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Understanding natural speech requires that the human brain convert complex spectrotemporal 

patterns of acoustic input into meaning in a rapid manner that is reasonably tightly time-locked to 

the incoming speech signal. However, neural evidence for such a time-locked process has been 

lacking. Here, we sought such evidence by using a computational model to quantify the meaning 

carried by each word based on how semantically dissimilar it was to its preceding context and 

then regressing this quantity against electroencephalographic (EEG) data recorded from subjects 

as they listened to narrative speech. This produced a prominent negativity at a time-lag of 200–

600 ms on centro-parietal EEG electrodes. Subsequent EEG experiments involving time-reversed 

speech, cocktail party attention and audiovisual speech-in-noise demonstrated that this response 

was exquisitely sensitive to whether or not subjects were understanding the speech they heard. 

These findings demonstrate that, when successfully comprehending natural speech, the human 

brain encodes meaning as a function of the amount of new information carried by each word in a 

relatively time-locked fashion.  

In everyday life, people routinely process heard speech at rates in the range of 120 to 200 words per 

minute
1,2

. Unlike in the case of reading, listeners typically do not have much control over the rate at which 

these words are presented and they usually cannot replay the presentation of those words. Thus, 

successful speech comprehension must involve efficient, online mechanisms in the brain whereby each 

word is processed in a relatively time-locked fashion. In addition, it is well established that the processing 

of words does not happen in isolation, but is strongly influenced by the surrounding conversational 

context
3
. The field of psycholinguistics has long been concerned with how context rapidly impacts upon 

word processing to facilitate speech comprehension
4,5

. More recently interest has been placed on 

quantitatively modeling the effects of different aspects of context. This has included syntax
6
, and, 

following the introduction of large scale models for representing the contextual-usage meaning of words
7
, 

also semantics
8
, or both

9
. 

While these models – and the experiments on which they are based – have greatly deepened our 

understanding of psycholinguistics, there has been a marked lack of electrophysiological evidence for the 

time-locked processing of meaning that must underpin natural speech comprehension. This is a shame 

as an electrophysiological index of such processing would be of great benefit for arbitrating between 

different psycholinguistic models, and could have important implications for research on language 

processing in numerous cohorts. Valuable insights into the semantic processing of speech have been 

provided by the well-known N400 component of the event-related potential
10

. However, the N400 

literature has been dominated by paradigms focused on single, usually incongruous, words within 

specially constructed sentences, and has had much less to say about how ongoing neural activity reflects 

the computations that underpin natural, narrative speech comprehension. Furthermore, the use of the 

classic N400 paradigm has made it difficult to fully understand how selective attention and variations in 

intelligibility affect the semantic processing of speech under naturalistic conditions. 
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Here, in an attempt to address these issues, we build on the relatively recent discovery that the dynamics 

of cortical activity “track” the dynamics of natural, ongoing speech
11-13

. Much of this work has focused on 

how electrophysiological signals entrain to the dynamics of the speech envelope
12,13

, with measures of 

this entrainment having been shown to be affected by attention
14,15

 and intelligibility
16

. And, more recently, 

there have been efforts to more directly link this neural tracking to the processing of speech at different 

hierarchical levels
17

, including at the level of phonemes and phonetic features
18

. However, to date, no 

work has shown that this ongoing electrophysiological activity reflects anything about the semantic 

processing of natural speech, and how that is affected by attention and intelligibility. This is the goal of the 

present work.  

RESULTS 

We acquired electroencephalographic (EEG) data from subjects as they listened to narrative speech in 

the form of audiobook recordings. To relate the neural data to the semantic processing of this speech, we 

first wished to parameterize the speech stimuli such that individual words were quantified according to 

their semantic context. There are many ways to do this. Inspired by the brain’s sensitivity to incongruous 

new words (as seen in the N400), we chose to do it based on quantifying how “semantically dissimilar” 

each new word was compared to its immediately preceding context. This idea of semantic distance has 

previously been used in studies of reading-time effects
8
, reading comprehension

19
 and brain imaging of 

speech processing
19

. Our specific approach was based on the well-known word2vec model
20

, whereby 

each word in a speech stimulus is converted to a high-dimensional vector (in our case 400 dimensions) 

that serves as a proxy for that word’s meaning. In particular, words that share common contexts in a very 

large corpus of text are converted to vectors that are located in close proximity to one another in the high-

dimensional space. We then defined the “semantic dissimilarity” of each specific word by comparing (via a 

Pearson’s correlation) its 400-dimensional vector with the average of the vectors corresponding to all the 

preceding words in that particular sentence, and then subtracting that correlation from 1. Where a specific 

word was the first word in a sentence we compared it to the average of all word vectors in the previous 

sentence, and again subtracted the correlation from 1. This produced a single semantic dissimilarity 

measure for each word that acts as a representation of the meaning added to a sentence by that word. 

