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ABSTRACT 

Immunotherapy can revolutionize anti-cancer therapy if specific targets are available. 

Recurrent somatic mutations in the exome can create highly specific neo-antigens. However, 

especially pediatric cancers are oligo-mutated and hardly exhibit recurrent neo-antigens. Yet, 

immunogenic peptides encoded by cancer-specific genes (CSGs), which are virtually not 

expressed in normal tissues, may enable a targeted immunotherapy of such cancers. 

Here, we describe an algorithm and provide a user-friendly software named RAVEN (Rich 

Analysis of Variable gene Expressions in Numerous tissues), which automatizes the 

systematic and fast identification of CSG-encoded peptides highly affine to Major 

Histocompatibility Complexes (MHC) starting from publicly available gene expression data. 

We applied RAVEN to a dataset assembled from more than 2,700 simultaneously normalized 

gene expression microarrays comprising 50 tumor entities, with a focus on sarcomas and 

pediatric cancers, and 71 normal tissue types. RAVEN performed a transcriptome-wide scan 

in each cancer entity for gender-specific CSGs. As a proof-of-concept we identified several 

established CSGs, but also many novel candidates potentially suitable for targeting multiple 

cancer types. The specific expression of the most promising CSGs was validated by qRT-PCR 

in cancer cell lines and by immunohistochemistry in a comprehensive tissue-microarray 

comprising 412 samples. Subsequently, RAVEN identified likely immunogenic peptides 

encoded by these CSGs by predicting the affinity to MHCs. Putative highly affine peptides 

were automatically crosschecked with the UniProt protein-database to exclude sequence 

identity with abundantly expressed proteins. The predicted affinity of selected peptides was 

validated in T2-cell peptide-binding assays in which many showed similar kinetics to a very 

immunogenic influenza control peptide. 

Collectively, we provide a comprehensive, exquisitely curated and validated catalogue of 

cancer-specific and highly MHC-affine peptides across 50 cancer entities. In addition, we 

developed an intuitive and freely available software to easily apply our algorithm to any gene 
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expression dataset (https://github.com/JSGerke/RAVENsoftware). We anticipate that our 

peptide libraries and software constitute a rich resource to accelerate the development of 

novel immunotherapies. 

 

 

INTRODUCTION 

Immunotherapy is currently transforming clinical oncology and holds promise for cure even 

for patients with metastatic disease (Mellman et al., 2011; Chen J J Immunol Res 2017). The 

success of many immunotherapeutic approaches, e.g. adoptive T cell therapy, largely depends 

on the availability of specific immunogenic target structures presented via Major 

Histocompatibility Complexes (MHCs) on the surface of cancer cells, but not on that of 

normal tissues (Coulie et al., 2014). Genetically instable and hyper-mutated cancer entities 

such as malignant melanoma and lung carcinoma offer such highly specific target structures 

through missense mutations in the protein coding genome that generate ‘neo-antigens’ 

(Schumacher and Schreiber, 2015). 

However, many cancer types such as pediatric cancers are characterized by a remarkably 

stable and oligo-mutated genome (Lawrence et al., 2013). In addition, the few recurrent 

somatic mutations found in pediatric cancers are hardly immunogenic (Orentas et al., 2012). 

Thus, specific immunotherapy of oligo-mutated cancers is challenging, but may be enabled by 

the expression of non-mutated cancer-specific genes (CSGs) (Coulie et al., 2014). 

Many CSGs are only expressed during early embryogenesis or in immune-privileged 

germline tissues such as testis (Monk and Holding, 2001; Simpson et al., 2005). This 

restricted expression pattern increases the likelihood of circulating lymphocytes directed 

against immunogenic peptides encoded by these CSGs (Simpson et al., 2005), which can be 

exploited clinically. In neuroblastoma and Ewing sarcoma, which are aggressive and oligo-

mutated pediatric cancers (Pugh et al., 2013; Tirode et al., 2014), adoptive T cell therapy 
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targeting CSGs has been successfully applied in humanized mouse models (Blaeschke et al., 

2016; Kirschner et al., 2017; Schirmer et al., 2016; Singh et al., 2016) and a first set of 

patients (Thiel et al., 2017). Screening for additional CSGs could be enabled by 

comprehensive and already available transcriptome datasets of cancer and normal tissues 

(Rung and Brazma, 2013), However, due to the lack of specific algorithms and user-friendly 

tools, the identification of CSGs and derivative peptides with high affinity to MHCs continues 

to be laborious and slow (Gubin et al., 2015). 

