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Abstract 
While computational gene finders for prokaryotic genomes have reached a high level of accuracy, there is room 
for improvement. GeneMarkS-2, a new ab initio algorithm, aims to improve prediction of species-specific 
(native) genes, as well as difficult-to-detect genes that differ in composition from the native genes.  We introduce 
an array of pre-computed heuristic models that compete with the iteratively learned native model for the best fit 
within genomic neighborhoods that deviate in nucleotide composition from the genomic mainstream.  Also, in the 
process of self-training, GeneMarkS-2 identifies distinct sequence patterns controlling transcription and 
translation. We assessed the accuracy of current state-of-the-art gene prediction tools along with GeneMarkS-2 on 
test sets of genes validated by proteomics experiments, by COG annotation, as well as by protein N-terminal 
sequencing.  We observed that, on average, GeneMarkS-2 shows a higher precision in all accuracy measures. 
Screening of ~5,000 representative prokaryotic genomes reveals frequent leaderless transcription, not only in 
archaea where it was originally discovered, but in bacteria as well.  Furthermore, species with prevalent leadered 
transcription do not necessarily use RBS sites with the Shine-Dalgarno consensus. The effort to distinguish 
leaderless and leadered transcription, depending on prevalence of one or the other, leads to classifying prokaryotic 
genomes into five groups with distinct sequence patterns around gene starts.   Some of the observed patterns are 
apparently related to poorly characterized mechanisms of translation initiation.  
 
[Supplemental material is available for this article].  
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Introduction 
 
The number of microbial species on Earth was estimated to be of the order of 1012 (Locey and Lennon 2016). 
Therefore, the exponential growth of the number of sequenced prokaryotic genomes, currently ~105, is likely to 
continue for quite a while. To generate structural annotation of a new genome, one could find intervals containing 
mapped footprints of known proteins and fill in the gaps with predictions from an ab initio gene finding algorithm. 
Given the size of the microbial universe, the search for new microbes will continue to produce genomes with large 
numbers of genes that are not detectable by mappings protein orthologs. Therefore, improving the accuracy of 
ab initio gene prediction remains an important task.  
      The proliferation of RNA-Seq presented an opportunity for more accurate inferring of exon-intron structures of 
eukaryotic genes. Transcriptomes of prokaryotes were thought to be less important for gene finding since the 
accuracy of ab initio prediction of a whole gene (uninterrupted genomic ORF) is significantly higher. Nevertheless, 
recently introduced modifications of NGS techniques started to generate new kinds of transcript data which impact 
is yet to be fully appreciated. 

For example, the differential RNA sequencing (dRNA-Seq) technique (Sharma et al. 2010; Sharma and Vogel 
2014) aims to accurately detect transcription start sites (TSS). Data on TSS locations can be used to verify the 
annotation of operons, which in turn can help with the detection of the promoter signals as well as translation 
initiation starts (TIS), particularly in the case of leaderless transcription (Creecy and Conway 2015).  

The sequence around a TIS exhibits specific nucleotide patterns that code for effective interactions between 
mRNA and the translation machinery. In bacteria and archaea, translation initiation is generally thought to occur 
through the base-pairing interaction between the 3’ tail of the 16S rRNA of the 30S ribosomal subunit and the site 
in the 5’ UTR of an mRNA that carries a pattern consistent with the Shine-Dalgarno (SD) consensus (Shine and 
Dalgarno 1974; Barrick et al. 1994). Frequently in some species and less frequently in others, the transcripts may 
have very short 5’ UTRs (with length < 6 nt) unable to host the ribosome binding site (RBS). Such a mode of 
transcription, known as leaderless transcription, would situate the TSS at or very near to the TIS. In this case, the 
promoter signal, the TATA box in archaea or the Pribnow box in bacteria with consensus TATAAT, located in 
close proximity of the TSS, could be used for more accurate TIS identification.  

