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Abstract 

Bipolar disorder (BD) is a heritable mood disorder characterized by episodes of mania and 

depression. Although genomewide association studies (GWAS) have successfully identified 

genetic loci contributing to BD risk, sample size has become a rate-limiting obstacle to genetic 

discovery. Electronic health records (EHRs) represent a vast but relatively untapped resource 

for high-throughput phenotyping. As part of the International Cohort Collection for Bipolar 

Disorder (ICCBD), we previously validated automated EHR-based phenotyping algorithms for BD 

against in-person diagnostic interviews (Castro et al. 2015). Here, we establish the genetic 

validity of these phenotypes by determining their genetic correlation with traditionally-

ascertained samples. Case and control algorithms were derived from structured and narrative 

text in the Partners Healthcare system comprising more than 4.6 million patients over 20 years. 

Genomewide genotype data for 3,330 BD cases and 3,952 controls of European ancestry were 

used to estimate SNP-based heritability (h
2

g) and genetic correlation (rg) between EHR-based 

phenotype definitions and traditionally-ascertained BD cases in GWAS by the ICCBD and 

Psychiatric Genomics Consortium (PGC) using LD score regression. We evaluated BD cases 

identified using 4 EHR-based algorithms: an NLP-based algorithm (95-NLP) and 3 rule-based 

algorithms using codified EHR with decreasing levels of stringency - “coded-strict”, “coded-

broad”, and “coded-broad based on a single clinical encounter” (coded-broad-SV). The analytic 

sample comprised 862 95-NLP, 1,968 coded-strict, 2,581 coded-broad, 408 coded-broad-SV BD 

cases, and 3,952 controls. The estimated h
2

g were 0.24 (p=0.015), 0.09 (p=0.064), 0.13 

(p=0.003), 0.00 (p=0.591) for 95-NLP, coded-strict, coded-broad and coded-broad-SV BD, 

respectively. The h
2

g for all EHR-based cases combined except coded-broad-SV (excluded due to 
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0 h
2

g) was 0.12 (p=0.004). These h
2

g were lower or similar to the h
2

g observed by the 

ICCBD+PGCBD (0.23, p=3.17E-80, total N=33,181). However, the rg between ICCBD+PGCBD and 

the EHR-based cases were high for 95-NLP (0.66, p=3.69x10-5), coded-strict (1.00, p=2.40x10-4), 

and coded-broad (0.74, p=8.11x10-7). The rg between EHR-based BDs ranged from 0.90 to 0.98. 

These results provide the first genetic validation of automated EHR-based phenotyping for BD 

and suggest that this approach identifies cases that are highly genetically correlated with those 

ascertained through conventional methods. High throughput phenotyping using the large data 

resources available in EHRs represents a viable method for accelerating psychiatric genetic 

research. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2017. ; https://doi.org/10.1101/193011doi: bioRxiv preprint 

https://doi.org/10.1101/193011
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

Although twin studies first documented the high heritability of bipolar disorder (BD) 

decades ago, only recently have robustly associated genetic risk loci been identified through 

genomewide association studies (GWAS).
1-8

  At present, the major rate-limiting step for GWAS 

of BD is the need for ever-larger sample sizes to detect both common modest-effect variants 

and rarer large effect variants. In recent years, the widespread adoption of longitudinal 

electronic health records (EHRs) has provided a vast and growing repository of phenotypic data 

that can be leveraged for psychiatric research.
9
 In particular, when linked to sample collections 

through biobanks and other efforts, EHR data provide a relatively untapped opportunity to 

enhance the power of genetic research. Nevertheless, establishing the validity of EHR-derived 

phenotypes remains an important pre-requisite for leveraging these resources.  