To accelerate this process and to identify CSGs suitable for targeting various oligo-mutated 

cancer entities, we developed an algorithm and provide an intuitive software termed RAVEN 

(Rich Analysis of Variable gene Expressions in Numerous tissues), which automatizes the 

systematic and fast identification of cancer-specific peptides with high affinity to MHCs 

starting from gene expression data. By applying RAVEN to a dataset of more than 2,700 gene 

expression microarrays comprising 50 tumor entities and 71 normal tissue types, we identified 

a library of peptides suitable for targeting multiple cancers. Our datasets and software 

represent a rich resource for the development of immunotherapies. 
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MATERIALS AND METHODS 

Microarray data 

Publicly available gene expression data generated with Affymetrix HG-U133Plus2.0 

microarrays for 3,101 samples comprising 50 tumor entities and 71 normal tissue were 

retrieved from the Gene Expression Omnibus (GEO) or the Array Express database at the 

European Bioinformatics Institute (EBI). Accession codes are reported in Supplementary 

Table 1. Microarray quality checks were performed by analyzing the Relative Log 

Expression (RLE) and Normalized Unscaled Standard Error (NUSE) scores with the 

Bioconductor packages affyPLM (Brettschneider et al., 2008) and hgu133plus2hsentrezgcdf 

(Dai et al., 2005) in the statistical language R (R Development Core Team). The cut-offs for 

defining high quality were set as (1st quartile – [1.5 ´ interquartile range]) and (3rd quartile + 

[1.5 ´ interquartile range]). 

All microarrays were pre-processed (normalized) simultaneously in R with the Robust Multi-

chip Average (RMA) algorithm (Irizarry et al., 2003) including background adjustment, 

quantile normalization and summarization using custom brainarray Chip Description Files 

(CDF; ENTREZG, v19) yielding one optimized probe-set per gene (Dai et al., 2005). 

 

Identification of CSG-scores from normalized expression intensities 

To identify CSGs in any given gene expression dataset, we calculated the outlier expression 

of a gene x in a specific cancer c by considering the adjusted upper quartile mean of its 

expression signals, as such approach avoids bias through extreme outliers in a tiny subset of 

samples (above 95th quantile [Q95]) (Xu et al., 2012). The adjusted upper quartile mean, 

named ‘Outlier Score’ (OS), of gene x in cancer type c is given as 

𝑂𝑆(𝑥, 𝑐) = log	(Mean 	 𝑄75, 𝑄95 ; 2). 

Next, a ‘Penalty Score’ (PS) for gene x was calculated on the basis of its adjusted upper 

quartile mean among different types of normal human tissues n as 
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𝑃𝑆 𝑥, 𝑛 = 	𝑀𝑎𝑥[𝑙𝑜𝑔	(𝑀𝑒𝑎𝑛 𝑄75, 𝑄95); 2 . 

The CSG-score of a gene x in a given cancer type c was then calculated as 

𝐶𝑆𝐺 𝑥, 𝑐 = 	𝑂𝑆(𝑥, 𝑐) − 𝑃𝑆(𝑥, 𝑛). 

Previously reported algorithms included weighting scores for each normal tissue type based 

on their possible degree of estimated ‘immuno-privilege’ or even excluded highly immune-

privileged organs such as testis from calculation of a PS (Kadota et al., 2006; Xu et al., 2012). 

In contrast, we considered each normal tissue type including testis as equally relevant for 

calculating the PS of a given gene, as otherwise our list of CSGs would be exceedingly 

enriched in established cancer-testis antigens. However, as gender-specific normal tissue 

types such as uterus/ovary or prostate/testis, respectively, are irrelevant to nominate CSGs for 

the respective other gender, we calculated gender-specific CSG-scores omitting gender-

specific tissue types for calculation of the PS of a given gene for the respective other gender 

(Supplementary Table 1). A meaningful CSG-score was determined statistically as being 

equal or above the 99.9th percentile of all CSG-scores calculated across all cancer entities. 