Frequent leaderless transcription was first discovered in the archaea Pyrobaculum aerophilum (Slupska et al. 
2001). Since then, studies of prokaryotic transcriptomes, including the dRNA-Seq applications detected instances 
of leaderless transcription in several species of archea and bacteria. Importantly, the fraction of genes with leaderless 
transcription was observed to vary significantly among species. It was low (<8%) in some bacteria e.g. Helicobacter 
pylori (Sharma et al. 2010), Bacillus subtilis (Nicolas et al. 2012), Salmonella enterica (Kroger et al. 2013), Bacillus 
licheniformis (Wiegand et al. 2013), Campylobacter jejuni (Dugar et al. 2013), Propionibacterium acnes (Lin et al. 
2013), Shewanella oneidensis (Shao et al. 2014), and Escherichia coli (Thomason et al. 2015), as well as (<15%) 
in some archaea  e.g. Methanosarcina mazei (Jager et al. 2009), Pyrococcus abyssi (Toffano-Nioche et al. 2013), 
Thermococcus kodakarensis (Jager et al. 2014), Methanolobus psychrophilus (Li et al. 2015), and Thermococcus 
onnurineus (Cho et al. 2017). However, higher frequency of leaderless transcription was observed  (> 25%) in 
bacteria, e.g. Mycobacterium tuberculosis (Cortes et al. 2013), Corynebacterium glutamicum (Pfeifer-Sancar et al. 
2013), Deinococcus deserti (de Groot et al. 2014), Streptomyces coelicolor (Romero et al. 2014), Mycobacterium 
smegmatis (Shell et al. 2015), and even larger (>60%) in archaea e.g. Halobacterium salinarum (Koide et al. 2009), 
Sulfolobus solfataricus (Wurtzel et al. 2010), and Haloferax volcanii (Babski et al. 2016). 

Current gene finding tools, GeneMarkS, Glimmer3, and Prodigal, have sufficiently high accuracy (>97% on 
average) in detecting validated protein-coding ORFs (Besemer et al. 2001; Delcher et al. 2007; Hyatt et al. 2010). 
Though the accuracy in pinpointing the ORFs starts could be lower ~90% (Hyatt et al. 2010) The genes that escape 
detection altogether are mostly in the atypical category; i.e. genes with sequence patterns not matching the species 
specific model trained on the bulk of the genome (Borodovsky et al. 1995). The other important accuracy measure, 
the false positive rate, requires verification that a predicted gene is not real; this assessment is difficult to make. In 
this study, we identify false positives by as (i) predicted genes with an unrealistically large overlap with a confirmed 
gene located in the opposite strand and (ii) genes predicted in a randomly generated sequence. Separately, the 
accuracy of gene start prediction was traditionally assessed on sets of genes verified by the protein N-terminal 
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sequencing. Given the high accuracy of the current tools the task to improve the predictive power of prokaryotic 
gene finding i.e. to achieve better detection of atypical genes and better gene start prediction is challenging.   

In GeneMarkS-2 we utilized and augmented the algorithmic features introduced and implemented in 
GeneMarkS (Besemer et al. 2001) and MetaGeneMark (Zhu et al. 2010). We expanded the generalized hidden 
Markov model (GHMM) of GeneMarkS by addition of multiple states accounting for horizontally transferred genes 
with wide range of GC compositions. We replaced the single heuristic model used in GeneMarkS for recognition 
of atypical genes by an array of heuristic models first introduced in MetaGeneMark and covering the GC range 
from 30% to 70% (Zhu et al. 2010). In GeneMarkS-2, this set of heuristic (atypical) models complements the major 
model trained on the whole genome and tuned up for the typical genes (Besemer et al. 2001).  

We revised the GeneMarkS procedure of unsupervised training to account for variability of genome-specific 
features of transcription and translation that define regulatory sites located close to gene starts. To improve the 
parameterization of the models of regulatory sites (RBS or promoter boxe), we implemented GibbsL (Gibbs with 
Localization) a new type of the Gibbs sampler algorithm (Lawrence et al. 1993). We included the distance (the 
length of the spacer) between the predicted site and the anchor point (e.g. gene start) into the objective function of 
GibbsL. In a given genome GibbsL operates independently on sets of genes with leadered and leaderless 
transcription to derive separate models of RBS or promoter boxes.  

We assessed the accuracy of several gene finders, including GeneMarkS-2. Since the GenBank genome 
annotation cannot yet be consider a uniformly reliable (gold) standard, we opted to use subsets of genes validated 
by one or another external information. Particularly, the genes validated by proteomics experiments, genes validated 
by the similarity search to the COG annotated genes, on genes with starts determined by N-terminal sequencing. 
Also, we used sequences simulating genome specific non-coding regions, the sequences that were supposed to 
contain no genes. The results of the benchmarking experiments demonstrated that, on average, GeneMarkS-2 made 
more accurate predictions than other existing tools.  