(Technically this could take any value between 2 and 0, but it tended to be in the range 0.53–1.06). We 

then created a vector at the same sampling rate as our EEG data (128 Hz) which consisted of time-

aligned impulses at the onset of each word that were scaled according to the value of that word’s 

semantic dissimilarity. Then, by regressing the low-frequency (1–8 Hz) EEG against this vector, we 

derived a so-called temporal response function (TRF
21

) that describes how these fluctuations in semantic 

dissimilarity across consecutive words impact upon the neural activity at various time-lags (Fig. 1). 
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Figure 1 | Regression analysis for estimating an electrophysiological correlate of semantic 
dissimilarity to natural speech. Words from an audiobook are converted to 400-dimensional vectors 
using the word2vec algorithm

20
 (bottom left). The semantic similarity of each word to its preceding context 

is then defined by comparing (via a Pearson’s correlation) its 400-dimensional vector with the average of 
the vectors of all the preceding words in the corresponding sentence. And the “semantic dissimilarity” of 
the word is quantified as 1 minus this correlation (bottom middle left). A vector at the same sampling rate 
as the recorded neural data is then created which consists of time-aligned impulses at the onset of each 
word that are scaled according to the value of that word’s semantic dissimilarity. The ongoing EEG data is 
then regressed against this vector to obtain a so-called temporal response function (TRF; right), that 
describes, via beta-weights, how fluctuations in semantic dissimilarity across words impact upon the EEG 
at various time-lags 

21
. 

A neural correlate of semantic dissimilarity in natural speech 

A TRF averaged over 19 subjects who each listened to ~60 minutes of an audiobook is shown in Fig. 2A, 

B. A prominent negativity is apparent over midline parietal scalp at time-lags between 200 and 500 ms 

(Fig. 2A). Over this time range, this negativity was significantly less than zero across subjects at several 

parietal scalp electrode sites (Fig. 2B; running one-tailed t-test, P < 0.05, FDR-corrected). To confirm that 

this negativity was indeed related to the semantic content of the speech and not just the stimulus 

acoustics, we repeated the experiment for another 10 subjects who listened to the same audiobook, but 

in a time-reversed fashion. Conducting the same analysis as before (while taking into account the time-

reversed nature of the stimuli) produced TRF responses that showed no evidence of the prominent, late 

negativity (Fig. 2A, B; running one-tailed t-test, P > 0.05, FDR-corrected). Indeed, the presence and 

absence of this negativity for forward and time-reversed speech respectively was evident at the level of 

several individual subjects who undertook both experiments (Fig. 2C). This pattern of results 

demonstrates that electrophysiological responses to natural speech, in the form of a late, parietal 

negativity, reflect the semantic dissimilarity of individual words to their preceding context in a relatively 

tightly time-locked fashion.  
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Figure 2 | Temporal response functions for natural and time-reversed speech. A, Topographic maps 
of the semantic dissimilarity TRF averaged over all trials and all subjects for natural, forward speech (Top) 
display a marked centro-parietal negativity between ~200 and 480 ms. There is no evidence of a similar 
negativity in the average TRF for time-reversed speech (Bottom). B, Grand average TRF waveforms at 
selected individual channels show the time course of the negativity related to semantic dissimilarity. Thick 
lines indicate a response that is statistically less than zero across subjects (P < 0.05, t-test, FDR 
corrected). And black lines below the waveforms indicate that the TRFs for forward speech are 
statistically more negative than those for time-reversed speech across subjects (P < 0.05, t-test, FDR-
corrected). C, Topographic maps of TRFs averaged over the interval 200–500 ms for selected subjects 
who took part in both the forward and time-reversed speech experiments. For all four subjects a negativity 
is apparent for forward speech (albeit with slightly different distributions for each subject) that is absent for 
the time-reversed speech.  
 