In an effort to rapidly increase available samples for genomewide studies of BD, we 

established the International Cohort Collection for Bipolar Disorder (ICCBD) through which we 

applied high-throughput phenotyping methods at sites in the United States (US), United 

Kingdom (UK) and Sweden.
7
 At the US site (Partners Healthcare), we developed and applied 

EHR phenotyping algorithms to identify approximately 4,500 cases and 5,000 controls for whom 

DNA was obtained from discarded blood samples. The use of EHR data to define valid 

phenotypes is particularly challenging for psychiatric disorders. Because there are no 

pathognomonic laboratory or pathologic findings, psychiatric diagnosis has traditionally relied 

on self-reported symptoms, behavioral observations, and clinical judgment. Thus, genomic 

studies have typically utilized structured or semi-structured diagnostic interviews as the gold-

standard method to establish case and control status. EHR data, on the other hand, are limited 
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to information (e.g. billing codes, medication lists, narrative notes) collected in the course of 

clinical care rather than for research purposes. Recognizing this, we have undertaken 

systematic efforts to evaluate the validity of our EHR-based phenotyping algorithms.  

In an earlier report
10

, we described the development of our automated phenotyping 

algorithms for BD cases and controls. Briefly, we developed four case definitions, one of which 

included natural language processing of narrative EHR notes and three based on structured 

coded data using rule-based classifiers that differed in their stringency. Another rule-based 

algorithm was developed to identify controls. To establish the clinical validity of these 

algorithms, we conducted an in-person diagnostic validation study (N = 190) in which algorithm 

diagnoses were compared to diagnoses made by blinded expert clinicians using a gold-standard 

in-person diagnostic interview (SCID-IV). Three of the four case definitions achieved high 

positive predictive value (PPV) compared with diagnostic interviews (up to 0.86) and the PPV 

for the control algorithm was 1.0. Thus, we demonstrated that automated EHR-based 

phenotyping can be used to identify clinically-valid case and control definitions for BD. However, 

an important remaining question is whether these case and control sets are genetically 

comparable to traditionally-ascertained samples that have been used in most genomic studies 

of BD. This is an important issue in evaluating whether EHR-based samples can be combined 

(e.g. through meta-analyses) with data from other ongoing genomic studies (e.g. by consortia 

such as the Psychiatric Genomics Consortium) to enhance gene discovery.   

Here, we report genetic validation of our EHR phenotyping algorithms by using 

genomewide data to estimate their SNP-based heritability (h
2

g) and genetic correlation (rg) with 
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other large-scale traditionally-ascertained BD GWAS samples. We further examined genetic 

correlations with other phenotypes of interest and performed genome-wide heterogeneity 

testing to validate the consistency of genome-wide association results. Our results demonstrate 

that automated EHR phenotyping can be used to assemble case/control cohorts that are both 

clinically and genetically comparable to traditionally-ascertained samples and thus represent a 

valuable tool for accelerating psychiatric genetic research.     

 

Materials and Methods 

Study subjects 

Cases and controls were collected as part of the International Cohort Collection for Bipolar 

Disorder (ICCBD), a US, UK, and Swedish consortium established to accelerate genomic studies 

of BD by applying high throughput phenotyping methods.
7,10

 The Massachusetts General 

Hospital site of the ICCBD aimed to collect DNA from 4,500 cases and 4,500 controls by linking 

discarded blood samples to de-identified EHR data. As described in detail elsewhere
10

, cases 

and controls were identified by deriving EHR-based phenotyping algorithms applied to the 

Partners Healthcare Research Patient Data Registry (RPDR), which spans more than 20 years of 

data from 4.6 million patients. We first created a “datamart” of 52,235 individuals by filtering 

medical records to identify patients seen at Massachusetts General Hospital, Brigham and 

Women’s Hospital, or McLean Hospital who had at least one diagnosis of bipolar disorder (ICD- 

9 and DSM-IV-TR codes 296.4*–296.8*) or manic disorder (ICD 296.0*–296.1*).  Next, four 

phenotyping algorithms were developed to identify cases and one algorithm to identify controls.  
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The development and clinical validation of case and control algorithms described here is 

adapted from Castro et al. 2015.
10

 The five phenotyping algorithms developed comprised the 

following: 

1. 95-NLP: This BD case algorithm incorporated natural language processing (NLP) of 

narrative notes using the i2b2 suite of software.
11

 Expert clinicians manually reviewed 

612 notes from 209 randomly selected patients to identify gold-standard cases and to 

extract relevant features from narrative notes to be processed by NLP. We trained a 

model based on 414 features to predict the probability of BD using a logistic regression 

classifier with the adaptive least absolute shrinkage and selection operator (LASSO) 

procedure. The final model, comprising 13 features, achieved an area under the receiver 

operating curve (AUC) of 0.93, with a sensitivity of 0.53 when the specificity was set to 

0.95.  

