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Abstract
Adverse drug reactions, also called side effects, range from mild to fatal clinical events
and significantly affect the quality of care. Among other causes, side effects occur when
drugs bind to proteins other than their intended target. As experimentally testing drug
specificity against the entire proteome is out of reach, we investigate the application of
chemogenomics approaches. We formulate the study of drug specificity as a problem of
predicting interactions between drugs and proteins at the proteome scale. We build
several benchmark datasets, and propose NN-MT, a multi-task Support Vector Machine
(SVM) algorithm that is trained on a limited number of data points, in order to solve
the computational issues or proteome-wide SVM for chemogenomics. We compare
NN-MT to different state-of-the-art methods, and show that its prediction performances
are similar or better, at an efficient calculation cost. Compared to its competitors, the
proposed method is particularly efficient to predict (protein, ligand) interactions in the
difficult double-orphan case, i.e. when no interactions are previously known for the
protein nor for the ligand. The NN-MT algorithm appears to be a good default method
providing state-of-the-art or better performances, in a wide range of prediction scenarii
that are considered in the present study: proteome-wide prediction, protein family
prediction, test (protein, ligand) pairs dissimilar to pairs in the train set, and orphan
cases.

1 Introduction 1

1.1 Drug specificity 2

The current paradigm in rationalized drug design is to identify a small molecular 3

compound that binds to a protein involved in the development of a disease in order to 4

alter disease progression. Once a hit ligand has been identified, often by combining in 5

silico and in vitro approaches, this molecule needs to be optimized in order to meet the 6

ADME (Absorption, Distribution, Metabolism, Elimination), toxicity, and industrial 7

synthesis requirements. Finally, pre-clinical and clinical assays are organized to obtain 8

agreement from the regulatory agencies. When successful, this process often lasts more 9

than ten years, and recent estimates set the cost of drug development in US$2.5 billion 10

in 2013 [1]. 11
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This complex, long, and costly process is often interrupted because of adverse drug 12

reactions (ADR, also called side effects) that appear at various stages of drug 13

development, or even after the drug has reached the market. In the USA, ADRs have 14

been estimated to have an annual direct hospital cost of US$1.56 billion [2]. A 15

meta-analysis estimated that, in hospitalized patients, the incidence of severe ADR was 16

1.9%− 2.3%, while the incidence of fatal ADR was 0.13%− 0.26%. For the year 1994, 17

this means that 2 216 000 patients hospitalized in the US suffered from a serious ADR, 18

and approximately 106 000 died [3]. Finally, a recent review [4] found that between 1950 19

and 2014, 462 medicinal products were withdrawn from the market in at least one 20

country due to ADR. Of these 462 withdrawn drugs, 114 were associated with deaths. 21

Side effects frequently occur when drugs lack specificity, which means that they bind 22

to proteins other than their intended target [5]. In that case, the molecular mechanisms 23

at the source of the therapeutic effect and of the unwanted side effects are of similar 24

nature: they both involve interactions between the drug and a protein. However, the 25

complete study of drug specificity at early stages of drug development is experimentally 26

out of reach, since it would require the evaluation of potential interactions between the 27

hit molecule and the entire human proteome. Therefore, there is a strong incentive to 28

develop in silico methods that predict specificity. The goal is to reduce the number of 29

experiments to be performed, identify drug candidates that should be dropped because 30

of their lack of specificity, protect patients from deleterious ADRs, and reduce the 31

expense of time and money for the pharmaceutical industry. 32

1.2 Protein-ligand interactions prediction 33

The study of a drug’s specificity mainly boils down to predicting its protein targets in 34

the space of the human proteome, or at least at the scale of ”druggable” human 35

proteins, i.e. proteins that present pockets into which drugs can bind. The approaches 36

that have been developed to predict interactions between a protein and a small molecule 37

can be separated into three categories. 38

First, ligand-based approaches such as Quantitative Structure Activity Relationship 39

(QSAR) (refer to [6] for a recent review on QSAR) build a model function that predicts 40

the affinity of any molecule for a given target, based on the affinities of known ligands 41

for this target. They are efficient to study the affinity of molecules against a given 42

protein target, but they are not suitable to study the specificity of a molecule against a 43

large panel of proteins. This would indeed require, for each of the considered proteins, 44

that the binding affinities of multiple ligands were available. 45

The second category is docking (refer to [7] for a recent review on docking), also 46

called target-based approaches. Docking is a molecular modeling method that predicts 47

the affinity of a ligand for a protein based on the estimated interaction energy between 48

the two partners. However, it relies on the 3D structure of the proteins, which strongly 49

limits its application on a large scale. 50

Finally, chemogenomic approaches [8] can be viewed as an attempt to fill a large 51

binary interaction matrix where rows are molecules and columns are proteins, partially 52

filled with the known protein-ligand interaction data available in public databases such 53

as the PubChem database at NCBI [9]. In this context, drug specificity prediction is 54

formulated as a classification problem, where the goal is to distinguish protein-ligand 55

pairs that bind from those that do not: the aim is to predict “interacting” or “not 56

interacting” labels for all pairs, but not to predict the strength of the interaction, which 57

would correspond to a regression problem. Chemogenomics mainly belong to supervised 58

machine learning (ML) methods, which learn mathematical models from available data, 59

and use these models to make predictions on unknown data. 60

Various chemogenomics methods have been proposed in the last decade [10–24]. 61

They all rely on the assumption that “similar” proteins are expected to bind “similar” 62
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ligands. They differ by (i) the descriptors used to encode proteins and ligands, (ii) how 63

similarities between these objects are measured, (iii) the ML algorithm that is used to 64

learn the model and make the predictions. 65

Predecessors of our approach include Support Vector Machine (SVM) [11], kernel 66

Ridge Linear Regression (kernelRLS) [10,12,18–20], and matrix factorization 67

(MF) [22–24]. 68

MF approaches decompose the interaction matrix that lives in the (protein, 69

molecule) space into the product of matrices of lower rank, living in the two latent 70

spaces of proteins and of molecules. The most recent and efficient MF based approach 71

by [24] consider more specifically Logistic Matrix Factorization [25]. They display good 72

performances and are also computationally efficient. [24] also generalized their approach 73

to orphan molecules and proteins by computing latent representations of orphan 74

molecules and proteins as a weighted sum of the latent representation of their neighbors. 75

BLM make prediction for a (protein, molecule) pair based first on the prediction of 76

target proteins for the considered molecule, and then on the prediction of ligand 77

molecules for the considered protein. The predictor used is the kernelRLS. This gives 78

two independent predictions for each putative drug-target interaction, which are 79

combined into a final prediction. 80

Finally, kernel methods using the Kronecker product of the molecule and protein 81

space (presented in the next section) can handle orphan cases, but are more 82

computationally expensive. Among them, although the KronRLS method (a Kernel 83

Regularized Least Square classifier) succeeded to dramatically reduce the computational 84

complexity of its exact solution when used on the Kronecker product of the molecule 85

and protein space, and is hence applicable to large scale chemogenomics studies, 86

SVM-based methods are still computationally inappropriate at such scale. The present 87

study propose a SVM-based approach and aims at addressing this issue. 88

In most cases, previous studies have been implemented to predict interactions of 89

molecules with proteins belonging to the same family, such as kinases or 90

GPCRs [10,18–24,26,27]. A few studies have been devoted to larger scales in the 91

protein space, such as [17] which however does not focus on settings relevant to the 92

prediction of drug specificity. Some rely on the 3D structure of the binding 93

pocket [28,29], which limits the number of proteins that can be considered, others on 94

coarse protein descriptors based on the presence of structural or functional domains [30]. 95

In the present paper, we propose a computationally efficient approach to study the 96

applicability of these ML techniques to the entire druggable proteome. 97

1.3 Single-Task and Multi-Task algorithms 98

In the context of the present paper, a Single-Task method consists in predicting protein 99

targets for a given molecule m. In this setting, the specificity of m is studied by 100

learning a model function fm(p) that predicts whether molecule m interacts with 101

protein p, based on known protein targets for m. This means that a new model function 102

is learned for each molecule. We refer to this setting as ligand-based ST. Conversely, a 103

single-task method could learn a model function fp(m) that predicts whether protein p 104

interacts with molecule m, based on all ligands known for protein p. We call this the 105

target-based ST setting. 106

In contrast, Multi-Task methods predict whether p and m interact by training a 107

model based on all known interactions, including those involving neither m nor p. In 108

other words, the task of predicting ligands for protein p is solved not only based on the 109

data available for this task (i.e. known ligands for this protein), but also based on the 110

data available for the other tasks (i.e. known ligands any other protein). The main issue 111

is to define how the data available in all tasks can be used to make the predictions made 112

for a given task. 113
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More generally, the main idea behind multi-task learning is that, when solving 114

several related tasks for which the data available for each task are scarce, a multi-task 115

framework defines how to share information across tasks, which can improve the 116

performance of the final prediction models that can be built. 117

The concept of multi-task learning is related to that of transfer learning [85]. 118

Transfer learning is inspired from the fact that humans are able to use their acquired 119

knowledge and experience to solve new problems faster. More precisely, according to the 120

classification by [31], our multi-task learning problem falls into the category of inductive 121

transfer learning, meaning that the training and testing domains are the same, i.e. the 122

training and testing data are encoded in the same space, and the tasks are different but 123

related. In our case, we predict protein-ligand interactions by training a model based on 124

known protein-ligand interactions (i.e. same space for training and tested data), and the 125

tasks are predictions of ligands for proteins whose sequences can be compared (i.e. the 126

tasks are related). Such approaches are of particular interest when the data available for 127

each task are scarce, i.e. when few interactions are known for a given ligand or protein, 128

as is often the case when looking for secondary targets at the size of the human 129

proteome. Even within the multi-task framework, orphan proteins (for which no ligand 130

is known) and proteins for which the only known ligands are very dissimilar to the 131

tested molecule, are those for which predictions are the most difficult. Therefore, our 132

study will focus more particularly on these cases. 133

Among all multi-task approaches, multi-task kernel methods have widely been used 134

in bioinformatics, including for chemogenomics applications. Our contributions in the 135

present paper belong to this category of methods that we briefly review in the next 136

section. 137

1.4 Kernel methods for chemogenomics 138

In this study, we formalize and solve the problem of drug-target interaction prediction 139

with Support Vector Machines (SVM), an algorithm for learning a classification or a 140

regression rule from labeled examples [32]. 141

Intuitively, SVMs seeks to find the optimal hyperplane separating two classes of data 142

points. As briefly recalled in Supplementary Materials S1, although SVMs can be solved 143

from vector representations of the data, they can also be solved using the “kernel trick”, 144

based only on the definition of a kernel function K which gives the similarity value 145