Neural signatures of semantic dissimilarity depend on intelligibility 

The experiments above involved natural speech and its time-reversed counterpart, stimuli that were 

completely intelligible and completely unintelligible, respectively. To assess how sensitive our semantic 

dissimilarity TRF might be to gradations of intelligibility we conducted a further experiment involving 

speech-in-noise. Specifically, we collected EEG data from 21 subjects as they listened to two repetitions 

of each of fifteen 60-s segments of continuous audio speech which were always mixed with spectrally-

matched stationary noise at a signal-to-noise ratio of −9 dB. Based on the well-known fact that visual 
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speech enhances the intelligibility of speech-in-noise
22

, we manipulated intelligibility by allowing subjects 

to watch a video of the speaker for one of these repetitions. (The presentation order of audio-only, and 

audio-visual repetitions was randomized across the 15 videos and across subjects). And while the audio-

only speech was not completely unintelligible, the presence of the video led to a large, significant 

improvement in intelligibility as measured by both self-report (P = 4 × 10
−5

, Wilcoxon signed rank) and a 

word detection task (P = 7.9 × 10
−5

, Wilcoxon signed rank). This behavioral effect was mirrored by a 

significant difference in the semantic dissimilarity TRFs between audio-only and audiovisual conditions 

(Fig. 3A, B). This difference was most pronounced at time-lags between 380 and 600 ms where it showed 

an effect size of d’ = 0.55. Notably, this was substantially later than the interval for the TRF negativity 

during clean speech (Fig. 2). Another way to visualize the electrophysiological correlates of improved 

intelligibility is to assess how well our semantic dissimilarity TRFs can predict unseen EEG responses to 

natural speech. This kind of forward encoding model-based approach has previously been used for 

predicting EEG responses to natural speech based on envelope and phonetic representations of 

speech
18

, as well as fMRI voxel activity based on semantic speech representations
23,24

. Using cross 

validation to fit a semantic dissimilarity TRF and test it on unseen data produced a significantly better 

EEG prediction for the audiovisual speech than the audio speech on electrode channels over midline 

parietal scalp (Fig. 3C; P = 0.01, Wilcoxon signed-rank test). And while the EEG predictions based on 

audio speech were significantly greater than zero – after all, the audio-alone speech was not completely 

unintelligible – the effect size of adding the visual input on these EEG predictions scores was large (d’ = 

0.84 on midline parietal electrode Pz). Overall, this demonstrates that our semantic dissimilarity TRF is 

sensitive to variations in the intelligibility of acoustically identical speech. Moreover, across subjects in the 

audiovisual speech condition, there was a significant negative correlation between the self-reported 

intelligibility ratings (which varied broadly) and the (normalized) amplitude of the TRF negativity averaged 

over the interval 250 – 500 ms (Fig. 3D; the more intelligible, the larger the negativity; Pearson’s r = -0.5, 

P < 0.02). This further highlights the sensitivity of our TRF measure to the intelligibility of natural speech.  

No evidence of contextual semantic processing for unattended speech 

Another important test of the behavioral relevance of our semantic dissimilarity TRF would be to 

determine whether or not it is affected by how much attention a person is paying to natural intelligible 

speech. Over 60 years ago it was first noted that, when attending to one of two dichotically-presented 

speech streams, people have a very limited ability to report on the content of the speech in the 

unattended ear
25

, a phenomenon known as the cocktail party effect. Ever since then, researchers have 

sought to explain this phenomenon in terms of psychological models
26-28

 and neurophysiological data
15,29-

31
. Despite these efforts, the extent to which unattended speech is semantically processed by the brain 

remains unclear
32,33

. However, given the very marked limitations in the ability of subjects to report on the 

content of unattended speech, it is reasonable to assert that such speech is not processed to the same 

depth as attended speech. Thus, we hypothesized that, the negativity in our TRF, as an index of 

contextual semantic processing, should be markedly reduced in unattended speech.  
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We recorded EEG from 33 subjects who attended to one of two concurrently and dichotically-presented 