Using this cut-off, the CSG-scores for CSGs potentially suitable for immunotherapeutic 

targets in a given cancer entity were usually greater than 2. CSG-scores greater than 3 were 

empirically considered as high and those greater than 4 as very high. 

 

Development of RAVEN (Rich Analysis of Variable gene Expressions in Numerous 

tissues) 

We developed an application named RAVEN that incorporates several statistical methods to 

easily identify putative highly immunogenic peptides encoded by CSGs from any gene 

expression dataset. RAVEN and a detailed handbook as well as associated datasets can be 

downloaded free of charge and for academic use only under 

https://github.com/JSGerke/RAVENsoftware. 
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The graphical interface of RAVEN is simple and designed for scientists without 

bioinformatics background. The current program version developed with Java (for Windows, 

Linux and Mac) requires at least a Java 8 runtime environment. 

RAVEN can interrogate gene expression datasets and compare expression levels of different 

genes in the same tissue or of the same gene in different tissues applying our algorithm as 

explained above. The statistical summary of such comparisons can be obtained in spreadsheet 

format and visualized by Java library JFreeChart. Additionally, the application enables users 

to retrieve either gene- or tissue-specific subsets of the interrogated gene expression dataset, 

which can then be further analyzed in RAVEN or other commonly used software such as 

Microsoft Excel or GraphPad Prism.  

In addition, RAVEN includes a pipeline combining several bioinformatic services to offer a 

quick and simple way to obtain all peptide sequences of a pre-specified length (encoded by 

identified CSGs) and their affinity to different HLA-alleles. Furthermore, RAVEN nominates 

all MHCs that are predicted to present the identified peptides. To access the UniProtKB 

(UniProt Consortium, 2015) database via RAVEN, we used the UniProtJAPI library (Patient 

et al., 2008). To match gene IDs with their corresponding protein IDs of different databases 

such as UniProt and NCBI, RAVEN sends a query to the database identifier mapping service 

of UniProt. The implemented peptide-matching pipeline accesses the MHC-I binding 

prediction tool provided by the Immune Epitope Database (IEDB) Analysis Resource (Vita et 

al., 2015) via a RESTful interface (IEDB-API). T Cell Epitope Prediction identifies peptides 

binding to MHC class I of a certain protein sequence. Therefore, RAVEN uses artificial 

neural networks (ANN) and a prediction algorithm developed by NetMHC (Andreatta and 

Nielsen, 2016; Nielsen et al., 2003). The peptide search service (Chen et al., 2013) of UniProt 

is queried via a RESTful web service which API is provided and integrated by Protein 

Information Resource (PIR) using ApacheLucene for peptide text searches (Chen et al., 2013; 

Wu et al., 2003). In RAVEN, this approach is available for the most common alleles in human 
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and mouse. In contrast to other methods provided by RAVEN, this pipeline is independent 

from the analyzed gene expression dataset but requires an internet connection. 

 

Human cell lines and cell culture conditions 

Cells were grown at 37°C in humidified 5% CO2 atmosphere in RPMI 1640 medium 

(Biochrom, Berlin, Germany) supplemented with 10% FCS (Biochrom) and 100 U/ml 

penicillin and 100 µg/ml streptomycin (Biochrom). TAP-deficient HLA*A02:01+ T2 cell line 

(somatic cell hybrid) was obtained from P. Cresswell (Yale University School of Medicine, 

New Haven, CT, USA). T2 cells were maintained in RPMI 1640 medium additionally 

supplemented with 1 mM sodium pyruvate and non-essential amino acids (both Biochrom). 

Cell line purity was confirmed by short tandem repeat profiling (latest profiling 15th 

December 2015) and cells were routinely examined by PCR for the absence of mycoplasma. 

A list of the used cell lines is provided in Supplementary Table 2. 