K(x, x′) between all pairs of data points x and x′, without needing an explicit 146

representation of the data. Many kernels have been proposed for molecules and for 147

proteins, and an overview of such kernels is presented in the Material and Methods 148

section. 149

In chemogenomics, our goal can be viewed as finding the optimal hyperplane that
separates the pairs (m, p) of molecules and proteins that interact from those that do not
interact. This classification task can be solved using an SVM with a kernel Kpair

defined on (ligand, protein) pairs. Given N example pairs, solving the SVM in the
space of (m, p) pairs using the Kpair kernel corresponds to finding the optimal αi
coefficients such that (see Supplementary Materials S1):

α∗ = argmin
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjKpair((mi, pi), (mj , pj)) (1a)

subject to αi ≥ 0,∀i = 1, . . . , N (1b)
N∑
i=1

αiyi = 0 (1c)
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A general method to build a kernel on such pairs is to use the Kronecker product of 150

the molecule and protein kernels [33]. Given a molecule kernel Kmolecule and a protein 151

kernel Kprotein, the Kronecker kernel Kpair is defined by: 152

Kpair((m, p), (m′, p′)) = Kmolecule(m,m′)×Kprotein(p, p′) (2)

Thus, the Kronecker kernel Kpair captures interactions between features of the 153

molecule and features of the protein that govern their interactions (see Supplementary 154

Materials S2 for an explicit definition of the Kronecker product of two matrices). If 155

Kmolecule is a n× n matrix and Kprotein is a p× p matrix, their Kronecker product 156

Kpair has size np× np. In the context of chemogenomics, this can correspond to a very 157

large size, leading to untractable computations. However, one interesting property of 158

the Kronecker kernel is that calculating its values on a data set of (m, p) pairs does not 159

require storing this entire matrix since it is sufficient to store Kmolecule(m,m′) and 160

Kprotein(p, p′). 161

Therefore, solving the SVM (equation 1) only requires calculation of the Kmolecule 162

and Kprotein kernels according to equation 2. 163

Once the αi coefficients have been determined, the ability of a given (m, p) pair to 164

interact is predicted based on: 165

f((m, p)) = sign
(

np∑
i=1

αiyiKmolecule(m,mi).Kprotein(p, pi) + b

)
(3)

This equation illustrates why the use of such a kernel can be viewed as a multi-task 166

method. Indeed, in a single-task approach where one task corresponds to the prediction 167

of ligands for a given protein p, the ability of molecule m to bind protein p would be 168

estimated by: 169

f(m) = sign
(

n∑
i=1

αiyiKmolecule(m,mi) + b

)
(4)

where the mi molecules are ligand and non-ligand molecules known for protein p. 170

In the multi-task setting, f((m, p)) evaluates the ability of m to bind to protein p 171

using mi molecules that are all ligand or non-ligand molecules known for all proteins pi. 172

However, the contribution of the labels yi of ligands for pi proteins that are different 173

from p to calculate f((m, p)) is weighted by Kprotein(p, pi). In other words, the more 174

similar two tasks (i.e. the corresponding proteins) are, the more known instances for 175

one of the task will be taken into account to make predictions for the other task. 176

Such kernel-based multi-task approaches have been successfully applied to biological 177

problems, including the prediction of protein-ligand interactions [8, 11,34,35]. 178

1.5 Contribution 179

The goal of this paper is to investigate the application of multi-task Support Vector 180

Machines (SVM) to the prediction of drug specificity, by predicting interactions between 181

the drug of interest and the entire druggable proteome. To this end, we evaluate 182

multi-task SVMs in several key scenarii that explore the impact of the similarity 183

between the query (protein, molecule) pair and the training data on the prediction 184

performance, a point that is rarely discussed in the literature. We also explore their 185

applicability to orphan settings, a situation often encountered large scale studies, and 186

where single-task methods are not applicable. We also discuss how to generate negative 187

training examples, and we optimize protein and molecule kernels in the spaces of 188

drug-like molecules and druggable proteins. 189
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Our observations lead us to propose the NN-MT algorithm, a multi-task SVM for 190

chemogenomics that is trained on a limited number of data points: for a query (protein, 191

molecule) pair (p∗,m∗), the training data is composed of (1) all intra-task (protein, 192

ligand) pairs defined by pairs (p,m) with either p = p∗ or m = m∗; (2) a limited 193

number of extra-task (protein, ligand) pairs, defined by pairs (p,m) with p 6= p∗ and 194

m 6= m∗, chosen based on the similarity of p and m to p∗ and m∗, respectively; and (3) 195

randomly picked negative examples (about ten times more than positive training pairs). 196

While the applicability of multi-task approaches can be limited in practice by 197

computational times, our approach only requires training on a dataset of size similar to 198

those used by single-task methods. We evaluate the performance on various assembled 199

datasets in which the protein and/or the ligand are orphan. 200

We also compare the NN-MT algorithm to state-of-the-art approaches in drug-target 201

interaction prediction [18–24]. We used and updated the PyDTI package [24], adding an 202

implementation of NN-MT together with key cross-validation schemes and a 203

DrugBank-based dataset built in the present study. In addition to all other experiments 204

performed in the present study, this benchmark study concludes that NN-MT is a good 205

default method providing state-of-the-art or better performances, in a wide range of 206

prediction scenarii that can be encountered in real-life studies: proteome-wide 207

prediction, protein family prediction, test (protein, ligand) pairs dissimilar to pairs in 208

the train set, and orphan cases. 209

All datasets and codes are available at 210

https://github.com/bplaye/efficient_MultiTask_SVM_for_chemogenomics/. 211

The updated PyDTI package is available at https://github.com/bplaye/PyDTI/. 212

2 Materials and methods 213

2.1 Protein kernels 214

We used sequence-based kernels since they are suitable for proteome-wide approaches, 215

unlike kernels relying on the 3D structure of the proteins or on binding pocket 216

descriptions. Numerous studies have already been devoted defining descriptors of 217

proteins based on amino-acid sequence [36–40]. We considered three sequence-based 218

kernels: the Profile kernel [40], the SWkernel, and the LAkernel. 219

The Profile kernel uses as protein descriptors the set of all possible subsequences of 220

amino acids of a fixed length k, and considers their position-dependent mutation 221

probability. This kernel is available at 222

http://cbio.mskcc.org/leslielab/software/string_kernels.html. 223

We also used two kernels that rely on local alignment scores. The first one is directly 224

based on the Smith-Waterman (SW) alignment score between two proteins [41] and is 225

called the SWkernel in the present paper. SW scores were calculated with the EMBOSS 226

Water tool available at http://www.ebi.ac.uk/Tools/psa/emboss_water/. We built 227

a kernel based on the SW score matrix by subtracting its most negative eigenvalue from 228

all diagonal values. We also used the Local Alignment kernel (LAkernel) [39] which 229

mimics the behavior of the SW score. However, while the SW score only keeps the 230

contribution of the best local alignment between two sequences to quantify their 231

similarity, the LAkernel sums up the contributions of all possible local alignments, 232

which proved to be efficient for detecting remote homology [39]. This kernel is available 233

at http://members.cbio.mines-paristech.fr/˜jvert/software/. 234

Kernel hyperparameters values. The Profile kernel has two hyperparameters: the 235

size k of the amino acid subsequences that are searched and compared, and the 236

threshold t used to define the probabilistic mutation neighborhoods. We considered 237
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k ∈ {4, 5, 6, 7} and t ∈ {6, 7.5, 9, 10.5}. The SWkernel also has two hyperparameters: 238

the penalties for opening a gap (o) and for extending a gap (e). We considered 239

o ∈ {1, 10, 50, 100} and e ∈ {0.01, 0.1, 0.5, 1, 10}. The LAkernel has three 240

hyperparameters: the penalties for opening (o) and extending (e) a gap, and the β 241

parameter which controls the importance of the contribution of non-optimal local 242

alignments in the final score. We considered o ∈ {1, 20, 50, 100}, e ∈ {0.01, 0.1, 1, 10}, 243

and β ∈ {0.01, 0.5, 0.05, 0.1, 1}. All kernels hyperparameters were optimized by 244

cross-validation (see Section 2.3). 245

In the last part of the study, we also considered kernels on proteins based on their 246

family hierarchy. Indeed, the most important classes of drug targets have been 247

organized into hierarchies established on the sequence and the function of the proteins 248

within these families (GPCR [42], kinases [43] and ion channels [44]). As in [11], the 249

hierarchy kernel is built based on the number of common ancestors shared by two 250

proteins in the hierarchy. More precisely, Khierarchy(t, t′) = 〈φ(t), φ(t′)〉, where φ(t) is a 251

binary vector for which each entry corresponds to a node in the hierarchy and is set to 1 252

if the corresponding node is part of t’s hierarchy and 0 otherwise. 253

All protein kernels were centered and normalized. 254

2.2 Small molecule kernels 255

Many descriptors have been proposed for molecules, based on physico-chemical and 256

structural properties [45–48]. To measure the similarity between molecules, we 257

considered two state-of-the-art kernels based on molecular graphs that represent the 2D 258

structure of the molecules, with atoms as vertices and covalent bonds as edges. Both 259

kernels compute similarities between molecules via the comparison of linear fragments 260

found in their molecular graphs. They are available at 261

http://chemcpp.sourceforge.net/. 262

The first one, called the Marginalized kernel [47], calculates the similarity between 263

two molecules based on the infinite sets of random walks over their molecular graphs. 264

The second kernel, called the Tanimoto kernel, uses a description of molecules by 265

vectors whose elements count the number of fragments of a given length. The similarity 266

between molecules is based on the Tanimoto metric [45]. 267

Kernel hyperparameters values. The Marginalized kernel has two 268

hyperparameters: the stopping probability (while building a path) q in {0.01, 0.05, 0.1, 269

0.5}, and the Morgan Index (MI) in {2, 3, 4}. For both kernels, hyperparameters were 270

selected by cross-validation (see Section 2.3). The Tanimoto kernel has one 271

hyperparameter: the length d of the paths, which we considered in {2, 4, 6, 8, 10, 12, 272

14}. All molecule kernels were centered and normalized. 273

2.3 Evaluation of prediction performance 274

Prediction performance is commonly evaluated with a cross-validation (CV) scheme [49]: 275

1) the dataset is randomly split into K folds 2) the model is run K times, each run using 276

the union of (K-1) folds as the training set, and measuring the performance on the 277

remaining fold . Prediction performance are averaged over all folds. When 278

hyperparameters had to be selected, we used a nested cross validation (Nested-CV) 279

scheme [50]. It consists in a (K-1) folds cross validation (inner-CV) nested in a K folds 280

cross validation (outer-CV). At each step of the outer-CV, the inner-CV is repeated for 281

all considered values of the hyperparameters. The values leading to the best prediction 282

performance are retained as optimal. We used K=5, a classical value in CV. 283

We also considered leave-one-out cross-validation (LOO-CV ), for which the number 284

of folds is the number of available points in the dataset. The LOO-CV scheme is 285
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particularly useful when the number of samples is small. It was used in the present 286

paper when the size of the considered dataset was too small to perform 5-fold-CV . 287