audiobooks (17 subjects attended to one story and 16 to the other). The experiment was paused after 

every ~60s and subjects were tasked with answering multiple-choice questions on both stories. In the 

same way as the previous experiments, we derived semantic dissimilarity regressors for each of the two 

stories. And, then we regressed the EEG data against these vectors to produce two TRFs – one for the 

attended story and one for the unattended story. Consistent with previous studies, the behavioral effect 

was very strong in this experiment with subjects correctly answering 80% of the questions on the 

attended story and only 29% of those on the unattended story (chance was 25%). This large behavioral 

effect was mirrored in differences in the average TRFs across all 33 subjects (Fig. 3E, F). In particular, the 

TRF corresponding to the attended story showed a clear and prominent negativity over midline parietal 

scalp, again at a rather long latency in the range 380–600 ms. However, no such negativity was apparent 

for the unattended speech. While this does not entirely rule out some level of semantic processing in 

unattended speech – after all, our regressors are based on only one particular computational measure of 

linguistic processing – it does present strong evidence of a very pronounced reduction in the processing 

of unattended words relative to their context. The apparently large difference in the magnitude of the 

negative component between the attended and unattended TRFs over the interval 380–600 ms was 

supported by statistical testing across subjects (paired t-test, P = 9.3 × 10
−8

) and showed a very large 

effect size of d’ = 2.0 on midline parietal electrode Pz. (The effect size over the window 380–550 ms was 

slightly larger at d’ = 2.25). Again, using cross validation to fit a semantic dissimilarity TRF and then 

predicting unseen data, produced a significantly better EEG prediction for the attended speech than the 

unattended speech (Fig. 3G; P = 9.36 × 10
−7

, Wilcoxon signed-rank test). And while the EEG predictions 

based on unattended speech were significantly greater than zero – possibly as a result of weak 

correlations between the semantic dissimilarity impulses and acoustic energy changes at word onsets – 

the effect size of attention on these EEG prediction scores was as large as that on the TRFs themselves 

(d’ = 2.0 on electrode Pz). As for the speech-in-noise experiment above, we wished to investigate the 

relationship between our TRF measures and behavior more closely. To do this, we checked for across-

subject correlations between features of our TRF negativity and subject performance on the attended 

questions in the cocktail party paradigm. Unlike the audiovisual speech-in-noise where intelligibility varied 

broadly across subjects, we found no relationship with the amplitude of the TRF and performance on the 

attended questions. This was not very surprising given that the to-be-attended speech stream was always 

intelligible. However, we did find that the peak latency of the TRF negativity was significantly negatively 

correlated with performance on the questions across subjects (r = -0.7 P =1.952 x 10
-5

). In other words, 

the earlier a subject’s TRF peak, the better that subject did on the task. We interpret this as evidence that 

people who can successfully sustain their attention and/or suppress distracting information can more 

efficiently process the behaviorally relevant speech – or vice versa. This notion of more efficient semantic 

processing of words in their recent historical context aligns with the well-known link between working 

memory and cocktail party attention performance
34

.  
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Figure 3 | Assessing the effect of comprehension on the electrophysiological index of semantic 
dissimilarity. A, Topographic maps of the semantic dissimilarity TRF averaged over all trials and all 
subjects for audiovisual speech in −9dB of acoustic background noise display a centro-parietal negativity 
between ~400 and 600 ms. This negativity is much reduced in the average TRF for audio-only speech in 
the same level of background noise, which is much less intelligible. B, Grand average TRF waveforms for 
audiovisual and audio-only speech over two selected midline electrodes. Thick lines indicate a response 
that is statistically less than zero across subjects (P < 0.05, running t-test, FDR corrected). And black 
lines below the waveforms indicate that the TRFs for audiovisual speech are statistically more negative 
than those for audio-only speech across subjects (P < 0.05, running t-test, FDR corrected). C, A cross-
validation procedure was used to predict EEG responses to natural speech using a semantic dissimilarity 
TRF trained on other data. EEG prediction accuracy for audiovisual speech was significantly greater than 
that for audio-only speech (P < 0.01, t-test). D, Across subjects, the amplitude of the semantic 
dissimilarity TRF over midline parietal scalp was significantly correlated with self-reported intelligibility 
rating of audiovisual speech (P < 0.02, Pearson’s correlation). E, Topographic maps of the semantic 
dissimilarity TRF averaged over all trials and all subjects for attended speech in a dichotic cocktail party 
paradigm display a centro-parietal negativity between ~300 and 600 ms. This negativity is not apparent in 
the average TRF for unattended speech. F, Grand average TRF waveforms for attended and unattended 
speech over two selected midline electrodes. Thick lines indicate a response that is statistically less than 
zero across subjects (P < 0.05, running t-test, FDR corrected). And black lines below the waveforms 
indicate that the TRFs for attended speech are statistically more negative than those for unattended 
speech across subjects (P < 0.05, running t-test, FDR corrected). G, A cross-validation procedure was 
used to predict EEG responses to natural speech using a semantic dissimilarity TRF trained on other 
data. EEG prediction accuracy for attended speech was significantly greater than that for unattended 
speech (P < 1 × 10