2. Coded-strict: This algorithm was a rule-based classifier that required at least three ICD 

codes for BD, a predominance of BD diagnoses in the longitudinal record, and either a) 

treatment with lithium or valproate within a year of BD diagnosis or b) treatment at a 

bipolar specialty clinic.  

3. Coded-broad: This algorithm required at least two ICD codes for BD, a predominance of 

BD diagnoses, and treatment with at least two bipolar medications (lithium, valproate, 

carbamazepine, or an atypical antipsychotic). 

4. Coded-broad-SV: This algorithm was the same as “Coded-broad” except that two or 

more BD diagnoses were allowed at occur during the same inpatient or outpatient 

episode of illness.  
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5. Controls: This algorithm defined controls as those age 30 years or older with no ICD-9 

codes or history of medications related to a psychiatric or neurological condition.  

As reported earlier, we conducted a direct-interview study to examine the predictive 

validity of these algorithms. Patients in the Partners Healthcare system who were identified by 

each algorithm as BD cases or controls were invited by mail to participate. After informed 

consent was obtained, participants underwent semistructured diagnostic interviews (SCID-IV) 

conducted by experienced doctoral-level clinicians blinded to classifier diagnosis. To further 

preserve clinician blinding, we recruited individuals from MGH clinics who reported a previous 

diagnosis of schizophrenia or major depressive disorder, disorders commonly considered in the 

differential diagnosis of BD. A total of 190 participants were interviewed and PPVs for each 

algorithm were calculated as the proportion of algorithm defined BD cases (or controls) who 

received a concordant diagnosis by SCID interview. The PPVs for each algorithm using a non-

hierarchical approach (where each case was assigned to any algorithm for which they satisfied 

inclusion criteria) are shown in Table 1 and reported in Castro et al. 2015.
10

  

DNA sample collection and genotyping 

The phenotyping algorithms were applied to the Partners Healthcare system to ascertain case 

and control DNA samples by linking phenotypic data to discarded blood samples as previously 

described.
11

 In brief, case and control medical record numbers are submitted to the Partners 

HealthCare Crimson system, which acts as an “honest broker” to match deidentified phenotypic 

data to discarded blood samples. Genotyping was performed in five batches that included case 

and control samples using the Illumina PsychChip at the Broad Institute of Harvard and MIT.  
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Genotype quality control (QC) and imputation 

A total of 3,772 BD cases and 4,141 controls with genomewide data were available for this 

analysis. We performed QC on each genotyping batch separately as follows: we removed single 

nucleotide polymorphisms (SNPs) with genotype missing rate > 0.05; excluded samples with 

genotype missing rate > 0.02, absolute value of heterozygosity > 0.2, or failed sex checks; 

removed SNPs with missing rate > 0.02 or with differential missing rate between cases and 

controls > 0.02; and removed SNPs failed Hardy-Weinberg equilibrium test (p-value < 1.0×10
-6

 

in controls and p-value < 1.0x10
-10

 in cases). To merge genotyping batches for imputation and 

analyses, we performed batch QC by removing SNPs with differential missing rate > 0.005 

between batches or significant batch association (p-value < 5.0x10
-8

 between controls form 

different batches). All QC were conducted using PLINK v1.9.
12

 

The BD cases and controls included individuals from diverse populations. To control for 

population stratification and ensure the comparability between the current sample and 

previous European ancestry BD GWAS, we extracted samples with European ancestry for 

imputation and analyses. We used HapMap3 samples as a population reference panel and 

performed principal component analysis (PCA) with the study samples and HapMap3 samples 

combined. We calculated the distance between each study sample and the average European 

population samples in HapMap3 using PC1 and PC2. We selected the study samples with 

distance to average European HapMap3 samples < 0.01 (Supplementary Figure 1-3).
13

 We also 

removed one sample from each pair of related or duplicate samples (��> 0.2).  