We estimated prediction performance using two scores that are classically employed 288

to judge the quality of a classifier in case of drug-target interaction prediction. The first 289

one is the area under the Receiver Operating Characteristic curve [51] (ROC-AUC). 290

The ROC curve plots true positive rate as a function of false positive rate, for all 291

possible thresholds on the prediction score. Intuitively, the ROC-AUC score of a 292

classifier represents the probability that if a positive and a negative interaction are each 293

picked at random from the dataset, the positive one will have a higher positive score 294

than the negative one. The second one is the area under the Precision-Recall curve [52] 295

(AUPR). It indicates how far the prediction scores of true positive interactions are from 296

false positive interactions, on average. Although we used both the ROC-AUC and 297

AUPR scores, since negative interactions are actually unknown interactions in 298

protein-ligand interaction datasets, the AUPR is considered a more significant quality 299

measure of the prediction method than the ROC-AUC. Indeed, it emphasizes the 300

recovery of the positive samples and penalizes the presence of false positive examples 301

among the best ranked points. 302

We used the Python library scikit-learn [53] to implement all considered machine 303

learning algorithms. 304

2.4 Datasets 305

Many publicly available databases such as KEGG Drug [54], DrugBank [55], or 306

ChEMBL [56] can be used to build a learning dataset of protein-ligand interactions. We 307

chose to build all the datasets used in the present study from the DrugBank database 308

v4.3, because it contains FDA-approved drugs, or drug candidate molecules. This 309

allowed optimize and test our models on drug-like molecules, on which they intend be 310

applied. In addition, we assumed that the list of human proteins appearing as targets 311

for molecules of DrugBank can represent a relevant ”druggable” human proteome on 312

which we could train models that predicting the specificity of drug-like molecules. 313

We built a first learning dataset called S, based on Version 4.5 of the DrugBank [55]. 314

We selected all molecules targeting at least one human protein, and having a molecular 315

weight between 100 and 600 g.mol−1, a range in which most small molecule marketed 316

drugs are found [57]. This leads to a dataset composed of 3 980 molecules targeting 317

1 821 proteins, and including 9 536 protein-ligand interactions that correspond to the 318

positive training pairs. All other protein-ligand pairs are unlabeled because no 319

interactions were recorded for them in the database. Most of these pairs are expected 320

not to interact, but a small number of them are in fact missing interactions. However, 321

we considered that all unlabeled pairs as negative examples, allowing the predictor to 322

re-classify some of these pairs as positive examples. 323

We built several other datasets using exactly the same training pairs as those in S, 324

but 5-folded in various ways. Datasets S1, S2, S3, and S4 are folded so as to correspond 325

to random, orphan protein, orphan ligand, and double orphan prediction situations. 326

The construction of these four datasets is detailed in Section 3.2, where they are used. 327

Datasets S′1, S′2, S′3, and S′4 are also folded to mimic the same situations, but with the 328

additional constraint that proteins and ligands were clustered based on their similarities, 329

and each fold contains only one cluster of proteins and of ligands. The goal is to test 330

the performance of the method in situations similar to those of S1, S2, S3, and S4, but 331

with the added difficulty that the test set (one fold) and the train set (the 4 other folds) 332

contain pairs that have low similarities. This setting is relevant when considering 333

proteome-wide predictions: many of the proteins to consider may not have close 334

neighbors among the proteins for which the most information (i.e. ligands) are known. 335

The construction of these four datasets is detailed in Section 3.3, where they are used. 336
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We also built a dataset called S0 by keeping only molecules and proteins in S which 337

are involved at least in two interactions, in order to compare the prediction performance 338

of the proposed methods with those of ligand-based and target-based approaches. 339

Indeed, these two single-task approaches require at least two data points, one used as 340

train, and one as test. Consequently, when a LOO-CV scheme is used, no ligand and no 341

protein are orphans in S0. S0 contains 5 908 positive interactions and was used in 342

Sections 3.4 and 3.5. In addition, we randomly generated four sets of 5 908 negative 343

interactions involving proteins and ligands found in the positive interactions, while 344

ensuring that each protein and each ligand are present in the same number of positive 345

and negative interactions. Then, we assessed performance by computing the mean and 346

standard deviation of the AUPR scores over test sets including the positive interactions 347

set and one of the negative interactions sets. 348

Finally, we built three protein family datasets by extracting from S0 all 349

protein-ligand interactions involving respectively only G-Protein Coupled Receptors 350

(GPCR set), ion channels (IC set), and kinases (Kinases set). These datasets were used 351

to evaluate performance of our method within a family of proteins, and compare it to 352

those of single-task approaches. They were extracted from S0 (and not from the larger 353

dataset S) since again, these comparisons used the LOO-CV scheme, which requires at 354

least two data points per protein and per molecule. 355

Table 1 gives some statistics about the datasets, including the distribution of targets 356

per drug and the distribution of ligands per protein.

S S0 GPCR IC Kinases
number of interactions 9 536 5 908 1 735 1 603 847
number of proteins 1 821 788 85 140 143
number of molecules 3 980 1 180 482 295 577
number of targets per drug (mean/median) 5.2/2 7.5/3 20.3/6 5.9/3 11.5/4
number of targets per drug (min – max) 1− 136 2− 82 1− 86 1− 67 1− 136
number of ligands per protein (mean/median) 2.4/1 5.0/3 3.6/3 5.4/3 1.5/7
number of ligands per protein (min – max) 1− 70 2− 48 1− 31 1− 26 1− 18

Table 1. Dataset statistics
357

3 Results 358

3.1 Kernel selection and parametrization 359

The goal of this section is to choose a protein kernel and a molecule kernel that we will 360

use throughout the remainder of this study. We assumed that kernels optimized on a 361

large dataset of interactions between drug-like molecules and druggable human proteins 362

such as dataset S would be good default kernels for the prediction of drug candidates 363

specificity. Therefore, we optimized kernels on dataset S (the largest dataset built in 364

the present study), and used the best-performing couple of kernels in the remainder of 365

the paper. 366

The set of (protein, ligand) pairs in S were randomly 5-folded, and we performed a 367

nested 5-fold-CV experiment in order to evaluate the six possible kernel combinations 368

and their best hyperparameters. 369

Table 2 gives the best prediction performance for the six combinations of protein and 370

molecule kernels, together with the corresponding hyperparameters. All protein kernels 371

gave the best AUPR when coupled to the Tanimoto kernel. The Marginalized kernel 372

obtained good performance only when coupled to the Profile kernel. Overall, the Profile 373

kernel (k = 5, t = 7.5) associated to the Tanimoto kernel (d = 8) gave the best 374
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Kernels Tanimoto Marginalized

LAkernel
AUPR = 0.938± 0.001 AUPR = 0.930± 0.001
Tanimoto: d = 14 Marginalized: q = 0.1, MI=4
LAkernel: o = 20, e = 1, β = 1 LAkernel: o = 20, e = 1, β = 1

SWkernel
AUPR = 0.878± 0.002 AUPR = 0.868± 0.002
Tanimoto: d = 6 Marginalized: q = 0.1, MI=2
SWkernel: o = 100, e = 0.01 SWkernel: o = 50, e = 10

Profile
AUPR = 0.941± 0.001 AUPR = 0.935± 0.001
Tanimoto: d = 8 Marginalized: q = 0.1, MI=2
Profile: k = 5, t = 7.5 Profile: k = 4, t = 6

Table 2. Best nested 5-fold-CV AUPR for each kernel combination, together with
optimal hyperparameters.

performance. Therefore, in what follows, we only consider these two kernels, and call 375

MT the Multi-Task SVM that uses their Kronecker product. 376

We also considered one-class SVM using the same kernels [58]. However, the 377

performance of one-class SVM were clearly lower than those of KronSVM. The AUPR 378

scores of one-class SVM were in the range of 0.6 for all considered kernels when those of 379

KronSVM were in the range of 0.9. Therefore, we did not further consider one-class 380

SVM. 381

It is worth noting that the SW-kernel gave the worst performance, although it is 382

used in many studies [10, 15, 18, 20]. Overall, the good performance of the six multi-task 383

methods observed on S is consistent with previously reported results [17,20]. However, 384

S was built from the DrugBank, which is mostly fueled by application-specific screens of 385

either related proteins or related small molecules. Therefore, (protein, ligand) pairs of 386

the test sets will usually have close pairs in the train set (i.e. pairs involving the same 387

or similar proteins and ligands), which will facilitate the prediction. The performance in 388

real-case prediction of drug specificity is expected to be lower than that obtained on S, 389

since at the proteome scale, some of the test (protein, ligand) pairs will be far from all 390

pairs of the train set. This will be particularly true in the case of new drugs and 391

therapeutic targets, as already pointed by [26]. 392

The question of interest is now to which extent the proposed MT method is effective 393

to make predictions on more challenging situations that are relevant in the context of 394

drug specificity prediction. Therefore, in the following, we study the evolution of MT’s 395

performance in more realistic settings where the protein, the molecule, or both, are 396

orphan, or where the tested (protein, ligand) pair has low similarity with the pairs 397

belonging to the train set. 398

3.2 Performance of multi-task approaches in orphan situations 399

The goal of this section is to evaluate the performance of MT in cases where the queried 400

(protein, molecule) pairs contain proteins and/or molecules that are not in the training 401

set, as proposed by [26]. For that purpose, all the pairs of dataset S were used and 402

5-folded as follows in order to create four cross-validation data sets : 403

• S1: randomly and balanced in positive and negative pairs; 404

• S2 (corresponding to the “orphan ligand” case): (protein, molecule) pairs in one 405

fold only contain molecules that are absent from all other folds; prediction on each 406

test set (each fold) is performed using train sets (the four other folds) in which no 407

the ligands of the test set are absent. 408

PLOS 10/37

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 26, 2018. ; https://doi.org/10.1101/193391doi: bioRxiv preprint 

https://doi.org/10.1101/193391
http://creativecommons.org/licenses/by-nc/4.0/


• S3 (corresponding to the“orphan protein” case): (protein, molecule) pairs in one 409

fold only contain proteins that are absent from all other folds; prediction on each 410

test set is performed using train sets in which no the proteins of the test set are 411

absent. 412

• S4 (corresponding to the“double orphan” case): (protein, molecule) pairs in one 413

fold only contain proteins and molecules that are both absent from all other folds. 414

Prediction on each test set is performed using train sets in which no the proteins 415

and the ligands of the test set are absent. The folds of S4 were built by 416

intersecting those of S2 and S3 and S4. Thus, S4 contains 25 folds and not 5. 417

Fig 1. nested 5-fold-CV performance of the MT method on the S1 − S4
datasets. Numerical values can be found in Supporting Information S1 Table.