Since in process of self-training GeneMarkS-2 had to determine the type of the sites located close to the gene 
starts, it produced insights into types and frequencies of the transcription and translation related regulatory sites. In  
many out of ~5,000 representative prokaryotic genomes (Tatusova et al. 2014) we predicted frequent leaderless 
transcription; transcriptomes of some of these species have already been studied with dRNA-Seq and we compare 
predictions and observations. 

GeneMarkS-2 classified the ~5,000 genomes into five groups, such as archaeal and bacterial genomes with 
frequent leaderless transcription, genomes with RBS sites of Shine-Dalgarno (SD) type, as well as genomes with 
non-SD RBS sites. Finally, the there was a group (including e.g. cyanobacteria) that carry very weak patterns in 
5’ UTR; only a minority of genes in genomes of this group used the SD RBS sites.  
 
Methods  
Gene and Genome Modeling  
Model of a protein-coding sequence. Protein-coding regions in prokaryotic genomes are known to carry species-
specific oligonucleotide (e.g. codon) usage patterns (Grantham et al. 1981; Fickett and Tung 1992). Still, 
oligonucleotide composition of some genes may deviate from the genome-wide mainstream. To account for genes 
with some degree of compositional deviation we introduced in GeneMarkS the additional atypical gene model 
(Besemer et al. 2001).  

We estimated the parameters of the ‘typical’ model by iterative self-training on the given anonymous  genome, 
as it was done in GeneMarkS (Besemer et al. 2001). However, instead of the single atypical model, GeneMarkS-2 
uses two sets of atypical models: 41 bacterial and 41 archaeal ones. Parameters of the atypical models, covering GC 
content range from 30% to 70%, were estimated by the method proposed earlier (Zhu et al. 2010). Each atypical 
model has an index indicating a narrow (1%)  GC content bin it represents; the model parameters are pre-computed 
and remain the same in any run and any iteration of GeneMarkS-2. Only a subset of atypical models is used in a 
GeneMarkS-2 run on a given genome, the models with the index value within the GC content range of the genome 
in question.  

In addition to the compositional score, the signal score (see below) and the lengths of candidate genes and 
intergenic sequences are used in the computing of the gene score.  
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Figure 1. Principal state diagram of the GHHM of prokaryotic genomic sequence. States modeling a gene 
in the direct strand are shown in 1A. Genes in the reverse strand are modeled by identical set of states with 
directions of transitions (arrows) reversed. The direct strand states and the reverse strand states are 
connected through the states of intergenic region as well as the states of genes overlapping in opposite 
strands (1B and 1C). 

 
We could interpret the multi-model approach in the following way. If we would disregard for a moment the 

linear connectivity of genes in a given genome, we could think of this set of ‘disjoint’ genes as an instance of a 
small ‘metagenome’. The approach developed for metagenome analysis, (Zhu et al. 2010), created a variety of 
models for analysis of sequence fragments with variety of GC content; we use this library as the set of atypical 
models. Furthermore, the typical genes making the majority of the whole gene set could be clustered and processed 
together to derive parameters for the typical model. The genes deviated in composition, the minority, still cannot 
escape detection by the compositionally matching atypical models. 
       Model of a sequence around gene start. There are characteristic differences in the sequence patterns around 
gene starts observed in the five just mentioned groups of prokaryotic genomes. Groups A and B exhibit, 
respectively, the archaeal (-26) and the bacterial (-10) promoter boxes situated upstream to the starts of the genes 
transcribed in leaderless fashion. Other genes in these genomes may have RBS sites, thus we have dual gene start 
models in the genomes of the A and B groups. Groups C and D where leadered transcription is dominant, carry 
sequence patterns of a single type; these are the RBS sites with either non-Shine-Dalgarno consensus (group C) or 
with Shine-Dalgarno consensus (group D). In group E we observed the weak nucleotide patterns that are likely to 
be related to translation mechanisms not well understood yet.  

The sites of promoter boxes as well as the non-Shine-Dalgarno (non-SD) and the Shine-Dalgarno (SD) RBS 
sites are separated from TIS by variable sequences with variable length (spacers). Therefore, the full model of a 
regulatory site should include the model of the site-specific sequence pattern, e.g. in a form of the positional Markov 
chain, as well as the length distribution of the spacer (Fig. 1). 