The final analytic dataset comprised 3330 BD cases (862 95-NLP, 1968 coded-strict, 2581 

coded-broad, and 408 coded-broad-SV) and 3952 controls. The sum of the individual cases 
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groups exceeds 3330 due to the non-hierarchical design in which cases were assigned to each 

phenotype for which they met inclusion criteria. We performed 2-step genotype imputation 

with Eagle2 software for pre-phasing and IMPUTE2 on the European population study 

samples.
14,15

  

Statistical analysis 

To assess whether our EHR-based phenotypes capture heritable components of BD, we used  

LD score regression (LDSC)
7,16,17

 to estimate SNP-based heritability (h
2

g) for each EHR-based BD 

cohort. We then examined the degree to which heritable influences on our BD phenotypes 

overlap with those traditionally-ascertained BD cases in other large-scale GWAS samples. To do 

this, we used LDSC to compute the genetic correlation (rg) between EHR-based BD samples and 

previously published BD GWAS by other ICCBD cohorts and the PGC (ICCBD+PGCBD).
7,16,17

 The 

LDSC requires association summary statistics for genome-wide SNPs to estimate h
2

g and rg. To 

obtain these summary statistics, we first performed GWAS for each of the four EHR-based BD 

definitions separately and for our combined BD case-control sample. We used a BD prevalence 

of 1% to obtain liability-scale h
2

g from LDSC.
18-21

 Prior studies have documented substantial 

genetic correlation between BD and other psychiatric disorder phenotypes, most notably 

schizophrenia (SCZ) and major depressive disorder (MDD).
19

 To examine the genetic 

relationship between EHR-based BD samples and related phenotypes, we used LD Hub
22

 to 

estimate rg with schizophrenia (SCZ), major depressive disorder (MDD), subjective well-being, 

and, as a negative control, mean platelet volume (MPV). Finally, we performed genome-wide 

Cochran’s Q test to look for heterogeneity between association summary statistics from the 
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EHR-based BD samples and the ICCBD+PGCBD samples at single variant level, using SNPs with 

association p-value < 0.001 in the ICCBD+PGCBD GWAS. 

 

Results 

We first estimated SNP-based heritability (h
2

g) for the four EHR-based BD samples (Table 1). The 

liability-scale h
2

g estimates were largest for the 95-NLP BD algorithm (0.24, p = 0.015) and 

smallest for the coded-broad-SV algorithm (0.0, p = 0.59), with intermediate but statistically 

significant values for the coded-strict and coded-broad algorithms. The h
2

g of BD in the 

ICCBD+PGCBD sample was 0.23, which matches the h
2

g for the 95-NLP algorithm but is greater 

than that of the rule-based algorithms. Of note, the coded-broad-SV case set had the least 

power with only 408 cases. As shown in Table 1, this distribution of heritability estimates 

mirrors the relative PPVs obtained in our clinical validation study. To maximize the BD case-

control sample size, we combined the BD case-control samples across algorithms into a single 

case-control dataset. Since the coded-broad-SV had no evidence of heritability, we created two 

combined BD datasets; one included all BD cases and one included all but the coded-broad-SV 

cases). The h
2

g was 0.11 (p-value = 0.006) for all algorithms combined BD and 0.12 (p-value = 

0.004) for all algorithms excluding coded-broad-SV.   

We next estimated the SNP-based genetic correlation (rg) between the EHR-based BD 

samples and the ICCBD+PGCBD samples (Table 2). The rg estimates were 95-NLP (0.66), coded-

strict (1.0), and coded-broad (0.74) were all statistically significant. (Note that rg could not be 

estimated for coded-broad-SV given its h
2

g of 0). The rg for all algorithms excluding coded-

broad-SV was 0.83 (p= 7.19x10
-7

). Adding coded-broad-SV BD cases to the combined case set 
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did not substantially change the rg estimate although the standard error (SE) increased and p-

value rose to 2.88x10
-6

. We also estimated the pairwise rg between the EHR-based BD case-

control samples and the final combined BD samples (Table 3). The rg estimates ranged from 

0.90 to 0.98 between algorithms, and were 1.00 between each algorithm and the combined 

sample (excluding coded-broad-SV). Finally, the rg between ICCBD and PGCBD was 1.00 (SE = 

0.065, p-value = 1.45x10
-74

). 