Fig 1 shows the nested-CV AUC and AUPR scores obtained by the MT method on 418

the S1-S4 datasets. As expected, the best scores are obtained for S1, and the worst for 419

S4, since in S4, no pairs of the train set contain the protein or the ligand of the tested 420

pair to guide the predictions. The loss of performance between the random and the 421

double orphan settings is about 0.12 both in AUC and AUPR. However, the 422

performance on the S4 dataset remains well above those of a random predictor. These 423

results confirm that MT chemogenomics can make predictions for (protein, ligands) 424

pairs made of unseen proteins and unseen ligands, even in datasets containing very 425

diverse types of proteins. This confirms previous observations made on less diverse 426

datasets [26]. It is important to point that single-task approaches would not be able to 427

provide any prediction on the S4 dataset. 428

The scores obtained in the S2 and S3 datasets are intermediate between those 429

observed on S1 and S4. This was to be expected, as in these datasets, the algorithm can 430

rely on training pairs containing either the same proteins (S2) or the same ligands (S3) 431

as the test set. The AUC and AUPR scores are both slightly better for S3 than for S2, 432

which suggests that predicting ligand for new protein targets is easier than predicting 433

targets for new compounds, as already noticed in [26]. We also observed similar 434

behaviors when replacing the SVM with a kernel ridge regression (see Supporting 435

Information S1 Fig) and hence did not further consider this algorithm. 436

Overall, our results suggest that the performance of MT is driven by known (protein, 437

molecule) pairs that are similar to the query pair, in the sense that they share either 438

their protein or their molecule. In the next section, we will evaluate how the actual 439

similarity between query and train pairs influences the prediction performance of this 440

multi-task algorithm. 441

3.3 Impact of the similarity of the training examples to the 442

test set 443

To evaluate the impact on performance of the dissimilarity between training and test 444

pairs, we re-folded the pairs of S following the “clustered cross-validation” approach [59]. 445

More precisely, we clustered proteins (resp. ligands) into 5 clusters by hierarchical 446

clustering [60]. We then built four cross-validation datasets, S′1 − S′4, generated based 447

on folds similarly as S1 − S4, but with the added constraint that all pairs in a given fold 448

are made of proteins from a single protein cluster and ligands from a single ligand 449

cluster. Therefore, test pairs are more dissimilar from train pairs than in the S1 − S4 450

datasets, which makes the problem more difficult. 451

Overall, all the pairs of dataset S were 5-folded as follows in order to create four 452

cross-validation data sets : 453
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• S′1: randomly and balanced in positive and negative pairs, each fold containing 454

proteins and ligands belonging to the same cluster; 455

• S2’ (corresponding to the “orphan ligand” case): (protein, molecule) pairs in one 456

fold only contain molecules that are absent from all other folds; prediction on each 457

test set (each fold) is performed using train sets (the four other folds) in which no 458

the ligands of the test set are absent, with the additional constraint that each fold 459

contains proteins and ligands belonging to the same cluster. 460

• S′3 (corresponding to the “orphan protein” case): (protein, molecule) pairs in one 461

fold only contain proteins that are absent from all other folds; prediction on each 462

test set is performed using train sets in which no the proteins of the test set are 463

absent, with the additional constraint that each fold contains proteins and ligands 464

belonging to the same cluster. 465

• S′4 (corresponding to the “double orphan” case): (protein, molecule) pairs in one 466

fold only contain proteins and molecules that are both absent from all other folds. 467

Prediction on each test set is performed using train sets in which no the proteins 468

and the ligands of the test set are absent, with the additional constraint that each 469

fold contains proteins and ligands belonging to the same cluster. The folds of S4 470

were built by intersecting those of S2 and S3 and S4. Thus, S4 contains 25 folds 471

and not 5. 472

Fig 2. nested 5-fold-CV performance of the MT method on the S′1 − S′4
datasets. Numerical values can be found in Supporting Information S2 Table.

We used the same kernels as for the MT method. Fig 2 shows the prediction 473

performance of MT on these new cross-validation folds. For all the datasets, we 474

observed a strong decrease in prediction scores with respect to those obtained on the 475

corresponding S1 − S4 datasets. This suggests that good performance on a query pair 476

(p∗,m∗) is driven by the presence in the training set of pairs made both of proteins 477

similar to p∗ and of molecules similar to m∗, even if the query pair (p∗,m∗) is a double 478

orphan, as in S4. Our results also suggest that it is more important to train on pairs 479

similar to the double orphan query pair (p∗,m∗), as in S4, than on data containing, for 480

example, p∗ itself, but paired only with molecules quite dissimilar to m∗, as in S′2. 481

Finally, performance on S′4 are random, confirming that making predictions for 482

double orphans that are also very dissimilar from the training data is a very difficult 483

task. 484

These results suggest that pairs in the training set that are very dissimilar to the 485

query pair do not help making more accurate predictions. In other words, although the 486

kernels used in multi-task approaches modulates how information available in one task 487

is shared for training other tasks (the further the tasks are, the less information is 488

shared), using information from distant tasks seems to degrade performance. This 489

insight is interesting since the MT algorithm requires calculating the Kronecker kernel 490

on all (protein, molecule) pairs, which is computationally demanding. Therefore, the 491

next two sections evaluate whether removing distant pairs from the training set can 492

improve computational efficiency without degrading performance. 493

3.4 Multi-task approaches on reduced training sets 494

Based on the insight that MT prediction is driven by training examples that are close to 495

the query data, we propose to build training tests of reduced sizes by removing training 496

examples distant from the query. The goal of this section is also to compare the 497
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prediction performance of the MT method trained on these reduced data sets to that of 498

the simpler and faster single-task method, since there would be no point in using the 499

more complex MT method if a single-task method performs better. Because this study 500

is motivated by ligand specificity prediction, we chose to focus on comparisons with the 501

ligand-based ST method rather than target-based ST. 502

In what follows, n+ (resp. n−) will refer to the number of positive (resp. negative) 503

examples in the train set. 504

In all the following experiments, we used the LOO-CV scheme because intra-task 505

and extra-task pairs can only be defined for each pair separately, which prevents from 506

using K-fold-CV schemes. In addition, in single-task approaches, the size of the training 507

set was relatively small in most cases (see datasets statistics in Section 2), which does 508

not allow to fold the data. We checked that the LOO-CV scheme did not trigger a bias, 509

as sometimes observed [26] (see Supporting Information S2 Fig and S3 Table). 510

Because prediction of a given (protein, ligand) interaction can only be made by 511

single-task if the pair partners are present in at least another pair of the train set, in the 512

following experiments, we used the S0 dataset in which all ligands and all proteins are 513

involved in at least two known interactions, as explained in Section 2.4. 514

3.4.1 Training on intra-task positive examples 515

The goal of this section is to compare the prediction performance of the MT method 516

trained on a reduced data set (of size similar to that employed in single-task methods) 517

to those of single-task methods. Since ligand-based ST can only use intra-task positive 518

examples, the only positive training pairs we use for the MT method are the intra-task 519

pairs as well. Note that MT still gets more training examples than ligand-based ST, 520

since pairs formed with the query protein and a different ligand are also included. By 521

reducing the training set size, the computational times required by the MT method are 522

now similar to those of the single-task method. In the following, we call MT-intra this 523

variant of MT. For each test ligand, we build the negative training examples by 524

randomly selecting a number n− of proteins that do not interact with the ligand in S0. 525

We vary n− from 1 to 100× n+. 526

Fig 3 shows the LOO-CV AUPR of MT-intra and ligand-based ST on S0, for 527

increasing values of the n−/n+ ratio. For both methods, the AUPR score increases with 528

the number of negative pairs in the train set, before decreasing for large numbers of 529

negative pairs. A good trade-off for both computational and predictive performance 530

seems to be in the range of 10 times more negative points than positive points. We 531

therefore set n−/n+ to 10 for the remaining experiments of this section. 532

The AUPR scores of MT-intra outperform those of the ligand-based ST method. 533

Interestingly, the performance of the MT-intra with a n−/n+ ratio of 10 is close to 0.96 534

which outperforms the AUPR score of 0.93 obtained with MT (see Section 3.2). This 535

indicates that including in the train set pairs displaying low similarity to the tested pair 536

degrades both the computational time and the quality of the prediction of MT. 537

Fig 3. Performance of single-task and MT-intra as a function of the n−/n+

ratio. Numerical values can be found in Supporting Information S4 Table

3.4.2 Adding similar extra-task positive examples 538

The results from Section 3.3 suggest to explore the performance of the MT-intra method 539

when trained on various datasets including extra-task pairs close to the tested pair, in 540

addition to the intra-task pairs. Therefore, we built train sets made of: 541

• the train set of MT-intra 542
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• n+
e closest extra-task positive pairs with respect to the tested pair 543

(n+
e ∈ {1, 5, 10, 50}). 544

• n−e closest extra-task negative pairs with respect to the tested pair, so that the 545

n−e /n
+
e ratio varies from 1 to 10. 546

We call NN-MT (for Nearest Neighbor MT) the resulting variant of MT. We also 547

considered a similar approach in which the extra-task pairs were chosen at random 548

rather than according to their similarity to the test pair. We refer to this method as 549

RN-MT (for Random Neighbor MT). 550

We report the LOO-CV performance of NN-MT and RN-MT on Fig 4. Fig 4(a) 551

shows that, while adding to the train set 0 to 50 nearest neighbor extra-task positive 552

pairs with respect to the tested pair, the prediction performance of NN-MT slightly and 553

monotonously increases. Fig 4(b) shows that the performance of RN-MT also slightly 554

increases (although not monotonously) when random extra-task pairs are added. 555

However, its best performance remains under that of NN-MT. Finally, using a high 556

n−e /n
+
e ratio did not improve the performance. This is an interesting observation, since 557

limiting the size of the train set is computationally favorable. 558

Fig 4. AUPR as a function of the n−e /n
+
e ratio for increasing numbers

random extra-task points in the train set. (a): NN-MT. (b): RN-MT. The blue
horizontal line corresponds to MT-intra (which is trained only on intra-task pairs).
Numerical values can be found in Supporting Information S5 and S6 Tables

Taken together, these results show that NN-MT outperforms not only MT-intra, but 559

also the more computationally demanding MT method trained in the LOO-CV setting 560

in Section 3.2. AUPR scores for (protein, ligand) pairs involving non-orphan ligands 561

and non-orphan proteins are expected to be very high (around 0.96). 562

However, predicting the specificity of a given ligand requires the ability to make 563

predictions for proteins that are far from the known targets. In these cases, the high 564

prediction scores obtained in this section might not hold. Therefore, in the next section, 565

we study the performance of NN-MT when the test pairs are far from the train set. 566

3.5 Impact of the distance of the intra-task examples to the 567

query pair 568

The goal of this section is to evaluate the performance of the MT-intra and 569

NN-MT proposed methods, and to compare them to those of the ligand-based 570

ST method, when the similarity between the test pair and the training data varies. 571