It was also observed that the nucleotide composition of the spacers is not homogeneous, with the part proximal 
to the translation start exhibiting its own compositional pattern. Therefore, we explicitly model the triplet upstream 
to the start codon as a 3 nt long site called the upstream signature.  

Moreover, in the group E genomes we use a 20 nt long extended upstream signature (Fig. 1).  
Finally, in addition to all the models mentioned above, we also use a downstream signature that captures the 

patterns within the short protein-coding sequence (with length up to 12 nt) located immediately downstream of the 
start codon (Shmatkov et al. 1999).  
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Figure 2. Principal workflow of the unsupervised training. 
Unsupervised training  
The unsupervised training algorithm makes several two-step iterations (Fig. 2). Each iteration includes i/ genome 
segmentation into coding and non-coding regions (gene prediction) and ii/ model parameter re-estimation (Besemer 
et al. 2001).  
The first iteration.  

Prediction step. The log-odds space Viterbi algorithm (see Suppl. Materials) computes genome segmentation 
into protein-coding (CDS) and non-coding regions with the maximum value of the log-odds sores and the maximum 
likelihood. At the first step, the algorithm only uses heuristic (atypical) models. When the Viterbi algorithm runs 
on a particular segment of the genomic sequence, it utilizes only one of the 82 atypical models whose GC index 
matches the local sequence’s GC composition. With this approach, heuristic models are chosen independently for 
different segments (candidate genes) of the genome. With models in place the algorithm finds the genome 
segmentation with the maximum value of log-odd scores (the segments could be labeled: coding, reverse coding, 
gene overlap or non-coding, see Suppl. Materials). Note that, in the first iteration, the Viterbi algorithm does not 
have means to account for sequence patterns around gene starts since no gene-start model has yet been derived. 

Estimation step. After the first run of the Viterbi algorithm, all genomic segments predicted and labeled as 
‘protein-coding’ (CDS) are collected into a training set for the estimation of parameters of the ‘typical’ model. To 
decrease the chance of including non-coding ORFs into the training set, predicted genes shorter than 300 nt and 
those predicted as incomplete CDS are not used in training. From this set of genes, the typical model, a 5th order, 
three-periodic Markov model is derived (Borodovsky and McIninch 1993). Similarly, the genomic segments labeled 
as ‘non-coding’ are used to estimate the parameters for the non-coding model, structured as a 2nd order, uniform 
Markov chain.  
       The second iteration. At the prediction step, the Viterbi algorithm, in addition to the set of 82 atypical models, 
uses the newly derived typical model to update the genome segmentation. At the estimation step, the updated 
genome segmentation is used to re-estimate parameters of the typical model. Now, having information on initially 
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predicted gene starts, the algorithm selects sequences situated around the gene starts and derives models of the 
patterns encoding transcription and/or translation regulation (Fig. S1).  

Building the models of sequences around gene starts. The sites near the first genes in operons (FGIOs) are 
used to regulate transcription and translation (promoters and RBS sites) while the sites located near the interior 
genes in operons (IGIOs) carry signals related to translation regulation (RBS sites). Given a genome segmentation 
into protein-coding genes and non-coding regions, we identify FGIOs by the following rule. A gene is an FGIO if 
the upstream neighboring gene is located either in the complementary strand, or at a distance larger than 25 nt. In 
the iterations of self-training, the set of FGIOs is updated in each prediction step. We chose the 25 nt threshold after 
experimenting with values ranging up to 40 nt. Intuitively, larger values offer a more conservative selection of 
operons and FGIO, since distances between operons tend to be larger than distances between genes within the same 
operon. An analysis of the annotated operons in the E. coli genome (Gama-Castro et al. 2016) shows the effect of 
this threshold on the accuracy of operon prediction (Fig. S2). The 25 nt cut-off identified 98% of annotated first 
genes in operons with addition of 8% false positive. Furthermore, while the analysis on E. coli suggests that 40 nt 
might offer a slightly better balance between true and false operon predictions, our experiments show that increasing 
the value to 40 nt offers an equal (or even slightly worse) prediction accuracy of gene-starts and COGs.  