Given prior evidence that traditionally-ascertained BD GWAS show significant positive 

genetic correlations with SCZ and MDD
17,19

 and significant negative genetic correlation with 

subjective well-being
23

, we examined these correlations using our EHR-based algorithms as 

another index of their genetic validity. As a negative control, we also examined their genetic 

correlation with mean platelet volume, a phenotype for which we would not expect significant 

genetic correlation.  (Figure 1; Supplementary Table 1). We used the cross-phenotype rg of 

ICCBD+PGCBD as the standard for comparison. As expected based on prior data
17,19,23

, the EHR-

based case-control samples positively correlated with SCZ and BD, negatively correlated with 

subjective well-being, and uncorrelated with MVP (Figure 1). These patterns were mirrored 

those observed for the ICCBD+PGCBD sample with one difference. Whereas the genetic 

correlation was greater between EHR-based BD and MDD was larger than that seen for EHR-

based BD and SCZ, the opposite order was seen between ICCBD+PGCBD and these phenotypes. 

This difference in magnitude remained when rg were estimated separately for ICCBD and 

PGCBD. 

We hypothesized that this difference in rg patterns might be related to differences in the 

proportions of BD subtypes among the EHR-BD cases and those included in the traditionally-
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ascertained samples. To investigate this, we calculated the percentage of BD case subtypes, 

including bipolar I disorder (BD1), bipolar II disorder (BD2), schizoaffective disorder bipolar type 

(SAB), and bipolar disorder not otherwise specified (NOS) for the EHR-based BD cases and the 

ICCBD cases (the subtypes of PGCBD cases were not available). We found that the EHR-based 

BD cases comprised a lower proportion of SAB subtype cases (0.6-1.6%) compared with the 

ICCBD samples (9.1%) (Supplementary Figure 4). This difference would be consistent with a 

relatively larger genetic correlation with SCZ seen with the ICCBD sample compared to the EHR-

based samples.  

Finally, we performed Cochran’s Q test to identify potential heterogeneity of the 

association summary statistics between EHR-based BD samples and the ICCBD+PGCBD samples. 

This analysis was restricted to SNPs with association p < 0.001 in the ICCBD+PGCBD GWAS in 

order to exclude SNPs with weak association results whose directionality might be less robust. 

We identified a single locus with significant heterogeneity across the genome after Bonferroni 

correction (SNP N = 28,320) for both coded-broad and for the combined EHR-BD sample 

(excluding coded-broad-SV) (Figure 2). This locus on chromosome 22 (peak Q test p-value at 

rs196065 = 3.34x10
-7

), showed modest association with BD (p-value = 5.78x10
-5

 in 

ICCBD+PGCBD) and did not overlap with any previously reported BD-associated loci. Thus, we 

found negligible evidence of heterogeneity of genomewide association results between EHR-

based BD and traditionally-ascertained BD. 

 

Discussion 
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As an ever-growing longitudinal repository of the clinical phenome, EHRs represent a new and 

powerful resource for psychiatric research.
9
 Nevertheless, their utility depends on the validity 

of the clinical and phenotypic data that can be extracted. We have previously demonstrated the 

feasibility of deriving diagnoses with high predictive value compared with a gold standard of 

clinician-administered diagnostic interviews.
10

 However, in the context of psychiatric genetic 

research, establishing the genetic validity of these phenotypes is crucial. In the present study, 

using genomewide genotype data for more than 7,000 cases and controls, we demonstrate that 

EHR-based algorithms can be used to ascertain BD phenotypes that are heritable and 

genetically comparable to traditionally-ascertained samples. Automated algorithm-based 

phenotyping linked to biospecimens provides substantial efficiencies in terms of the time and 

costs involved in assembling large-scale samples for genetic research. Prior simulations have 

documented up to a 10-fold reduction in the cost associated with phenotyping and sample 

collection.
11

 Using our case/control BD definitions linked to discarded blood samples, we were 

able to collect approximately 5,000 controls over 10 weeks and more than 4,000 cases over 3 

years. As described below, three sets of findings from our analyses are particularly noteworthy. 