3.5.1 Training on dissimilar intra-task positive examples 572

We first evaluated the performance of ligand-based ST and MT-intra when the similarity 573

between the test pair and the training data varies. To do so, we computed the 574

percentiles of the molecules (respectively proteins) similarity distribution in S0. 575

For each test pair (p∗,m∗), the training set only included the positive intra-task 576

pairs (p,m) such that Kprotein(p, p∗) and Kmolecule(m,m∗) is lower than a 577

percentile-based threshold θ. We then added n− random intra-task negative pairs. We 578

did not apply a similarity constraint to negative pairs, since, unlike the positive pairs, 579

they are available in large numbers and at all distances from the tested pairs. 580

Fig 5 reports the LOO-CV AUPR scores of ligand-based ST and MT-intra for varying 581

values of θ (20th, 30th, 50th, and 80th percentiles) and of the n−/n+ ratio (from 1 to 50). 582

Fig 5(a) shows that, as expected, the performance of MT-intra increases when the 583

similarity of the tested pair to the train set increases from the 20th to the 80th 584
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Fig 5. AUPR scores as a function of the n−/n+ ratio, for percentile-based
threshold θ ranging from 20% to 80%. (a): MT-intra method. (b): ligand-based
ST method. Numerical values can be found in Supporting Information, respectively S7
and S8 Tables

percentiles (AUPR of 0.67 to 0.77). However, the performance is still much lower than 585

when the closest pairs are allowed in the training set (AUPR of 0.96, see Section 3.4.1). 586

Fig 5(a) also suggests that a n−/n+ ratio of 10 is again an appropriate choice, as when 587

all intra-task positive example are used (see Section 3.4.1). We therefore set n−/n+ to 588

this value for the remaining experiments of this section. 589

Fig 5(b) shows that ligand-based ST behaves similarly to MT-intra: the AUPR score 590

increases from 0.70 to 0.75 for ligand-based ST when threshold θ increases from the 20th 591

to the 80th percentiles. These values again remain much under the AUPR score of 0.93 592

observed when all intra-task pairs are used. Although modest, the performance of 593

MT-intra remains above those of ligand-based ST for all tested thresholds of similarity 594

(except θ = 20) between the tested pair and pairs of the train set. 595

3.5.2 Adding similar extra-task positive examples 596

We then explored to which extent adding extra-task (protein, ligand) pairs to the 597

training set of the MT-intra method improves the prediction scores. 598

Applying the same percentile-based similarity constraint to the intra-task positive 599

pairs, we compared the performance of NN-MT and RN-MT when respectively adding 600

n+
e nearest neighbors or random extra-task positive to the training set. We did not 601

apply a similarity constraint to the extra-task pairs, since the principle underlying 602

multi-task methods is precisely to learn from extra-task data, which is particularly 603

critical when the intra-task pairs of the train set are scarce or far from the tested pair, 604

as illustrated by the poor performance of ligand-based ST in the previous section. A 605

number n−e of nearest neighbors (respectively random) negative extra-task pairs were 606

also added for NN-MT (respectively RN-MT). 607

Figs 6(a) and (b) report the LOO-CV AUPR of NN-MT, as a function of n−e /n+
e 608

(ratio of negative over positive extra-task pairs) and for a number of extra-task positive 609

pairs varying from 0 to 50, respectively for percentile similarity constraints θ of 20 and 610

80. The blue horizontal line (for n+
e = 0) corresponds to the performance of the 611

MT-intra methods. Fig 6(a) and (b) show that adding extra-task pairs to the train set 612

dramatically improves performance. The AUPR score reaches values above 0.85, 613

independently of θ, suggesting that when no close intra-task pairs are available, 614

performance is driven mainly by extra-task training pairs, confirming our observations in 615

Section 3.3. Moreover, when the number of extra-task pairs increases, the performance 616

of NN-MT increases, then tends towards that of RN-MT, and then degrades at larger 617

values of n+
e because too many dissimilar extra-task pairs are included in the training 618

set. This implies that only a limited number of the closest extra-task pairs is required 619

to reach optimal performance. Adding the same number of negative extra-task pairs 620

(n−e /n+
e =1) provides the best AUPR, which again limits the size of the required training 621

set. Unsurprisingly, the best AUPR in the absence of the closest intra-task pairs 622

(around 0.87 for θ = 0.80) is still lower than when all available intra-task pairs are used 623

(AUPR=0.93, see Section 3.4). Note that, although the performance of MT-intra can be 624

biased when considering similarity thresholds of 20th and 80th percentile, because the 625

corresponding sizes of the train sets might be different, this is not the case for the 626

NN-MT method because the prediction is driven by extra-task pairs. 627

On the contrary, Fig 6(c) and (d) show that the performance does not improve when 628

the extra-task training pairs are chosen at random, and therefore, are on average further 629
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from the test pair. It might even degrade when the number of extra-task pairs becomes 630

large. Finally, Fig 7 shows that, for all similarity thresholds, the performance of the 631

MT-intra and RN-MT methods are similar, and far beyond that of the NN-MT method. 632

In conclusion, in settings where (protein, ligand) pairs similar to the test pair are 633

available, our results suggest the best prediction performance are obtained using the 634

NN-MT method trained with 10 times more negative intra-task pairs than positive ones, 635

1 to 5 extra-task nearest neighbor positive pairs, and the same number of extra-task 636

negative pairs. The computational time will be reasonably comparable to that of 637

ligand-based ST, and performance should be high enough (AUPR above 0.85) to guide 638

experimental evaluations for drug specificity prediction. 639

Fig 6. AUPR score of NN-MT and RN-MT as a function of the n−e /n
+
e ratio,

for a number of extra-task positive pairs n+
e varying from 0 to 50, and for

percentile-based similarity threshold θ of 20 and 80 applied to the intra-task positive
pairs. (a): NN-MT, θ = 0.20. (b): NN-MT, θ = 0.80. (c): RN-MT, θ = 0.20. (d):
RN-MT, θ = 0.80. Numerical values can be found in Supporting Information,
respectively S9-S12 Tables

Fig 7. AUPR score as a function of percentile-based similarity θ, for
n−/n+=10, a number of extra-task positive pairs n+

e =10 and a ratio of n−e /n+
e =1 for

extra-task pairs. Numerical values can be found in Supporting Information S13 Table

3.5.3 Adding dissimilar extra-task positive examples 640

While we previously argued that the point of multi-task approaches is to leverage 641

similar extra-task data to improve prediction performance, ligand specificity studies can 642

require the prediction of interactions between proteins and ligands for which very little 643

similar extra-task data is available. We therefore repeated the experiments from the 644

previous section, but this time applying the percentile-based similarity constraint to 645

both intra-task and extra-task positive pairs of the train set. We report the 646

corresponding LOO-CV AUPR on Fig 8. 647

We observe that the performance of NN-MT remains overall low (best AUPR score 648

of 0.75 for θ = 0.80). Adding dissimilar extra-task positive pairs fails to improve the 649

scores obtained when only intra-task positive pairs are included in the training set. 650

Hence, if neither close intra-task nor close extra-task positive pairs are available, no 651

method can provide performance good enough for the purpose of drug sensitivity 652

prediction. These interactions would have to be experimentally tested if they are critical 653

in the context of a drug’s development program. These observations were expected 654

given that adding random extra-task training pairs, possibly far from the tested pair, 655

did not improve performance of the MT-intra method (see Section 3.5.2). 656

Fig 8. AUPR scores of the NN-MT and RN-MT multi-task methods as a
function of the n−e /n

+
e ratio, for a number of extra-task positive pairs n+

e varying
from 1 to 50. (a): NN-MT, θ = 0.20. (b): NN-MT, θ = 0.80. (c): RN-MT, θ = 0.20.
(d): RN-MT, θ = 0.80. The two methods are trained with intra-task and extra-task
examples that are both dissimilar to the tested pair (percentile-based similarity
thresholds θ of 20 and 80). Exact values can be found in Supporting Information
respectively in S14-S17 Tables

Taken together, our results show that the proposed NN-MT method is the most 657

appropriate for predicting the specificity of a molecule. Indeed, it outperforms all its 658
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comparison partners independently of the number of known (protein, ligand) interacting 659

pairs involving the same or similar ligands or proteins as the query pair. In addition, it 660

requires much fewer training pairs than the classical MT approach, and its 661

computational time is therefore close to that of a single-task method. Finally, in the 662

most challenging setting where no similar intra-task nor extra-task training data is 663

available, it performs significantly better than random, in a context where ligand-based 664

ST could not make any prediction. 665

The results we have presented so far address the issue of using kerrnel methods with 666

SVM in the context of proteome-wide specificity prediction, at a tractable 667

computational cost thanks to the choice of a reduced learning dataset, without loss in 668

prediction performance. 669

However, another key issue corresponds to study the specificity of a molecule within 670

a family of related proteins. Indeed, when a new drug candidate is identified against a 671

given therapeutic target, proteins belonging to the same family are important off-target 672

candidates. This corresponds to the setting where similar training pairs are available, 673

since proteins of the same family are similar in terms of sequence. 674

In the next section, we therefore assess whether the proposed NN-MT method, 675

initially dedicated and tuned in proteome-wide prediction problems, also provides good 676

performance for molecule specificity prediction within a family of proteins. 677

3.6 Specificity prediction within families of proteins 678

We considered three families of proteins because they gather a wide range of therapeutic 679

targets, and have also been considered in other chemogenomics studies, thus providing 680

reference prediction scores: G-Protein Coupled Receptors (GPCRs), ion channels (IC), 681

and kinases. All the (protein, molecule) pairs involving GPCRs, ICs, or kinases that 682

were present in the dataset S described in Section 2.4 were used to build the three 683

corresponding family datasets. 684

We compared the performance of the MT-intra method (trained using only positive 685

pairs involving the protein or the ligand of the tested pair) to those of the NN-MT and 686

RN-MT methods, in order to evaluate the interest of the multi-task approach in family 687

studies. We considered two versions: one in which the Profile protein kernel is used, as 688

in the above sections, and another in which a family-based hierarchy kernel is used 689

(Section 2.1), because a sequence-based kernel may not be optimal to study the 690

specificity of the molecule within a family of proteins [11,27]. The corresponding 691

methods are called MT-intra-family, NN-MT-family, and RN-MT-family. 692

As in the above section, each (protein, ligand) test pair is considered in turn in a 693

LOO-CV scheme. We used a learning dataset containing: all positive intra-task positive 694

pairs, ten times more random negative intra-task pairs (this value was found adequate 695

in previous sections), a varying number of positive extra-task pairs (nearest neighbors 696

for NN-MT or NN-MT-family, random for RN-MT or RN-MT-family), and a number of 697

negative extra-task pairs so that the ratio of n−e /n+
e varies from 1 to 20. 698

3.6.1 G-Protein Coupled Receptor family 699

Fig 9 shows that all methods perform very well, with AUPR scores above 0.95. 700

Including extra-task positive pairs in the train set improves the AUPR score, even when 701

added randomly. This indicates that, contrary to studies in larger scales in the protein 702

space, in family studies, extra-task pairs are always close to the tested pair because they 703

belong to the same family. However, the performance reached when adding positive 704

nearest-neighbor extra-task pairs remains above those reached when adding positive 705

random extra-task pairs, as observed in the larger scale studies presented above. 706
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Overall, adding 10 to 50 extra-task positive pairs to the train set, and around 10 times 707

more random negative extra-task pairs leads to the best performance. 708

The best AUPR scores of the NN-MT and the NN-MT-family methods are close 709

(0.96 and 0.97). Although the best scores of the NN-MT-family method are slightly 710

above those of NN-MT, one should note that the family GPCR kernel is based on a 711

GPCR hierarchy that was established using known GPCR ligands. Therefore, the 712

results obtained by the NN-MT-family might be biased, which is not the case for those 713

obtained by the NN-MT.