As previously mentioned, the type of gene-start model used is dependent on the group (A through E) to which 
the genome is assigned.  

The two components of a generic site model, the nucleotide frequency matrix and the spacer length distribution 
are derived by running the modified Gibbs sampler algorithm (GibbsL, described below). In some situations, we 
decide on the “validity” of the motif by examining the localization (or concentration) of the motifs at some specific 
distance from the TIS. To do this, we define the localization distance as the mode of the spacer length distribution, 
the most frequent distance between motifs and the gene start. If the frequency at the mode is larger than a threshold 
Q%, then the motif is said to be localized with Q% mode threshold.  

The full details on the derivations of the five model types (A-E) along with the depictions of the positional 
frequencies patterns of the motifs and associated spacer length distributions (Figs. S3-S7) are given in Suppl. 
Materials  

The third iteration and up. From the third iteration onwards, the type of the model of the gene start does not 
change; however, the model parameters are updated by the type-specific rules. The dual motif models containing 
RBS and promoter boxes sub-models (defined for groups A and B) compete as the alternative states of the Viterbi 
algorithm. The typical gene model is updated in this iteration (Fig. 2). GeneMarkS-2 continues the 
prediction/estimation iterations until convergence (99% identity in gene starts between the iterations). An 
alternative stopping rule is reaching the maximum number of iteration (the default value is 10). All the genomic 
segments labeled as coding regions in the last iteration are reported as predicted genes, the output of the algorithm. 
      A motif finder that accounts for the signal localization pattern 
The MCMC motif finder Gibbs3 (Thompson et al. 2003) was designed to learn a probabilistic model of an a priori 
unknown motif present in a set of sequences. We used Gibbs3 for the RBS model delineation in GeneMarkS with 
reasonable accuracy.  

It was observed that the length distributions of sequences separating motifs from gene starts (spacers) indicate 
a preference for some optimal lengths that facilitate interactions of biomolecules involved in the translation 
initiation. However, the Gibbs3 algorithm accepts the motif instances with too long or too short spacers equally 
well in comparison with the motif instances having more optimal spacer length.  
We implemented a modification, named GibbsL, of the Gibbs sampler algorithm (see Suppl. Materials). We 
explicitly included the spacer length into the objective function of GibbsL. At a given iteration of GeneMarkS-2, 
GibbsL runs a fixed number, N (default N=60), of its own iterations. Furthermore, the instances of GibbsL run are 
repeated M times (default M=30) and the result with the highest score of the objective function is selected.  
Materials  
Genes supported by proteomic studies. Mass-spectrometry-determined peptides were obtained in studies of a 
number of prokaryotic species at the Pacific Northwest National Laboratory (Venter et al. 2011). From all the 
available genomes, we selected 54, each with more than 250 proteomics validated ORFs (supported by at least 
two matching peptides). The peptide-supported ORFs (psORFs) annotated in the 54 genomes (Table S1) were 
used in the assessment of false negative and false positive rates of ab initio gene prediction. 
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Table 1. Statistics of false negative (Panel A) and false positive (Panel B) predictions observed in tests on 
sequences containing genes validated by proteomics (MS) and by COG annotation. 
  
COG annotated genes. We used 145 genomes (115 bacteria and 30 archaea covering 22 bacterial and archaeal 
phyla) suggested by our colleagues at DOE Joint Genome Institute (N. Kyrpides, personal communication). The 
genomes varied in size, type of genetic code, and GC content (Table S2). Among the genes annotated in these 
genomes we selected genes with the COG characterization, such that orthologous relationships of their protein 
products were estabilshed with proteins from other species within the Clusters of Orthologous Groups (Tatusov et 
al. 1997; Tatusov et al. 2003; Galperin et al. 2015). The COG annotation serves as a robust evidence of the functional 
role of a gene, thus this gene set would be unlikely to include random ORFs. Since 36 out of 145 genomes belonged 
to the set of 54 genomes with ‘proteomics’ confirmed genes we removed the redundancy in the actual tests (see 
below). 
Simulated genome specific non-coding regions. Genome specific models (the zero-order Markov chains) for 
annotated intergenic regions of each of 145 genomes (Table S2) were made and used to generate 145 random 
sequences with length 1 MB. We used the simulated non-coding sequences for assessment of false positive rates of 
gene predictions. Note that, the zero-order Markov chain models of non-coding regions was not used in Glimmer3, 
Prodigal or GeneMarkS-2. 
Test sets of genes with experimentally verified starts. The N-terminal protein sequencing is a standard but not 
frequently used technique to validate sites of translation initiation (protein N-terminals and gene starts). Relatively 
large sets of genes with validated starts are known for the bacteria Synechocystis sp. (Sazuka et al. 1999), E. coli 
(Rudd 2000; Zhou and Rudd 2013), M. tuberculosis (Lew et al. 2011), and D. deserti (de Groot et al. 2014) and the 
archaea A. pernix (Yamazaki et al. 2006), and H. salinarum, N. pharaonis (Aivaliotis et al. 2007).  
Set of representative prokaryotic genomes. The prokaryotic genome collection of NCBI includes a description 
of 5,007 species as ‘representatives’ of the whole database of ~100,000 genomes (Tatusova et al. 2014). These 
include 238 archaeal and 4,769 bacterial species to cover all the genera while leaving out the majority of species of 
the respective genera along with most of their strains. 
 