First, our results document that EHR-based diagnostic algorithms can be used to 

ascertain BD phenotypes that yield SNP-based heritability comparable to that observed in 

GWAS that have relied on more time- cost-, and labor-intensive recruitment and diagnostic 

evaluation. The highest heritability (0.023) was seen with our 95-NLP algorithm which 

combined NLP of narrative test features and coded EHR data. This estimated heritability was 

nearly identical to that derived from GWAS of the larger traditionally-ascertained cohorts of the 

international ICCBD and PGC (h
2

g=0.24 for 13,902 cases and 19,279 controls). The 95-NLP 
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algorithm also achieved the highest positive predictive value in our previous clinical validation 

study. For two of the remaining three algorithms which involved rule-based algorithms of 

structured EHR data, we also observed significant, though relatively lower, heritability 

estimates (h
2

g= 0.09 – 0.12). The least restrictive algorithm (coded-broad-SV) did not exhibit 

significant heritability, though the small sample size of this subgroup may limited the power of 

our analyses. Of note, this last algorithm also performed poorly in our prior clinical validation 

study (PPV=0.5). Nevertheless, the overall heritability of our EHR-based BD was 0.12 (p = 0.004), 

dropping slightly to 0.11 (p = 0.006) when the coded-broad-SV was included. In addition, the 

EHR-based BD definitions were nearly perfectly genetically correlated. Pairwise genetic 

correlations between the phenotypes ranged from 0.98 – 1.0 except for 95-NLP and coded-

broad-SV (rg= 0.90). 

Second, we found that our cohorts ascertained by automated EHR phenotyping 

exhibited substantial genetic correlations (rg) with the large ICCBD+PGCBD samples. Overall, the 

rg between our EHR-based BD case/control samples and the ICCBD+PGCBD samples was 0.83 (p 

= 2.88 x 10
-6

), demonstrating that our approach captures genetic influences that strongly 

overlap with those acting on BD in traditionally-ascertained samples. In addition to providing 

further genetic validation of EHR-derived phenotypes, these results indicate that such samples 

can be combined with other existing samples to enhance the power of genetic discovery.  

Finally, we demonstrate that our phenotyping approach replicates patterns of cross-

disorder genetic overlap that have previously been reported in genetic studies of BD.
7,24

 In 

particular, EHR-based BD exhibited positive genetic correlations with SCZ and MDD and 

negative correlations with subjective well-being. Once again, this supports the genetic validity 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2017. ; https://doi.org/10.1101/193011doi: bioRxiv preprint 

https://doi.org/10.1101/193011
http://creativecommons.org/licenses/by-nc-nd/4.0/


of our algorithm-defined BD phenotype. Unexpectedly, the genetic correlation with SCZ was 

less than that seen with MDD, a finding that may be attributable to the relatively low frequency 

of SAB cases in our sample.  

We acknowledge that our results have certain limitations. First, our sample size, while 

substantial, is smaller than that of some other existing samples (e.g. ICCBD and PGCBD), which 

may have limited the power and precision of our heritability and genetic correlation analyses. 

Second, the portability of our specific phenotyping algorithms to other healthcare settings 

remains to be determined. Notably, however, our results demonstrate that a range of 

algorithms – with and without NLP and using diagnostic rules of varying stringency – yield 

phenotypes that are clinically and genetically comparable to those obtained by in-person 

standardized diagnostic assessments.  

In summary, the current study provides the first genetic validation of EHR-based 

phenotyping for BD and suggests that automated phenotyping algorithms can identify samples 

that are highly genetically correlated with those ascertained through conventional methods. 