−6
, t-test). H, Across subjects, the latency of the peak in the global field power (GFP

35
) 

of the semantic dissimilarity TRF was significantly negatively correlated with the number of questions 
answered correctly on the attended speech (P < 5 × 10

−5
, Pearson’s correlation).  
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Neural correlates of semantic dissimilarity are similar, but not identical to the N400 component.  

It is noteworthy that the dominant feature of our semantic dissimilarity TRF is a negativity over centro-

parietal scalp. This is because the EEG measure that has most strongly been linked with semantic 

processing – the so-called N400 component – also displays a negative potential over centro-parietal 

scalp at a latency of around 400 ms. And, while the derivation of the N400 component does not involve 

the same specific assumptions that underlie our TRF analysis, it is conceivable that differences in 

semantic dissimilarity accompany the differences in predictability (cloze probability) that drive the 

development of most N400 stimuli
10

. As such, it is possible that these two measures might reflect, at least 

partially related processes – or, more specifically, that the N400 contains, as one of several processes, a 

contribution from the same generators that are driving our TRF. To test this, we recorded EEG data from 9 

subjects who undertook a classic N400 experiment and who listened to the audiobook used in our first-

mentioned experiment above. For the N400 experiment, subjects read 300 sentences presented word-by-

word on a screen, half of which ended with a word that was congruent with the rest of the sentence and 

half which ended with an incongruent word. N400s were then determined by subtracting the event-related 

potential to the congruent words from that to the incongruent words. And, using the EEG data recorded 

during the story, we derived a semantic dissimilarity TRF for each subject as before. Figure 4A, B show 

that the two responses display somewhat similar timecourses over midline parietal scalp, as well as 

similar topographical distributions at a latency of 375–425ms. The similarity of the two responses was 

supported by the fact that the amplitude of the N400 component in the interval 390–450 ms was 

correlated with the amplitude of the semantic dissimilarity TRF in the interval 330–390 ms across the 9 

subjects (Fig. 4C; r = 0.751; P = 0.0197). The intervals for the two components were chosen based on the 

distribution of the peak latency for each response type (Fig. 4D). Specifically, these intervals represented 

the 25
th
 to 75

th
 percentiles of those distributions. Importantly, it should also be noted that these peak 

latency distributions differed, with the peak latency of the semantic dissimilarity TRF being significantly 

earlier than that of the N400 (Wilcoxon signed-rank test, P = 0.0117; Fig. 4D).  
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Figure 4 | Comparison of semantic dissimilarity TRF and the classic N400 event-related potential 
component.  A, Grand average waveforms from a midline-parietal scalp electrode for the classic N400 
component (derived by subtracting the average event-related potential to congruent sentence endings 
from that to incongruent sentence endings) and the semantic dissimilarity TRF. Thick lines indicate a 
response that is statistically less than zero across subjects (P < 0.05, t-test). B, Topographic maps of both 
the N400 and the semantic dissimilarity TRF over the interval 375–425 ms. C, The amplitudes of the 
N400 and the semantic dissimilarity TRF are positively correlated across subjects (P < 0.02, Pearson’s 
correlation). D, The latency of the peak of the negativity in the semantic dissimilarity TRF is significantly 
earlier than the peak of the N400 across subjects. 
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DISCUSSION 

We have shown that, when listening to natural speech, the ongoing dynamics of cortical activity reflect the 

processing of individual words in the semantic context of the preceding speech in an efficient, time-locked 

fashion. And we have shown that indices of this processing are robustly affected by whether or not 

subjects can understand the speech they are hearing and whether or not they are paying attention to that 

speech. This approach adds an important extra dimension to recent research on the neural tracking of 

natural speech dynamics by directly linking that tracking to the contextual semantic processing of speech. 