 

RNA extraction, reverse transcription and qRT-PCR 

RNA was extracted with the Nucleospin RNA kit (Macherey-Nagel, Düren, Germany) 

containing a 15 min on-column DNA digestion step to degrade genomic DNA. RNA was 

reverse-transcribed using High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). qRT-PCRs were performed using SYBR Select Master Mix (Applied 

Biosystems). Oligonucleotides were purchased from MWG Eurofins Genomics (Ebersberg, 

Germany). Primer sequences are listed in Supplementary Table 3. Reactions were run in 10-

20 µl final volume on a CFX Connect instrument and analyzed using the CFX Manager 3.1 

(both Bio-Rad). Gene expression levels of specific genes were normalized to that of the 

housekeeping gene RPLP0 (Martin, 2016). 
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Human samples and ethics approval 

Human tissue samples were collected at the Institute of Pathology of the LMU Munich 

(Germany) with approval of the corresponding institutional review boards. The ethics 

committee of the University Hospital of the LMU Munich approved the study (approval no. 

307-16 UE). 

 

Immunohistochemistry (IHC) and evaluation of immunoreactivity 

IHC analyses were performed on formalin-fixed, paraffin-embedded (FFPE) tissue samples. 

Paraffin blocks from several institutions were collected at the Institute of Pathology of the 

LMU Munich. From all blocks, we harvested 3 cores per sample with a core-diameter of 1 

mm to assemble a tissue microarray (TMA). A list of the included tumor types and normal 

tissues is given in Supplementary Table 4. Of each TMA block 4 µm sections were cut and 

stained with an iView DAB detection kit (Ventana Medical System, Tucson, AZ) according 

to the company’s protocol. Subsequent antigen retrieval was carried out using TRIS-buffer 

and blockage of endogenous peroxidase with 7.5% aqueous H2O2. TMA sections were stained 

at a dilution of 1:180 for 60 min at room temperature with a monoclonal antibody against 

human PAX7 raised in mouse (Kawakami et al., 1997), which was purchased from the 

Developmental Studies Hybridoma Bank (Cat.No. PAX7-c; Iowa City, IA). Then slides were 

incubated with a secondary biotinylated anti-mouse IgG antibody (ImmPress Reagent Kit, 

Peroxidase-conjugated) followed by target detection using ABC-kit chromogen for 10 min 

(Dako, K3461). 

At least three high-power fields (40x) of each core for every sample were assessed. Semi-

quantitative evaluation of immunoreactivity was carried out by two independent physicians 

trained in histopathology. The intensity of immunoreactivity was determined as grade 0 = 

none, grade 1 = faint, grade 2 = moderate and grade 3 = strong. The particular percentage 

score of cells was assigned to 0, when any immunoreactivity was present in less than 20% of 
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the cells, 20-39% to 1, 40-59% to 2, 60-79% to 3 and 80% or higher to 4. For calculation of 

overall immunoreactivity for the given protein, we multiplied the intensity score with the 

percentage score, in analogy to UICC guidelines for hormone receptor scoring in human 

breast cancer as described (Remmele and Stegner, 1987). 

 

Peptide binding assay using TAP deficient T2 cells 

All peptides were solid-state synthesized with the highly-parallelized LIPS® technology 

(Elephants & Peptides, Potsdam, Germany). As a positive control, we used an established 

highly affine influenza matrix protein epitope (M158-66; sequence GILGFVFTL) (Gotch et 

al., 1987). T2 cells were washed twice with PBS and seeded in round-bottom 96-well plates 

(TPP, Trasadingen, Switzerland) at a concentration of 2 ´ 105 cells/well in a final volume of 

200 µl. Cells were pulsed with increasing amounts of peptide to measure a concentration 

dependency of MHC-I binding. Unpulsed cells were used as a negative control. After 

incubation over-night, cells were washed twice with FACS-buffer consisting of PBS with 2% 

FCS and stained for HLA-A2 using a FITC mouse anti-human HLA-A2 antibody (BD 

Pharmingen™, Clone BB7) for 30 min at 4°C. For isotype control a BB515 mouse IgG2Ak 

antibody (BD Horizon™, Clone G155-178) was used. Then, cells were washed twice in 