Fig 9. AUPR score of the considered multi-task methods on the GPCR
family as a function of the n−e /n

+
e ratio, for a varying number n+

e of extra-task
positive pairs. (a): NN-MT-family (family hierarchy kernel). (b): NN-MT (sequence
kernel). (c): RN-MT-family (family hierarchy kernel). (d): RN-MT (sequence kernel).
The blue horizontal line corresponds to the MT-intra method trained only on intra-task
pairs. Numerical values can be found in Supporting Information, respectively S18-21
Tables

714

3.6.2 Ion Channel family 715

The conclusions obtained above in the GPCR family also hold in the IC family, as shown 716

in Fig 10. Again, all methods perform very well, reaching AUPR scores above 0.97. As 717

for the GPCR family, adding 10 to 50 extra-task positive pairs to the train set, and 718

around 10 times more random negative extra-task pairs leads to the best performance. 719

Fig 10. AUPR of the multi-task methods on the IC family. (a):
NN-MT-family (family hierarchy kernel). (b): NN-MT (sequence kernel). (c):
RN-MT-family (family hierarchy kernel). (d): RN-MT (sequence kernel). The blue
horizontal line corresponds to the MT-intra method trained only on intra-task pairs.
Numerical values can be found in Supporting Information, respectively S22-25 Tables

3.6.3 Kinase family 720

In the kinase family, the results are somewhat different from those obtained on IC and 721

GPCRs. The NN-MT and RN-MT methods both outperform the MT-intra method that 722

is trained using only intra-task pairs, as shown in Figs 11(b) and (d). Again, 10 to 50 723

extra-task pairs, with a n−e /n+
e ratio in the range of 1 to 5 leads to the best results, 724

with AUPR scores in the range of 0.93. Unexpectedly, the NN-MT-family and 725

RN-MT-family methods, which both use the kinase family hierarchy kernel, tend to 726

perform not as well when extra-task pairs are added to the training set, than when only 727

the intra-task pairs are used, as shown in Figs 11(a) and (c). In addition, their best 728

AUPR scores reaches 0.90, which is lower than those of the NN-MT and 729

RN-MT methods which are in the range of 0.93. These observations may reflect the fact 730

that the kinase family gathers proteins that are relatively more diverse than GPCRs and 731

IC. For example, one can distinguish Tyrosine kinases and Serine/Threonine kinases, or 732

globular protein kinases and receptor protein kinases. This diversity is illustrated by the 733

organization of the kinome in some 50 distinct sub-families [43]. In this context, the 734

sequence kernel that was optimized in proteome-wide studies might better capture the 735

degree of similarity between two kinases than the hierarchy kernel does. 736

Overall, the above results on the IC, GPCR and kinase families indicate that the 737

proposed NN-MT method leads to the best results when the train set includes all 738

positive intra-task pairs, 10 times more random negative intra-task pairs, a small 739
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Fig 11. AUPR score of the multi-task methods within the kinase family.
(a): NN-MT-family (family hierarchy kernel). (b): NN-MT (sequence kernel). (c):
RN-MT-family (family hierarchy kernel). (d): RN-MT (sequence kernel). The blue
horizontal line corresponds to the MT-intra method trained only on intra-task pairs.
Numerical values can be found in Supporting Information, respectively S26-S29 Tables

number of nearest neighbors positive extra-task pairs (in the range of 10) and around 5 740

times more random negative extra-task pairs. These conditions are very similar to those 741

leading to the best prediction scores when ligand specificity is studied on large scale in 742

the protein space. Even if the performance of NN-MT on family datasets is better than 743

those reached by other methods on similar datasets [11,20], they remain in the same 744

order of magnitude. 745

4 Discussion: comparison to other methods 746

As mentioned in Section 1.2, a few methods have been proposed to predict interactions 747

between proteins and ligands. We compared the prediction performances of the 748

proposed NN-MT method to those of two state-of-the art methods: a recent Matrix 749

Factorization method called Neighborhood Regularized Logistic Matrix Factorization 750

(NRLMF ) [24], and the Kronecker (kernel) Regularized Least Square regression method 751

KronRLS (a kernel-based method, as NN-MT ) [18,19]. 752

The KronRLS and NRLMF methods were published based on their prediction 753

performance on four protein family datasets, Nuclear Receptors (NR), GPCR, Ion 754

channels (IC), and Enzymes (E) that contained respectively 90, 636, 1476 and 2926 755

interactions [10]. 756

The KronRLS method uses a kernel Kmolecule for molecules that is defined by: 757

Kmolecule = 1
2(KSIMCOMP +KGIP,m) (5)

where KSIMCOMP is a structure similarity kernel [61], and where KGIP,m is a 758

Gaussian kernel that compares the interaction profiles of molecules against the proteins 759

of the dataset [18]. For proteins, the kernel Kprotein is defined by: 760

Kprotein = 1
2(Ksequence +KGIP,p) (6)

where Ksequence is a protein sequence similarity kernel also based on the 761

Smith-Waterman score [41], and KGIP,p is a Gaussian kernel that compares the 762

interaction profile of proteins against the molecules of the dataset. 763

A specific feature of the NRLMF method is that it integrates a neighborhood 764

regularized method which allows to take into account only the K nearest neighbors to 765

predict a given (protein, ligand) interaction (in practice, the authors used K=5). 766

We performed benchmark experiments on these family datasets using the PyDTI 767

package. This package initially contained the KronRLS, a variant of it called 768

KronRLS-WNN, and the NRLMF methods, and the kernel matrices Kprotein and 769

Kmolecule calculated for the four family datasets. In all experiments, we compare the 770

intrinsic performances of the algorithms: the similarity measures used are the same for 771

all methods. More precisely, the three methods used the kernels available in PyDTI: the 772

structure-based KSIMCOMP for molecules, and a kernel Ksequence based on the 773

Smith-Waterman score. In addition, KronRLS also used the KGIP,m kernel, leading to 774

the Kmolecule kernel for molecules defined in eq. 5, and the KGIP,p kernel, and to the 775

Kprotein kernel for proteins defined in eq. 6. The two other methods do not use the 776
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KGIP kernels because they do not take into account information about interaction 777

profiles. 778

We also performed benchmark experiments on a dataset gathering more diverse 779

protein and ligands. To this end, we used the DrugBank-based dataset S0 described in 780

Section 2.4) containing 5 908 interactions. Because KronRLS and NRLMF could not 781

make predictions on S0 at a manageable computational cost in the LOO-CV scheme, we 782

randomly sampled 2 000 of the 5 908 interactions of this data set to create a smaller test 783

data set called S0,2000. We still used all of S0 (minus the test example) for training. 784

We calculated the Tanimoto and Profile kernels optimized in the present study (see 785

Section 3.1), and these matrices were uploaded in PyDTI so that the three considered 786

methods could used them. In addition, since KronRLS also use the KGIP,m and the 787

KGIP,p kernels, we described all molecules and proteins in S0 by their interaction profile. 788

We calculated the KGIP,m and KGIP,p kernels on S0 and uploaded these kernels in 789

PyDTI. Only KronRLS used these additional kernels. All cross-validation experiments 790

were performed building test sets from S0,2000 and using all remaining data points in S0 791

for training. 792

Table 3 presents the performance of the three considered methods on the protein 793

family datasets. 794

Method / Dataset NR GPCR IC E
KronRLS 0.75± 0.14 0.9± 0.03 0.96± 0.01 0.96± 0.01
NN-MT 0.89± 0.09 0.95± 0.02 0.97± 0.01 0.97± 0.01
NRLMF 0.96± 0.04 0.96± 0.02 0.98± 0.01 0.98± 0.0

Table 3. AUPR scores and standard deviations in 10-fold-CV , test sets balanced in
positive and randomly chosen negative samples

Globally, the performance of all methods are high and close, with AUPR scores 795

above 0.9 in most of the cases. On average, the NRLMF and NN-MT methods are on 796

par and lead to the best results. These results are consistent with those reported in [24]. 797

Method / Dataset S0,2000

KronRLS 0.91± 0.02
NRLMF 0.96± 0.01
NN-MT 0.95± 0.01

Table 4. AUPR scores and standard deviations in 10-fold-CV , test sets balanced in
positive and randomly chosen negative samples

Table 4 confirms the tendencies observed in Table 3. Although the performances are 798

slightly lower on this more diverse S0,2000 dataset than on the family datasets, they 799

remain high, with NRMLF and NN-MT keeping the best AUPR scores. 800

As discussed in Sections 3.1 and 3.2, various prediction methods lead to such high 801

performances because, in the protein family or S0,2000 datasets, predictions are averaged 802

over test pairs in which the protein and/or the molecule might be orphan, or not. These 803

averaged results hide less favorable situations, typically double orphan samples. Because 804

these cases are common and important when predicting specificity of a new drug 805

candidate at the proteome scale, we would like to stress that comparing methods in 806

orphan cases is a more stringent and relevant test. In such cases, the performance are 807

expected to be more modest and the methods might not rank in the same order. 808

Therefore, we ran the three methods using a LOO-CV scheme on double orphan 809

(protein, molecule) pairs on the same datasets. In these experiments, for each tested (p, 810

m) pair, interactions involving the considered protein or the molecule are ignored in the 811
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train set. The LOO-CV schemes were balanced in positive and randomly chosen 812

negative pairs. 813

In order to better explore the performance of the considered methods in this 814

double-orphan setting, we used two versions of the two kernel-based methods, initially 815

introduced for KronRLS . More precisely, in [19], the authors proposed an approach 816

called WNN (weighted nearest neighbor) that, for each orphan molecule m (resp. 817

protein), an interaction profile is computed by summing the weighted profiles of non 818

orphan molecules in the dataset. The weighting depends on the similarity between the 819

orphan molecule and all other non orphan molecules. This predicted profile is used in 820

the training to predict labels to all (protein, m) pairs of the dataset. Thus, in the first 821

version of KronRLS [18], all the labels of (protein, m) pairs involving the orphan 822

molecule m were set to 0. Based on this WNN procedure some of these non interactions 823

might be requalified as true interaction before training the predictor. In other words, 824

the WNN algorithm can be viewed as a mean to de-orphanize molecules or proteins in 825

order to help the predictions on such cases. In the following, we will call 826

KronRLS-WNN the KronRLS method ran with the WNN algorithm. Using the PyDTI 827

package, we also considered a version of NN-MT in which the WNN algorithm is the 828

implemented, and call it NN-MT-WNN in the following. 829

Method / Dataset NR GPCR IC E
KronRLS-WNN 0.78± 0.03 0.83± 0.01 0.78± 0.01 0.84± 0.0
KronRLS 0.55± 0.01 0.62± 0.01 0.64± 0.0 0.56± 0.0
NRLMF 0.19± 0.03 0.15± 0.0 0.26± 0.01 0.23± 0.0
NN-MT 0.72± 0.04 0.76± 0.01 0.72± 0.01 0.66± 0.0
NN-MT-WNN 0.77± 0.05 0.85± 0.0 0.79± 0.01 0.84± 0.0