Further work will be necessary to more fully characterize this online semantic processing. This will include 

investigating whether or not other types of language knowledge contribute to our measures
19

. It will 

involve assessing whether unattended speech is processed at a semantic level that depends less upon 

context than our dissimilarity measure. And it may also include a test of the idea that neural tracking of 

semantic processing may be even more robust if semantic representation is modeled using a more 

neurobiologically-motivated approach rather than a model based on word co-occurrence
36

. By 

incorporating other computational models into the framework we have outlined, we would expect that 

EEG, ECoG and MEG could be very useful in answering these questions.  

It will also be important to more fully examine the similarities and differences between our TRF measure 

and the N400 component. While the two measures were correlated in terms of amplitude, the TRF 

negativity peaked significantly earlier than the N400. There are several possible reasons for this latency 

difference. First, as mentioned above, the assumptions made in deriving the TRF and N400 are not the 

same; the TRF is based on semantic dissimilarity and the N400 on cloze probability, meaning they may 

index related, but distinct linguistic processes. Second, it could simply be due to the fact that the TRF is 

derived using a regression analysis and the N400 using time-locked averaging. We are not convinced of 

this as an explanation given that our TRF involved representing word meaning as an impulse at word 

onset, which is a similar assumption to that made when performing averaging of neural data time-locked 

to word onset. And third, and perhaps most plausibly, the TRF was derived in response to natural, 

continuous, narrative speech, while the N400 was derived to sentences presented one word at a time. It 

could be that semantic processing happens more rapidly during natural speech processing, possibly as a 

result of stronger ongoing predictions in this context
37

, than in the case of individual sentences that may 

or may not contain incongruent words. The fact that the latency of the TRF negativity was increased for 

the cocktail party and audiovisual speech-in-noise experiments relative to the first, clean speech 

experiment, and the fact that working memory has long been linked with speech processing under 

challenging listening conditions supports this idea of a link between our TRF latency and the efficiency of 

word processing in the context of preceding words. But, given that the latency of the N400 is typically 

remarkably constant
10

, and that the amplitude of our TRF negativity was quite strongly correlated with that 

of the N400, more work will be needed to validate this notion that TRF latency relates to efficient semantic 

processing. Nonetheless, we suggest here that the interpretation of our TRF can leverage decades of 

work done on the N400. And that future work using different linguistic models may help to disentangle 
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what might be numerous processes underlying the N400, work that is already ongoing in the domain of 

reading
19

. 

The effects of attention and intelligibility on our electrophysiological measures of semantic similarity 

closely correlated with the behavioral phenomena in these experiments. And, importantly, these EEG 

measures were quite robust at the level of individual subjects. This suggests that these indices could be 

useful in a broad range of basic, applied and clinical research areas. This could include basic research on 

infant language development, language learning, and the effects of cocktail party attention on speech 

processing. It could be helpful in arbitrating between computational models of natural speech processing. 

It could be of benefit to researchers studying language impairments in different clinical cohorts, in clinical 

testing of disorders of consciousness, and, given that it relies on relating the processing of words to their 

recent context, as an assay in people at risk for cognitive and memory decline.  

METHODS 

All procedures were undertaken in accordance with the Declaration of Helsinki and were approved by the 

Ethics Committees of the School of Psychology at Trinity College Dublin, and the Health Sciences Faculty 

at Trinity College Dublin.  

Subjects. All subjects were native English speakers, and reported normal hearing, normal or corrected-

to-normal vision, and no history neurological disease. 19 subjects (13 Male) aged between 19 and 38 

years participated in the first experiment involving listening to a single audiobook. Of these 19 subjects, 9 

also participated in the N400 experiment. And ten subjects (7 male) aged between 21 and 32 years 

participated in the experiment involving the time-reversed audiobook (5 of these subjects participated in 

the first experiment above). 34 subjects (28 male) with a mean ± SD age of 27.3 ± 3.2 years participated 

in the cocktail party attention experiment, but data from one subject was not included in the analysis as 

the recordings from their mastoid electrodes were of poor quality. And 21 subjects (6 female) aged 

between 21 and 35 years participated in the multisensory speech experiment. Much of the data from 

these experiments has previously been published in studies examining how EEG tracks the envelope and 

phonetic content of speech
18,38,39

. 