FACS-buffer before being resuspended in PBS and analyzed using a FACSCalibur flow 

cytometer (Becton Dickinson). To determine the relative peptide binding, the fluorescence 

intensity of a peptide at a defined concentration was divided by the intensity of unpulsed T2 

cells. 
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RESULTS 

Dataset assembly, workflow, and basic concepts of RAVEN 

In order to automatize the systematic and fast identification of CSGs as well as the prediction 

of corresponding highly affine peptides for any given MHC, we developed a user-friendly 

software named RAVEN (Rich Analysis of Variable gene Expressions in Numerous tissues). 

An overview on the workflow conducted by RAVEN is given in Fig. 1. The software, a 

detailed user guide and our gene expression datasets are freely available under 

https://github.com/JSGerke/RAVENsoftware. 

 

Transcriptome-wide detection of CSGs overexpressed in multiple cancer entities with 

RAVEN 

Previous studies have shown that many established CSGs are only expressed in subsets of 

specific cancer entities, which is often referred to as ‘outlier’ expression (Wu, 2007; Xu et al., 

2012). Indeed, many CSGs are either virtually not expressed in somatic normal tissues or 

exclusively expressed in specific lineages such as embryonal and germline tissues (Monk and 

Holding, 2001; Simpson et al., 2005). This outlier expression discriminates cancer cells from 

normal somatic cells and may offer a therapeutic window for preferentially targeting cancer 

cells, e.g. by adoptive T cell therapy (Coulie et al., 2014). Also, it may increase the likelihood 

that lymphocytes responsive to the proteins encoded by CSGs are preserved in the mature 

lymphocyte repertoire (Simpson et al., 2005), because they are not counter-selected during 

lymphocyte development. However, an outlier expression profile implies that conventional 

statistical tests, which either simply aim at identifying generally upregulated CSGs across 

many cancer samples (e.g. Student’s t-test) or ignore the strength of overexpression in a small 

subset of patients (e.g. rank-based nonparametric tests), would fail to detect such clinically 

relevant CSGs. 
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Therefore, we developed a scoring algorithm to scan transcriptome-wide for CSGs by 

assigning an ‘outlier score’ (OS) to each gene for high expression in a given cancer entity, 

which is penalized by a ‘penalty score’ (PS) if high expression in any normal tissue type is 

present. 

Both scores are calculated for each gene separately as the mean expression level of the 95th 

and 75th percentile. Then, we calculated an overall score for each gene named ‘CSG-score’, 

which is built by subtracting the gene-specific PS from the OS. This function highlights all 

genes overexpressed in only a subset of cancer samples, while avoiding the misrepresentation 

caused by extremely high outlier expression signals in single samples. 

In addition, our algorithm takes into account gender-specific normal tissue types such as 

uterus and prostate. Specifically, our algorithm calculated gender-specific CSG-scores for 

each gene excluding normal tissues of sexual organs specific for the other gender (see 

Materials and Methods). 

To analyze the expression profiles of human genes in normal and cancer tissues we compiled 

85 Affymetrix HG-U133-Plus2.0 microarray datasets for 71 normal tissues and 50 cancer 

types with a focus on oligo-mutated pediatric cancers and sarcomas, totaling to 2701 high-

quality and simultaneously normalized samples (Supplementary Table 1). In prospect of a 

future exploitation of our CSGs as clinical immunotargets, we included graft versus host 

disease (GvHD)-sensitive normal tissue types such as retina and colonic mucosa as well as 

normal B and T cells to obviate fratricide effects, which can compromise adoptive T cell 

therapies (Kirschner et al., 2016; Leisegang et al., 2010). 