Taken together, the present results and those of our prior clinical validation study, suggest that 

the use of any or all three of the heritable EHR-based algorithms we derived (i.e. 95-NLP, 

coded-strict, and coded-broad) can facilitate genetic studies of bipolar disorder. High 

throughput phenotyping using the large data resources available in the EHR database 

represents a viable method for accelerating psychiatric genetic research. 
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Figure Legends 

Figure 1: SNP-based genetic correlation (with 95% confidence interval) between bipolar 

disorder based on different ascertainment methods and other traits 

Figure 2: Genome-wide Cochran’s Q-test for heterogeneity of SNP effects between 

ICCBD+PGCBD and EHR-based bipolar disorder. Red line shows the Bonferroni-corrected 

significance level for the Q-test. SNPs are selected with association p-value threshold of 0.001 

based on ICCBD+PGCBD analysis (total number of SNPs=28,320). 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2017. ; https://doi.org/10.1101/193011doi: bioRxiv preprint 

https://doi.org/10.1101/193011
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables 

Table 1. SNP-based heritability (h
2

g) for EHR-based bipolar disorder from the Partners 

Healthcare Research Patient Data Registry  

Bipolar disorder 

Algorithms 

h
2

g (SE)   Sample size 

liability scale observed scale P-value
2
 PPV cases controls 

95-NLP 0.24 (0.10) 0.25 (0.10) 0.015 0.86 862 3952 

Coded-strict 0.09 (0.05) 0.15 (0.08) 0.064 0.84 1968 3952 

Coded-broad 0.13 (0.04) 0.22 (0.08) 0.003 0.80 2581 3952 

Coded-broad-SV 0.00 (0.11) 0.00 (0.18) 0.591 0.50 408 3952 

All algorithms 0.11 (0.04) 0.20 (0.07) 0.006 NA 3330 3952 

All algorithms except 

coded-broad-SV 0.12 (0.04) 0.21 (0.07) 0.004 

 

NA 3013 3952 

ICCBD+PGCBD
1
 0.23 (0.01) 0.41 (0.02) 3.17x10

-80
 NA 13902 19279 

SNP-based heritability on liability scale was converted from observed scale based on population 

prevalence of 1%. 
1
ICCBD+PGCBD: Bipolar disorder genome-wide association study from the 

ICCBD and PGC1 with cases ascertained by traditional methods (Charney et al. 2017). 
2
Test for 

different from 0. PPV: positive predictive values from clinical validation (Castro et al. 2015). 95-

NLP: probabilistic algorithm with 95% specificity based on natural language processing. Coded-

strict, Coded-broad, Coded-broad-SV: coded rule-based algorithms with decreasing stringency. 

SV: single visit. SE: standard error. 
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Table 2. SNP-based genetic correlation (rg)between EHR-based bipolar disorder and bipolar 

disorder ascertained by traditional methods from ICCBD+PGCBD 

rg (SE) P-value
1
 

95-NLP 0.66 (0.16) 3.69x10
-5

 

Coded-strict 1.00 (0.29) 2.40x10
-4

 

Coded-broad 0.74 (0.15) 8.11x10
-7

 

All algorithms 0.83 (0.18) 2.88x10
-6

 

All algorithms except 

Coded-broad-SV 0.83 (0.17) 7.19x10
-7

 

Genetic correlation was not estimated for Coded-broad-SV due to SNP-based heritability 

estimate of 0. Genetic correlation (rg) was estimated against PGC bipolar disorder GWAS. 
1
Test 

for different from 0. SE: standard error. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2017. ; https://doi.org/10.1101/193011doi: bioRxiv preprint 

https://doi.org/10.1101/193011
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. SNP-based genetic correlation (rg) between EHR-based bipolar disorder 

Phenotype 1 Phenotype 2 rg (SE) P-value
1
 

95-NLP Coded-strict 0.90 (0.19) 1.32x10
-6

 

95-NLP Coded-broad 0.96 (0.13) 3.65x10
-13

 

Coded-strict Coded-broad 0.98 (0.08) 1.28x10
-34

 

All algorithms except coded-broad-SV 95-NLP 1.00 (0.12) 1.05x10
-16

 

All algorithms except coded-broad-SV Coded-strict 1.00 (0.07) 3.34x10
-54

 

All algorithms except coded-broad-SV Coded-broad 1.00 (0.01) 1.91x10
-991

 
1
Test for different from 0. SE: standard error. 
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