Data acquisition and pre-processing. For all experiments, 128-channel EEG data (plus two mastoid 

channels) were acquired at a rate of 512 Hz using an ActiveTwo system (BioSemi). Triggers indicating the 

start of each trial were sent by the stimulus presentation computer and included in the EEG recordings to 

ensure synchronization. Offline, the data were band-pass filtered between 1 and 8 Hz, downsampled to 

128 Hz, and re-referenced to the average of the mastoid channels in MATLAB. To identify channels with 

excessive noise, the time series were visually inspected and the SD of each channel was compared with 

that of the surrounding channels. Channels contaminated by noise were recalculated by spline 

interpolating the surrounding clean channels in EEGLAB 
40

.  
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Stimuli and Procedures. In the first experiment, subjects undertook 20 trials, each of the same length 

(just under 180 seconds), where they were presented with a professional audio-book version of a popular 

mid-20th century American work of fiction written in an economical and understated style and read by a 

single male American speaker. The trials preserved the storyline, with neither repetitions nor 

discontinuities. The average speech rate was ~210 words/min. Similarly, the second experiment involved 

the presentation of the same trials in the same order, but with each of the 28 speech segments played in 

reverse. All stimuli were presented monophonically at a sampling rate of 44,100 Hz using Sennheiser 

HD650 headphones and Presentation software from Neurobehavioral Systems (http://www.neurobs.com). 

Testing was carried out in a dark room and subjects were instructed to maintain visual fixation for the 

duration of each trial on a crosshair centered on the screen, and to minimize eye blinking and all other 

motor activities. 

In the cocktail party experiment, subjects undertook 30 trials, each of ∼1 min in length, where they were 

presented with 2 classic works of fiction: one to the left ear, and the other to the right ear. Each story was 

read by a different male speaker. Subjects were divided into 2 groups of 20 with each group instructed to 

attend to the story in either the left or right ear throughout all 30 trials. After each trial, subjects were 

required to answer between 4 and 6 multiple-choice questions on both stories. Each question had 4 

possible answers. We used a between-subjects design as we wanted each subject to follow just one story 

to make the experiment as natural as possible and because we wished to avoid any repeated 

presentation of stimuli. For both stories, each trial began where the story ended on the previous trial. 

Stimulus amplitudes in each audio stream within each trial were normalized to have the same root mean 

squared (RMS) intensity. In order to minimize the possibility of the unattended stream capturing the 

subjects’ attention during silent periods in the attended stream, silent gaps exceeding 0.5 s were 

truncated to 0.5 s in duration. Stimuli were presented using Sennheiser HD650 headphones and 

Presentation software from Neurobehavioral Systems (http://www.neurobs.com). Subjects were instructed 

to maintain visual fixation for the duration of each trial on a crosshair centered on the screen, and to 

minimize eye blinking and all other motor activities. 

For the multisensory experiment, the stimuli were drawn from a set of videos that consisted of a male 

speaking American English in a conversational-like manner. Fifteen 60-s videos were rendered into 1280 

x 720-pixel movies at 30 frames/s and exported in audio-only (A), visual-only (V), and AV format in 

VideoPad Video Editor (NCH Software). The soundtracks were sampled at 48 kHz, underwent dynamic 

range compression, and were matched in intensity (as measured by root mean square; see 
38

), and were 

mixed with spectrally matched stationary noise to ensure consistent masking across stimuli 
41,42

. The 

noise stimuli were generated in MATLAB (The MathWorks) using a 50th-order forward linear predictive 

model estimated from the original speech recording. Prediction order was calculated based on the 

sampling rate of the soundtracks 
43

. 
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Computational model and regression. Semantic vectors for words were derived using the state-of-the-

art word2vec algorithm 
20

. The “continuous bag of words” implementation 
44

 was selected, because this 

was built on British English corpora (ukWaC, the English Wikipedia and the British National Corpus 

combined) which is both large and probably more reflective of the language exposure of the participants 