Applying our scoring algorithm to this well-curated gene expression dataset, RAVEN 

identified 806 non-redundant CSGs (defined by a CSG-score above the 99.9th percentile of all 

scores across 50 cancer entities) (Fig. 2, Supplementary Table 5). Among them we found 

not only many established CSGs such as LIPI for Ewing sarcoma (Foell et al., 2008), PRAME 

for neuroblastoma (Oberthuer et al., 2004; Spel et al., 2015) and members of the MAGE-
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family for germinoma (Hara et al., 1999), neuroblastoma (Söling et al., 1999), synovial 

sarcoma (Iura et al., 2017), multiple myeloma (Condomines et al., 2007), diffuse large B cell 

lymphoma (DLBCL) (Hudolin et al., 2013), and osteosarcoma (Sudo et al., 1997), but also 

many novel candidates of which some appear to be suitable for targeting multiple cancer 

entities (Fig. 2, Supplementary Table 5). 

The specific expression of nine selected CSGs was confirmed by qRT-PCR in a panel of 

cancer cell lines from six different tumor entities. As shown in Fig. 3A, there was a high 

concordance of calculated CSG-scores and expression intensities measured by microarrays in 

primary tumors with relative mRNA expression levels measured by qRT-PCR in 

corresponding cancer-derived cell lines. 

In particular, PAX7 (paired box 7) showed a very high CSG-score (>5) in multiple cancer 

entities including oligo-mutated Ewing sarcoma. Therefore, we validated its strong 

overexpression on protein level in a subset of these cancer entities by immunohistochemistry 

in a comprehensive tissue microarray (TMA, n = 412 samples) also containing somatic and 

germline normal tissue types. As shown in Fig. 3B,C, PAX7 was exclusively expressed in 

cancer entities with high CSG-scores, while being virtually not expressed in normal tissues. 

Collectively, these data demonstrate that RAVEN can reliably identify CSGs with specific 

overexpression in multiple cancers as compared to normal tissues. 

 

Prediction of non-redundant CSG-encoded peptides with high MHC-affinity by RAVEN 

To identify peptides encoded by CSGs suitable for a targeted immunotherapy, we 

implemented the artificial neural network (ANN) algorithm (Andreatta and Nielsen, 2016; 

Nielsen et al., 2003) provided by the immune epitope database IEDB 3.0 (Vita et al., 2015). 

RAVEN can apply this ANN algorithm to predict peptide-affinities for different peptide 

lengths and the most common human and murine MHC-subtypes. 
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In our list of 806 CSGs, RAVEN predicted potential highly affine peptides for 9-mers, which 

usually show optimal binding to most MHC class I molecules (Andreatta and Nielsen, 2016; 

Eichmann et al., 2014), and for HLA-A02:01, which is the most common MHC-I in 

Caucasians (González-Galarza et al., 2015). RAVEN automatically crosschecked these 

peptides by a text search algorithm with ApacheLucene (Chen et al., 2013; Wu et al., 2003) 

against the human reference-proteome (UniProt release 2015_06) to exclude sequence 

identity with non-specifically expressed proteins. In total, RAVEN predicted 7,338 9-mer 

peptides with high MHC-I-affinity (defined as a dissociation constant Kd ≤ 150 nM) of which 

6,554 had no sequence identity with any other protein (Supplementary Table 6). 

 

Predicted CSG-encoded peptides exhibit strong affinity to MHCs 

We next sought to confirm the predicted affinity of peptides to human HLA-A02:01 proposed 

by RAVEN. Therefore, we selected among the unique 6,554 peptides 80, which covered all 

50 analyzed tumor entities and which had high to very high CSG-scores. For these 80 

peptides, we designed a customized solid-phase synthesized peptide-library and assessed 

whether they can stabilize MHC-I on the surface of TAP2-deficient cells in T2-binding 

assays. As shown in Figure 4A, 38 of 80 tested peptides (47.5%) achieved at least 50% of the 

MHC-stabilizing effect of a highly immunogenic influenza control peptide (GILGFVFTL, 

Supplementary Table 6) at a saturation dose of 100 µM. For these CSG-peptides, we 

repeated the T2-assays with six different peptide concentrations (0.1 to 100 µM). Strikingly, 

some of them, including the one encoded by PAX7, showed MHC-stabilization kinetics 

similar to the influenza peptide (Figure 4B). Taken together, these experiments demonstrated 

that RAVEN can identify highly affine CSG-encoded peptides suitable for targeting multiple 

cancer types by leveraging publicly available gene expression data. 
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DISCUSSION 

High-throughput gene expression analyses of cancers and normal tissues generated 

comprehensive and freely available transcriptome datasets (Rung and Brazma, 2013). 