Table 5. AUPR scores and standard deviations on double orphan LOO-CV , balanced
number of positive and randomly chosen negative test samples

Table 5 presents the results of the double-orphan benchmark on the family datasets. 830

Surprisingly, in these double-orphan experiments, the NRMLF method has very modest 831

results and does not perform as well as the other methods. The results of 832

NN-MT remain well above the random performance of 0.5, but not the 833

KronRLS method. The WNN algorithm dramatically improves the performance of 834

KronRLS , and to a lesser extent those of NN-MT , and overall, the 835

NN-MT-WNN algorithm leads to the best performance in most cases. 836

Method / Dataset S0,2000

NRLMF None
KronRLS-WNN 75.6± 0.43
KronRLS 0.4979± 0.0071
NN-MT 0.60± 0.01
NN-MT-WNN 0.85± 0.01

Table 6. AUPR scores and standard deviations on double orphan LOO-CV , balanced
number of positive and randomly chosen negative test samples

Table 6 presents the results of the double-orphan benchmark S0,2000 dataset. We did 837

not run the NRLMF method in this experiment, because it was computationally too 838

intensive in this LOO-CV , and because it already gave very poor results on the easier 839

family dataset. Moreover we shortened the train set of KronRLS and 840

KronRLS-WNN methods by considering only the thousand molecules (resp. proteins) 841

closest to the molecule (resp. protein) of the test sample. Thus, the computation time 842

was reduced to some hours instead of months which made those methods 843
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computationally reasonable. 844

Overall, the scores are lower on this dataset than on the family datasets because 845

S0,2000 is a more diverse dataset on which predictions are more difficult, in general, 846

than on the family datasets. However, the same tendency is observed: NN-MT performs 847

better than KronRLS , and when the WNN algorithm is used, NN-MT-WNN performs 848

better than KronRLS-WNN . 849

Overall, the results of these benchmarks show that the NN-MT method present 850

state-of-the-art or better results on the protein family datasets and the more diverse 851

DrugBank-based dataset. In the general case, it appears to be a good default method in 852

terms of performance, number of parameters and computational efficiency, which are 853

important issues for non expert users. 854

In the specific double-orphan case, only the two kernel-based methods NN-MT and 855

KronRLS lead to performance well above those of a random predictor. The WNN 856

algorithm, proposed in [19] improves the performance of KronRLS and of NN-MT , but 857

resulting NN-MT-WNN method lead to the best performance. 858

Finally, it is interesting to compare the computational complexities of the methods 859

as a function of the number of hyper-parameters that they contain. Indeed, these 860

hyper-parameters need to be optimized by cross-validation, leading to heavy 861

computational issues in the case of the large-scale datasets used in proteome-wide 862

chemogenomics. As can be seen in the PyDTI package, NRLMF has 5 regularization 863

parameters, KronRLS has 2 hyper-parameters (decay parameter T and the weight 864

parameter used to combine kernels; the regularization parameter and the bandwidth of 865

the GIP kernel are fixed), and NN-MT has 1 hyper-parameter (regularization parameter 866

C for SVM). In practice, the optimization of NRLMF in the LOO-CV scheme was out 867

of reach, requiring several days of calculation while the other methods required hours. 868

This could explain in part the very low performances displayed by NRLMF in the 869

double-orphan experiment. However, we did cross-validate NRLMF parameters in the 870

double-orphan setting in the case of the family NR dataset (the smallest dataset used in 871

this section). This allowed a modest increase in AUPR score from 0.14 to 0.19 (reported 872

in Table 5). Therefore, even if the NRLMF method had been optimized on the other 873

datasets, we do not expect that this would have changed the overall conclusion that this 874

method is not suitable for handling orphan cases. 875

5 Conclusion 876

The present study tackles prediction of ligand specificity on large scale in the space of 877

proteins. More precisely, our goal was to propose a method to explore the specificity 878

molecules with state-of-the-art or better performance over a wide range of prediction 879

situations: at the proteome or protein family scales, on average or in specific situations 880

such as tested pairs far from the train set, or such as orphan proteins and ligands. In 881

other words, the aim was to propose a robust default method, applicable to many types 882

of studies, thus avoiding development of ad hoc complex and specific methods to non 883

expert users. We chose to formulated it as a problem of predicting (protein, ligand) 884

interactions within a multi-task framework based on SVM and Kronecker products of 885

kernels on proteins and molecules. Within the kernel-based SVM methods tested in the 886

Results section, we showed that the NN-MT method fulfills these requirements. In 887

particular, NN-MT outperforms both the multi-task MT method and the corresponding 888

single-task kernel-based methods, while it also keeps a computational cost close to that 889

of single-task approaches. The NN-MT algorithm fulfills these requirements, leading to 890

the best prediction performance for the three tested settings which cover most of the 891

prediction situations that would be encountered in real-case studies. 892

To summarize the main characteristics of the proposed NN-MT method (detailed in 893
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Sections 3.1, 3.4 and 3.5), we suggest to predict each (protein, ligand) interaction using 894

the Profile kernel for proteins (with subsequences length k of 5 and threshold equaled to 895

7.5) and the Tanimoto kernel for molecules (with length of path 8), with a train set 896

including: 897

• all positive intra-task pairs (i.e. all known interactions involving the protein or the 898

ligand of the test pair), and around ten times more randomly chosen intra-task 899

negative pairs. 900

• a small number of the closest positive extra-task pairs (i.e. a number similar to 901

that of intra-task positive pairs), and a similar number of randomly chosen 902

negatives extra-tasks pairs. 903

This should provide good default parameters to use the NN-MT method in a 904

straightforward manner for users that are not familiar with machine learning 905

approaches. 906

Overall, the NN-MT method could be an interesting tool to guide not only the 907

choice of the best hit molecules early in the drug development process avoiding 908

deleterious side effects for patients, but also to suggest drug repositioning opportunities 909

since a side effect for a patient might be viewed as a therapeutic effect for another. 910

We used the DrugBank database to build several datasets that illustrate various 911

prediction contexts and that we made available online to the community for future 912

benchmarking studies. We also updated the PyDTI package [24] with an 913

implementation of NN-MT together with several cross-validation schemes and our 914

DrugBank-based dataset. This allowed us to compare the NN-MT method to recent 915

approaches developed on drug target interaction prediction [18–24]. In the context of 916

wide-scale prediction of molecule specificity, the DrugBank-based dataset is more 917

relevant that the family datasets that have been widely used. Indeed, it contains a set 918

of proteins that can be viewed as a relevant druggable proteome to train and test 919

computational models for drug specificity prediction. 920

The benchmark study comparing NN-MT to the matrix factorization NRMLF and 921

the kernel-based KronRLS algorithms on family and DrugBank-based datasets showed 922

that, all methods displayed high performances, NRMLF and NN-MT leading to the best 923

results. However, on the more demanding double-orphan tests performed on the same 924

datasets, NRMLF performed much poorer than the kernel-based NN-MT and 925

KronRLS algorithms. In this orphan case, the WNN algorithm makes it possible not 926

only to significantly improve the performance of KronRLS , but also that of NN-MT , 927

the NN-MT-WNN algorithm leading to the best results. 928

We formalized (protein, ligand) interaction prediction as a classification problem 929

because they can be solved at a reasonable computational cost on large datasets. 930

Whenever the purpose would be to predict the relative affinities of molecules for a set of 931

proteins, the predicted scores can be used to rank all interactions. However, this 932

question could be also solved using a regression algorithm when predicting the affinity 933

between pair of molecule and protein [26]. Note that in such an approach, the affinity of 934

all (protein, ligand) pairs in the training data is required, which is rarely available on 935

large scale. 936

Although the protein-ligand interaction process takes place in the 3D space, we 937

chose to encode the two partners based on features that do not require 3D information. 938

Indeed, the bound conformation of the ligand, and the 3D structure of the protein 939

binding pocket is unknown in most cases, which prevents predictions on large scale. 940

However, we are aware that a method using 3D information to encode the interaction 941

can be of interest on more restricted datasets (i.e. not covering the druggable human 942

proteome) as those available from the PDB database [28,29]. 943
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Since the prediction performance strongly depends on the distance between the 944

predicted interactions and the train set, it could be relevant to apply the multi-kernel 945

learning (MKL) framework [62]. Indeed, different feature spaces will lead to different 946

metrics which could modulate the distance between the test and train sets. This idea 947

was explored in [63], but in this work the MKL approach employed L2 regularization 948

between kernels, which did not lead to the improvements that could be expected from 949

an L1 (i.e. sparsity-inducing) regularization term. 950

For future developments of the method, it is likewise relevant to explore the benefits 951

of deep learning approaches in the context of representation learning [64]. Indeed, 952

learning the featurization of molecules [65] and of proteins [66] on various prediction 953

tasks including drug-target interaction prediction could optimize the featurization for 954

the specificity prediction task. The present work showed that learning on structurally 955

similar compounds and similar proteins (according to sequence similarity) improves and 956

speeds up the prediction performance on drug-target interaction task. A recent 957

study [67] showed that in the case of stacked fully connected layers, learning with 958

structurally similar compounds but uncorrelated activities can provide contradictory 959

information leading to a decrease of performance. Even more recently, it was shown 960

that current graph-CNN based models perform best when trained on compounds similar 961

to the tested compounds [68], as we observed for the NN-MT method proposed in the 962

present study. However, deep learning based models seem promising to efficiently share 963

information between more dissimilar compounds and putative targets as they can 964

actually learn a generic representation of molecules and proteins based on several 965

supervised learning prediction task. 966
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Supporting information 969