(in Dublin) than US corpora. In addition, word vectors are freely downloadable (see 
44

). Word2vec 

embodies the "distributional hypothesis" that words with similar meaning occur in similar contexts in an 

artificial neural network approach. Practically, the approach involves sliding a fixed window of words (11 in 

this case, however this is a parameter set by the experimenter) over a text corpus and training a neural 

network to predict the word in the center of that window. Word identity (as opposed to semantics) is 

uniquely encoded as a single bit set to one in a long vector of zeros (vector length is the number of words 

in the vocabulary). These long vectors form the basis of the input and output to the neural network. The 

input corresponds to the sum of the 10 word vectors in the window, the output is the central word. 

Because word order is lost in this summation, the input is analogous to an unordered bag of words. The 

network contains an internal hidden layer of 400 dimensions (400 is also a parameter set by the 

experimenter). The hidden layer is fully connected to the input and output. It is in fact the weights on the 

connections between the input and hidden layer that are ultimately harvested to form the semantic model 

(the weights are a number-of-words in the vocabulary by 400 floating point matrix) and the remainder of 

the network is discarded. Weights are initially set as random, but are subsequently optimized so as to 

reduce error between predicted and target output. Intuitively, because words that frequently appear 

together in the same context window also predict similar central words, weights on these words are tuned 

to similar internal representations reflecting common contexts. For more details on the training procedure 

see 
44

 and 
20

. 

Having obtained a vector for each word, we then quantified how semantically dissimilar each particular 

word was to the preceding words in the corresponding sentence. We did this by calculating a Pearson’s 

correlation between the word’s 400-dimensional vector and the average of the vectors corresponding to 

all the preceding words in that particular sentence, and subtracting this correlation from 1. (Where a 

specific word was the first word in a sentence, we calculated the correlation between the word and the 

average of all word vectors in the previous sentence, before, again, subtracting that correlation from 1). 

This produced a single semantic dissimilarity measure for each word with a value between 2 and 0. We 

then created a “semantic dissimilarity vector” at the same sampling rate as our EEG data (128 Hz) which 

consisted of time-aligned impulses at the onset of each word that were scaled according to the value of 

that word’s semantic dissimilarity. The word onset times were determined by performing forced alignment 

of the speech files and the corresponding textual orthographical transcription using the Prosodylab-

Aligner 
45

. 

The method used here to analyze the mapping between the semantic dissimilarity vector and the 

recorded EEG data is commonly known as a temporal response function (TRF). A TRF can be interpreted 

as a filter that describes the brain's linear transformation of a stimulus feature, S(t), to the continuous 
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neural response R(t), i.e., R(t) = TRF*S(t) where ‘*’ represents the convolution operator. The TRFs were 

calculated by performing regularized linear regression between our stimulus variables and our EEG. 

Specifically, we performed ridge regression wherein a parameter (lambda) is set to control overfitting (see 

21
 for a detailed description of this step). 

In previous work, we have attempt to cast our TRF functions with μV as their unit of measure. However, 

this relies on a decision to normalize the input stimulus values between some limits and, as such, has 

been somewhat arbitrary. In the present work, and in line with previous work from other groups, the EEG 

data on each channel was z-scored prior to estimating the TRF, meaning that the TRFs are ultimately 

presented in arbitrary units. The colors in the TRF topographic plots can be interpreted as follows: red at 

a particular latency indicates that, at that poststimulus lag, the EEG voltage is driven in a positive 

direction by a unit change in semantic dissimilarity. And blue means the EEG voltage at that poststimulus 

lag is driven negative by a similar change. Thus, given the same normalization strategy for the various 

speech stimuli used in this study, the TRF responses can be compared in terms of their amplitudes, 

despite their description in terms of arbitrary units. 

Author Contributions. E.C.L., G.D.L., and A.J.A. conceived of the experiment. M.B, G.D.L., and M.J.C. 
collected data. M.B., G.D.L., and A.J.A. analyzed the data. E.C.L. wrote the first draft of the manuscript. 
M.B., G.D.L. and A.J.A edited the manuscript. 
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