However, identification of CSGs and derivative peptides with high affinity to MHCs 

continued to be laborious and slow (Gubin et al., 2015). 

Here, we reported on the development and application of a mathematical scheme for 

transcriptome-wide detection of CSGs and their corresponding highly MHC-affine peptides as 

immunologic and clinical targets, and provide a use-friendly software (RAVEN), which 

automatizes this process. Applying RAVEN to a large gene expression dataset comprising 

multiple and often oligo-mutated pediatric cancer types as well as a broad spectrum of normal 

tissues revealed many CSGs with diagnostic and therapeutic potential. Moreover, we provide 

an analogous dataset including 19 of the most common carcinoma entities (1,462 samples; 

Supplementary Table 1, https://github.com/JSGerke/RAVENsoftware), which can be used 

for CSG identification in these tumor types. 

In our pediatric cancer dataset, we observed significant enrichment (P < 0.0001, Chi2-test) of 

established cancer-testis antigens (CTDatabase, www.cta.lncc.br, (Almeida et al., 2009)), but 

also identified many novel candidates including PAX7. PAX7 encodes a paired box 

transcription factor required for embryonal neural development (Kawakami et al., 1997) and 

renewal of skeletal muscle stem cells (Oustanina et al., 2004). Translocations involving PAX7 

and FKHR are found in the majority of alveolar rhabdomyosarcomas (ARMS), indicating a 

role of PAX7 in the pathogenesis of myogenic tumors (Barr, 1999). Using RAVEN, we 

identified PAX7 as a strong CSG in multiple oligo-mutated cancer entities such as Ewing 

sarcoma, Ewing-like sarcomas with a BCOR-CCNB3-translocation and embryonal as well as 

alveolar fusion-negative rhabdomyosarcoma. Its exclusive expression in these cancer entities 

was confirmed on protein level by IHC. Strikingly, PAX7 encodes a 9-mer peptide 

(GLVSSISRV) with very high affinity for the most frequent MHC-I subtype in Caucasians 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 24, 2017. ; https://doi.org/10.1101/193276doi: bioRxiv preprint 

https://doi.org/10.1101/193276
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                           Systematic identification of cancer-specific peptides 

  16 

(HLA-A02:01) (González-Galarza et al., 2015), rendering PAX7 as an attractive target for 

immunotherapy for multiple oligo-mutated cancers.  

The parameters of the analysis applied in RAVEN have been optimized to discover CSGs, 

which are virtually not expressed in most somatic tissues. Although some identified CSGs did 

not encode peptides suitable for immunotargets, a subset of them could constitute interesting 

targets for conventional pharmacotherapy. In fact, the CSGs FGFR4, CDK4, and several 

MMPs, which are specifically overexpressed in rhabdomyosarcoma (FGFR4), liposarcoma 

(CDK4), and desmoid tumors, leiomyoma, osteosarcoma and adamantinomatous 

craniopharyngioma (MMPs) (Supplementary Table 5), respectively, could be targeted by 

specific inhibitors currently in clinical trials (Chen et al., 2017; Hagel et al., 2015; Matziari et 

al., 2007).  

Besides their potential utility as (immune)-therapeutic targets, some CSGs may harbor the 

potential to serve as diagnostic markers: While CSGs expressed in multiple tumor entities 

could be utilized for cancer-screening, CSGs exclusively expressed in certain cancer types 

can be used to identify and differentiate specific tumor entities. This could be important for 

determining treatment options, which is often difficult in cancers of unknown primary. 

As RAVEN can also be applied to datasets only containing cancer samples, RAVEN can 

easily identify potential diagnostic markers among several cancers in parallel. In principle, 

our work-flow embedded in RAVEN provides an unbiased approach for transcriptome-wide 

detection of CSGs, which can be adapted to many specific applications, such as the 

identification of autoantibody signatures, biomarkers, tumor vaccine targets, or membrane 

antigen targets. Its performance could be further enhanced by combining it with other 

datasets, on cancer plasma or membrane proteomics. Since our algorithm provides a 

quantitative and gender-specific value for each gene in each tumor entity (Supplementary 

Table 5), the preferential expression of each CSG in different cancers is apparent at a glance. 

