2 for the 10 islets. Note that the ND and T2D islets do not cluster 479	
  

together using all ATAC-seq peaks. (B) The weighted average proportion variance 480	
  

explained for the meta-variables associated with the 10 islets. Note that SVA reduces 481	
  

the variance attributed to all meta-variables, except for the one of interest (Condition) (C) 482	
  

The overlap of differential peaks detected with and without SVA is significant.  (D) MA 483	
  

plot of all ATAC-seq peaks used for differential analyses (n=52,387). Positive logFC 484	
  

means the peaks are opening in T2D, and Negative logFC means the peaks are closing 485	
  

in T2D (CPM=counts per million). (E) Each cell in the heat map shows the number of 486	
  

differential peaks that are called as ATAC-seq peaks among ND and T2D islets. 487	
  

918/1882 differential peaks are found in all 10 islets. (F) Venn diagram showing the 488	
  

number of opening or closing peaks overlapping caQTLs.   489	
  

 490	
  

Supplementary Table Legends 491	
  

Table S1. Meta data associated with the 19 islets. 492	
  

Table S2. ATAC-seq quality control metrics for the 19 islets.  493	
  

Table S3. RNA-seq quality control metrics for the 19 islets.  494	
  

Table S4. Constructs for Luciferase Assay 495	
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Table S5. Differentially accessible ATAC-seq peaks in Islets 496	
  

 497	
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