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Abstract 
The prediction of novel miRNA genes generally requires the availability of genome 

sequences in order to assess important properties such as the characteristic hairpin-

shaped secondary structure. However, although the sequencing costs have decreased 

over the last years, still many important species lack an assembled genome of certain 

quality. We implemented an algorithm which for the first time exploits characteristic 

biogenesis features like the 5’ homogeneity that can be assessed without genome 

sequences. We used a phylogenetically broad spectrum of well annotated animal 

genomes for benchmarking. We found that between 90-100% of the most expressed 

miRNA candidates (top quartile) corresponded to known miRNA sequences. 
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1 Introduction 
 

MicroRNAs (miRNAs) have important roles in many biological processes (Bushati and Cohen, 

2007) and they possess a huge potential to become prominent biomarkers as they can be detected 
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in nearly every bodily fluid (Cortez et al., 2011). The miRNA expression profiling can be 

routinely carried out by means of micro-arrays or next-generation-sequencing if the mature and 

pre-miRNA sequences are available. Therefore the determination of the miRNA reference 

sequences is an essential task. Generally, genome sequences are required and many different 

programs are available for the prediction of novel miRNAs like miRanalyzer and miRDeep2 

(Hackenberg et al., 2011; Friedländer et al., 2012) or miRCandRef which works with 

unassembled reads (Fromm et al., 2013). There are also some programs available for the 

prediction without genome like miRMiner (Wheeler et al., 2009) which is based on homology 

and, miRPlex (Mapleson et al., 2013) and miReader (Jha et al., 2013) based on machine learning 

using different duplex features.  

Here we present a novel miRNA prediction approach based on biogenesis features, such as the 

known 5’ homogeneity, and duplex features like mean free energy which do not require a 

genome assembly to be assessed. We found that, in general, biogenesis related parameters are far 

more discriminative than duplex related structural parameters. We observed that a high 

percentage of the top expressed miRNA candidates in animals correctly match actual guide 

sequences while the prediction without genome in plants seems to be more complex, leading to 

much lower specificities.  Our approach outperforms previous similar attempts because 

microRNA biogenesis features were taken into account. We benchmarked miRNAgFree using a 

set of species with high quality genomes (including H.sapiens, mus musculus, C.elegans, 

D.Rerio) using publicly available datasets. When measuring the specificity on the guide strand of 

the microRNA we obtained over 90% accuracy for the most expressed quartile of duplexes. 

 

2 Main features and implementation 
 

miRNAgFree is a piece of software that allows for mature microRNA prediction using 

sRNAseq/miRNAseq/sncRNAseq without needing a genome or miRNA sequence libraries. This 

tool is therefore ideal for non-model species with genomes yet to be sequenced or for those 

lacking an appropriate quality. The software uses the sRNAbench preprocessing and therefore 

accepts several input files:  

 Adapter trimming can be performed and miRNAgFree accepts fastq, fastq.gz, read count and 

fasta input format 

 A preprocessing filtering step can be included. This is useful in a number of scenarios: for 

example to remove unwanted ribosomal sequences or if there are some already described 

microRNAs that should be eliminated from the analysis. Reads mapping to the provided libraries 

will not be considered for downstream analysis. 

 Lax parameter settings (more sensitive) and strict settings (more specific) are provided. 

2.1 Implementation steps 
The general workflow consists in i) preprocessing of the input reads, ii) read filtering (optional if the 

user provides a filter library like ribosomal RNA), iii) clustering of the reads, iv) calculation of 
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duplexes with RNAcofold , v) detection of microRNA-like duplexes and vi) output layer including 

visualization of the detected miRNA duplexes.   

2.1.1 Cluster method 

The mature microRNAs are normally represented at the read level by the canonical sequence (i.e. the 

one in miRBase) and its isomiR sequences. Therefore, in order not to predict a microRNA several 

times due to duplexes formed by its isomiR sequences, we first cluster together all reads. Briefly the 

algorithm performs the following steps on a sorted read list (descending order) 

(1) Open a cluster with the most abundant read as dominant read 

(2) Take the most abundant read as reference and align all other reads against it. The reads can align 

with a 3 nt overhang at the 5’ end allowing by default 1 mismatch (suppl. figure 1a). The last 

nucleotides are ignored as those might be NTAs (non-templated additions) 

(3) Remove all assigned reads so they are not considered in other clusters 

(4) Repeat steps 1-3 until no reads are left.  

 

 Fig 1. Iterative clustering method. a) The most expressed read opens the cluster and all 

reads are aligned to this sequence. b) All reads that map to the reference are part of the cluster. 

Reads need to start within a 3nt window around the 5’ end of the dominant read (green rectangle) 

and 1 mismatch (nucleotides in black) is allowed by default (user parameter). c) All assigned 

reads are removed from the input list and the iterative steps start again at point a).  
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2.1.2 Detection of miRNA duplexes 

The detection of novel microRNAs consists of two steps: i) selection of clusters that resemble those 

formed by real guide microRNAs and their isomiRs and ii) the assignment of the most likely 

passenger sequence.  