S1 Fig. (A) Scores of MT Kernel Ridge regression on datasets S1/2/3 970

with a nested 5-fold-CV scheme. (B) Scores of MT Kernel Ridge regression 971

on S1 depending on the CV scheme. 972

S2 Fig. Scores of the MT method on S1 depending on CV scheme. Overall, 973

all CV schemes provide high prediction performance on this dataset, in the range of 974

0.93-0.94 in AUC and AUPR. The nested 5-fold-CV leads to performance very close to 975

those of 5-fold-CV , showing that on the S1 dataset, 5-fold-CV did not suffer from 976

overestimation of the performance due to data over-fitting. LOO-CV leads to slightly 977

better results, although very close to those of the other CV schemes. In general, the 978

LOO-CV scheme is expected to provide better results because the model is trained on 979

more data points than in 5-fold-CV . Again, this problem seems to be limited here, 980

since the performance of LOO-CV does not differ much from that of nested 5-fold-CV . 981

S1 Table. scores of MT SVM in nested 5-fold-CV scheme on S1–S4 datasets. 982

S2 Table. scores of MT SVM with nested 5-fold-CV scheme on S1’–S4’ 983

datasets. 984

S3 Table. scores of MT SVM on S1 dataset, depending on the CV scheme. 985
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S4 Table. scores of ligand-based ST and MT-intra methods with the 986

LOO-CV scheme on S1 dataset. 987

S5 Table. scores of NN-MT in LOO-CV scheme on S1 dataset. 988

S6 Table. scores of RN-MT in LOO-CV scheme on S1 dataset. 989

S7 Table. scores of MT-intra in LOO-CV on S1 dataset with similarity 990

constraint on intra-task pairs. 991

S8 Table. scores of ligand-based ST in LOO-CV scheme on S1 with similarity 992

constraint on intra-task pairs. 993

S9 Table. scores of NN-MT in LOO-CV scheme on S1 dataset, with 994

similarity constraint on intra-task pairs (θ = 20). 995

S10 Table. scores of NN-MT in LOO-CV scheme on S1 dataset, with 996

similarity constraint on intra-task pairs (θ = 80). 997

S11 Table. scores of RN-MT in LOO-CV on S1 with similarity constraint on 998

intra-task pairs (θ = 20). 999

S12 Table. scores of RN-MT in LOO-CV on S1 with similarity constraint on 1000

intra-task pairs (θ = 80). 1001

S13 Table. scores of MT-intra , NN-MT , RN-MT in LOO-CV on S1 dataset, 1002

with similarity constraint on intra-task pairs. 1003

S14 Table. scores of NN-MT in LOO-CV on S1, with similarity constraint 1004

on intra- and extra-task pairs (θ = 20) 1005

S15 Table. scores of NN-MT in LOO-CV on S1, with similarity constraint 1006

on intra- and extra-task pairs (θ = 80) 1007

S16 Table. scores of RN-MT in LOO-CV on S1 dataset, with similarity 1008

constraint on intra- and extra-task pairs (θ = 20) 1009

S17 Table. scores of RN-MT in LOO-CV on S1 dataset, with similarity 1010

constraint on intra- and extra-task pairs (θ = 80) 1011

S18 Table. GPCR dataset: scores of NN-MT in LOO-CV scheme with 1012

family’s hierarchy based kernel 1013

S19 Table. GPCR dataset: scores of NN-MT in LOO-CV scheme with 1014

sequence based kernel 1015

S20 Table. GPCR dataset: scores of RN-MT in LOO-CV scheme with 1016

family’s hierarchy based kernel 1017
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S21 Table. GPCR dataset: scores of RN-MT in LOO-CV scheme with 1018

sequence based kernel 1019

S22 Table. Ion Channel dataset: scores of NN-MT in LOO-CV scheme with 1020

family’s hierarchy based kernel 1021

S23 Table. Ion Channel dataset: scores of NN-MT in LOO-CV scheme with 1022

sequence based kernel 1023

S24 Table. Ion Channel dataset: scores of RN-MT in LOO-CV scheme with 1024

family’s hierarchy based kernel 1025

S25 Table. Ion Channel dataset: scores of RN-MT in LOO-CV scheme with 1026

sequence based kernel 1027

S26 Table. Kinase dataset: scores of NN-MT in LOO-CV scheme with 1028

family’s hierarchy based kernel 1029

S27 Table. Kinase dataset: scores of NN-MT in LOO-CV scheme with 1030

sequence based kernel 1031

S28 Table. Kinase dataset: scores of NN-MT in LOO-CV scheme with 1032

family’s hierarchy based kernel 1033

S29 Table. Kinase dataset: scores of NN-MT in LOO-CV scheme with 1034

sequence based kernel 1035

S1 Appendix. Basic principles of SVM. 1036

Let us consider a set of labeled samples S = {(x1, y1), . . . , (xN , yN )} where
(xi, yi) ∈ X × {−1,+1} for i = 1, . . . , N , and where the space X into which the data
points live is equipped with a dot product 〈., .〉. For example, the data points xi
represent ligands, and their labels yi are equal to +1 for ligands that bind to a given
protein and -1 for ligands that don’t. In the simplest case where the two classes of data
points are linearly separable, Support Vector Machines [32] (SVM) is an algorithm that
learns to separate these two classes based on an hyperplane whose equation can be
defined by a normal vector w and a constant b: 〈w, x〉+ b = 0. Among the infinity of
potential separating hyperplanes, the optimal hyperplane maximizes the margin. This
margin is defined as the closest distance from the hyperplane to any of the data points.
It can be shown that the search of this optimal hyperplane can be formulated by the
following optimization problem:

argmin
w,b

||w||2 (7a)

subject to yi〈w, xi〉+ b ≥ 1,∀i = 1, . . . , N. (7b)

The solution hyperplane maximizes its distance to the closest data points, and this 1037

distance is equal to 2/||w||2. 1038

1039

Then, the decision function f allowing to make predictions for any new point x 1040

depends on its position with respect to the hyperplane, i.e. based on the sign of 1041

f(x) = 〈w, x〉+ b. 1042
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This optimization problem is strictly convex and admits a unique solution. The
Lagrangian associated to the optimization problem leads to the following equivalent
dual problem:

α∗ = argmin
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj〈xi, xj〉 (8a)

subject to αi ≥ 0,∀i (8b)
N∑
i=1

αiyi = 0 (8c)

where the coefficients αi are known as the Lagrange multipliers associated to the 1043

constraints yi〈w, xi〉+ b ≥ 1. 1044

In practice, this quadratic problem that can be solved efficiently using a dedicated
algorithm, known as Sequential Minimal Optimization (SMO) [69]. When the optimum
α∗ is met, the decision function allowing to make predictions for any new point x
depends on its position with respect to the hyperplane :

f(x) = sign
(

N∑
i=1

α∗i yi〈x, xi〉+ b∗

)
.

However, the two classes of data points may not be linearly separable. In these
situations, kernel methods are a widely-used set of techniques that allow to adapt linear
methods to non-linear models. Let us consider a semi-definite positive kernel function
K : X ×X → R. The Mercer theorem states that there exists a non-linear function
φ : X → H that maps data points in X into a high dimensional feature Hilbert space H
where K can be expressed as a scalar product: k(x1, x2) = 〈φ(x1), φ(x2)〉H .In practice,
H is more often taken to be Rd. Although the two classes of data points might not be
linearly separable in X, they might become linearly separable in the high dimensional
space H where the SVM can be solved. The principle of kernel trick is that, since the
images of the data point φ(xi) are used only in scalar products, finding the αi
coefficients to solve the SVM can be done by replacing all occurrences of the scalar
product 〈φ(xi), φ(xj)〉H by the kernel function k(xi, xj):

α∗ = argmin
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjk(xi, xj) (9a)

subject to αi ≥ 0,∀i (9b)
N∑
i=1

αiyi = 0 (9c)

In other words, finding the separating hyperplane in H does not require explicit 1045

definition of the nonlinear mapping function φ, or calculation of the image vectors φ(xi). 1046

Then, the label of a new data point x is then predicted by a function f(x) defined as: 1047

f(x) = sign
(

N∑
i=1

α∗i yik(x, xi) + b∗

)
In the case where the two classes of points are not separable, we need to allow some

of the training points to be misclassified, i.e. to be on the side of the separating
hyperplane corresponding to points affected to the opposite label. To this end, we
introduce a penalty terms εn∀n = 1, . . . N (also called slacked variables) defined by:
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εn = 0 for data points that are in the correct margin boundary and
εn = |yn − (〈w, xn〉+ b)| for the misclassified points. Thus, points on the decision
boundary will have εn = 1, and misclassified points would be penalized by εn > 1
proportionally to their distance to the separating hyperplane. Thus, the penalty terms
can be written as εn = max(0, 1− yn(〈w, xn〉+ b)). Then the exact classification
constraints of equation 7b are replaced by yi〈w, xi〉+ b ≥ 1− εi. In addition, the
penalty terms must satisfy εn ≥ 0∀n = 1, . . . N . The new objective function aims at
both maximizing the margin and minimizing the penalty terms, i.e. minimizing the
number of misclassified points.

argmin
w,b,ε

||w||2+C
N∑
i=1

εi (10a)

subject to yi〈w, xi〉+ b ≥ 1− εi,∀i = 1, . . . , N, (10b)
εi ≥ 0, i = 1, . . . , N. (10c)

The parameter C in the objective function in equation 10a is meant to introduce a 1048

trade-off between the maximization of the margin, expressed by the term 1
2 ||w||

2, and 1049

the classification error on the training set, expressed by the penalty terms. This 1050

parameter is usually determined by cross validation on the training data. In the present 1051

study, the optimal parameter C was searched between 10−5 and 105. As for the 1052

separable case, the SVM can also be solved in the non-separable case using a kernel 1053

function. 1054

S2 Appendix. Definition of the Kronecker product of two matrices A and B: 1055

A⊗B =



a11b11 a11b12 · · · a11b1q · · · · · · a1mb11 a1mb12 · · · a1mb1q
a11b21 a11b22 · · · a11b2q · · · · · · a1mb21 a1mb22 · · · a1mb2q

...
... . . . ...

...
... . . . ...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1mbp1 a1mbp2 · · · a1mbpq
...

...
... . . . ...

...
...

...
...

... . . . ...
...

...
an1b11 an1b12 · · · an1b1q · · · · · · anmb11 anmb12 · · · anmb1q
an1b21 an1b22 · · · an1b2q · · · · · · anmb21 anmb22 · · · anmb2q

...
... . . . ...

...
... . . . ...

an1bp1 an1bp2 · · · an1bpq · · · · · · anmbp1 anmbp2 · · · anmbpq



.

Therefore, if matrix A is of size n.m and matrix B is of size p.q, the Kronecker 1056

product of A and B is a matrix of size n.m.p.q 1057
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