With more and more deep transcriptome sequencing data available and the advent of digital 
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gene expression technology, we expect that RAVEN will be a highly beneficial tool to 

maximize the identification of CSGs and, hence, new diagnostic markers and therapeutic 

targets based on these data. 
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Figure 1. Schematic illustration of the assembly, quality-check, and normalization of 
gene expression data as well as tasks executed by RAVEN. 
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Figure 2. Overexpressed CSGs in multiple cancers entities identified with RAVEN. 
Relative gene expression intensities of the top-5 CSGs for each cancer entity excluding 
overlapping CSGs with other tumor entities re indicated in greyscale with black color 
representing high and white color low expression. Each line represents an individual CSG (for 
a complete list see Supplementary Table 5); each column represents one primary 
tumor/leukemia sample. The bar graph on the right displays the number of different cancer 
entities in which the corresponding CSG reached a CSG-score above the 99.9th percentile of 
all CSG-scores. ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; ATRT, 
atypical teratoid/rhabdoid tumor; CLL, chronic lymphatic leukemia; CML, chronic myeloid 
leukemia; DLBCL, diffuse large B cell lymphoma; GIST, gastrointestinal stromal tumor; 
MALT, mucosa associated lymphatic tissue; MPNST, malignant peripheral nerve sheath 
tumor; PNET, primitive neuroectodermal tumor. 
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Figure 3. Validation of the expression pattern of selected CSGs by qRT-PCR and IHC. 
A) Upper and middle panel: CSG-scores and corresponding expression intensities (natural 
scale) of selected genes in primary Ewing sarcoma (EwS, n = 50), neuroblastoma (NB; n = 
49), rhabdomyosarcoma (RMS; n = 101), liposarcoma (LPS; n = 50), leiomyosarcoma (LMS, 
n = 50) and osteosarcoma tumors (OS, n = 40). Lower panel: Relative expression levels of the 
same genes as determined by qRT-PCR in EwS (n = 9), NB (n = 4), RMS (n = 5) and LPS (n 
= 3), LMS (n = 3) and OS (n = 6) cell lines. 
B) Analysis of nuclear PAX7 immunoreactivity by IHC in indicated primary tumors and 
normal tissues. ASPS, alveolar soft part sarcoma; GIST, gastrointestinal stromal tumor. 
Numbers of analyzed samples are given in parentheses. 
C) Representative images of nuclear PAX7 IHC staining in cancer and selected normal 
tissues. Scale bar = 300 µm. UPS, undifferentiated pleomorphic sarcoma. 
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Figure 4. Validation of MHC-affinity of CSG-encoded peptides in a T2-binding assay. 
A) Relative MHC-I-affinity of 80 selected peptides at 100 µM in T2-binding assays as 
compared to a highly affine influenza peptide (peptide sequences are given in 
Supplementary Table 6). The colored boxes at the right side of the graph represent the 
number and type of cancer entities in which the corresponding CSG encoding the indicated 
peptide is overexpressed. Peptides with a MHC-affinity of ≥ 50% of the influenza peptide are 
highlighted in red color. Data are presented as mean and SEM of n ≥ 3 experiments. ALL, 
acute lymphoblastic leukemia; AML, acute myeloid leukemia; ATRT, atypical 
teratoid/rhabdoid tumor; CLL, chronic lymphatic leukemia; CML, chronic myeloid leukemia; 
DLBCL, diffuse large B cell lymphoma; GIST, gastrointestinal stromal tumor; MALT, 
mucosa associated lymphatic tissue; MPNST, malignant peripheral nerve sheath tumor; 
PNET, primitive neuroectodermal tumor. 
B) Normalized fluorescence signals of 16 selected peptides with high MHC-affinity as 
compared to that of a highly affine influenza peptide in T2-binding assays. Data are presented 
as mean and SEM of n ≥ 3 experiments. P values of a Spearman’s rank-order correlation are 
reported. 
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