(1) Sort clusters by total expression value in descending order.  

(2) Pick the most expressed cluster and remove it from the list and evaluate its microRNA potential 

based on several criteria like the 5’ homogeneity or the ratio of the most expressed read to the read 

count sum of the cluster. The same thresholds as in (Barturen et al., 2014) were used. The user can 

choose between lax and strict settings for both animals and plants.   

(3) For all putative cluster pairs, calculate all duplexes for the (M) most expressed reads in cluster (i) 

vs the (N) most expressed clusters of cluster (j) and remove all that do not have perfect 2 nucleotide 

3’ Drosha/Dicer overhangs (strict) or at least 1-3 nt overhang (lax mode) 

(4) Sort the duplexes by energy ratio (mean free energy divided by the sequence length) and assign 

the energetically most favorable read and its cluster to the guide cluster.  

 

Fig. 2 Parameters and thresholds used in the miRNA-like selection 

 

3 Results 
 

To show the usefulness of our approach we used two strategies: i) assess the number of 

correct predictions by means of well annotated genomes and ii) show that species with an 
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unfinished genome assembly (Fasciola hepatica) very likely have incomplete miRNA 

complements. We found that the percentage of correct guide sequences ranges from 51% (C. 

elegans) to 91% (D. melanogaster) in animals but are generally lower in plants. The fraction 

of correct guide sequences increases with the threshold number of bindings, whereas the total 

number of predictions drops strongly, and hence the sensitivity. The prediction quality seems 

to be notably affected by the quality of the sequencing data. For the M. musculus data we 

observed a specificity increase from 50.8% to 85.2% when filtering out all reads that have a 

single position with lower phred score than 20.  Even though we prioritized specificity to 

increase confidence in the yielded prediction, we still found that sensitivity ranged between 

51% (most strict set of parameters) and 81% for the least strict settings (see suppl. Table 1). 

Further, we found that prediction quality increases with expression value, i.e. the top 14 

guide sequences in mouse and the top 44 in zebrafish are all correct (see column c in Table 

1). Finally, using publically available data for F. hepatica (SRR1825354) we detected a 

member of the let-7 family which was not reported in the most recent complement using the 

genome assembly (Fromm et al., 2017) either due to assembly quality or structural properties 

which prevented its prediction (see supplementary figure 1).  

 

Table 1. Benchmark of miRNAgFree using well annotated species.  

Species b N p (%)  p25 (%)    c SRA accession 

Homo sapiens 16 79 82.3 95.7 16 SRR1563015 

Homo sapiens 18 24 91.7 100 22 SRR1563015 

Mus musculus 16 61 85.2 93.3 14 SRR1734811 

Mus musculus* 16 118 50.8 90 14 SRR1734811 

Danio rerio 16 170 75.9 100 44 SRR3953259 

D. melanogaster 16 33 90.9 100 29 SRR1287661 

C. elegans 16 183 51.4 91.3 40 ERR562747 

A. thaliana 16 63 30.1 37.5 2 SRR5031522 

b is the applied duplex bindings threshold, N the total number of predicted miRNAs, p is the 

proportion of correct guide sequences (annotated in miRBase 21), p25 is the same as p but just 

considering the top quartile of predictions, c is the number of consecutive correct predictions among 

the top expressed ones. * indicates that no quality filter was applied to the raw fastq file.  

In summary, we tested different duplex related structural features as used in prior 

approaches, but we found that biogenesis features and specially the 5’ homogeneity 

outperform those clearly. Given that the top expressed guide miRNAs are generally correct, 

miRNAgFree can be an important tool for miRNA research in non-model species. 
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Supplementary material 
Supplementary table 1. Specificity and sensitivity values obtained for the Homo sapiens dataset  

 

 

 

Suppl. Fig 1. A real example from let-7 in F. hepatica predicted using the publically available dataset 

SRR1825354. 

 

 

 

 

 

 

 

 

 

 

AGAGGTAGTGACTCATATGACTTTT 10 

CAGAGGTAGTGACTCATATGACT 11 

AGGTAGTGACTCATATGACT 18 

GAGGTAGTGACTCATATGACT 24 

AGAGGTAGTGACTCATATGACC 30 

AGAGGTAGTGACTCATATGACTTT 40 

AGAGGTAGTGACTCATATGACA 73 

AGAGGTAGTGACTCATATGACG 77 

AGAGGTAGTGACTCATATGAC 79 

AGAGGTAGTGACTCATATGA 93 

AGAGGTAGTGACTCATATGACTT 111 

AGAGGTAGTGACTCATATGACT 13386 

((((((((((..((.((((... 

..))))))))))..)).)))) 

TGTCTCCGTCATCTAGCATAC 5 

TTGTCTCCGTCATCTAGCATAC 2 

TTAGTCTCCGTCATCTAGCATA 2 
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