Results  
     Error rates in gene prediction with the focus on the gene 3’end. GeneMarkS, Glimmer3, Prodigal, and 
GeneMarkS-2 were run with default settings, and their gene predictions were compared (i) with the ‘proteomics’ 
validated annotation (54 genomes, Table 1, ~89,500 proteomics supported genes or psORFs) as well as (ii) the 
COGs validated annotation (145 genomes, Table 2; ~341,486 genes). We determined the frequencies of missed 
psORFs (false negative) as well as frequencies of false predictions (i.e. those incompatible with psORFs). A 
predicted gene was judged as false if more than 30% of its length overlapped with a psORF located in a different 
strand or frame.  

In the 54 genomes set, we observed that GeneMarkS-2 missed 181 psORFs out of 89,466, the least number of 
false negative errors made by the tested tools (Table 1). At the same time, GeneMarkS-2 made the least number of 
false positive predictions - 114 (Table 1).  

The test on 145 genomes with COG validated genes also demonstrated that GeneMarkS-2 made more accurate 
predictions. The number of missed COG genes, 1,147, was the lowest for GeneMarkS-2, followed by Prodigal with 
1,389. The rate of missed COG genes for any gene finders was less than 1% (Table 1). Furthermore, false positives 
were identified in the same way as above, with GeneMarkS-2 yielding 932 false predictions, a number significantly  

 

Algorithm
Missed	MS	

confirmed	genes	
(from	89,466)

Missed	COG	genes	
(not	MS)	(from	

287,237)
GeneMarkS 376 1,467
Glimmer3 496 1,990
Prodigal 217 1,389
GeneMarkS-2 181 1,147

Algorithm
False	predictions	
overlaping	MS	

confirmed	genes

False	predictions	
overlaping	COG	
genes	(not	MS)

GeneMarkS 352 2,046
Glimmer3 921 6,435
Prodigal 211 1,339
GeneMarkS-2 114 932

A B 
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Table 2. Panel A: Test on 145 genomes containing COG annotated genes. Frequencies of missed genes in 
groups (bins) of different length. Panel B: Test on 145 simulated non-coding sequences (I Mb each). Frequencies 
of false positives in the same length categories as in Panel A. 
 
smaller than the ones observed for the other gene finders (Table 1). Note that some COG validated genes were 
identical to the ‘proteomics’ genes and were excluded in the second test. 
On the full set of COG genes, we assessed the effect of gene length on the false negative predictions (Table 2A). 
Glimmer3 had the lowest number of “missed” short genes (90-150 nt range) as compared to the other tools. 
However, the cost was a significant increase in the number of false predictions of short genes (Table 2B). We 
observed that GeneMarkS-2 had the least number of “missed” genes in all the other bins (and in total). At the same 
time GeneMarkS-2 had the lowest number of false positives in all the bins. We also observed that the GeneMarkS-2 
performance was least dependent on genome GC content (data not shown).  

Finally, since the significant overlaps between predicted and annotated genes (in the proteomics or COG 
verified subsets) turned out to be rather rare events (Table 1), we ran additional tests with simulated non-coding 
sequences to make observations on false positive predictions. 
      False positive predictions in simulated non-coding sequences. On a sequence simulating non-coding regions 
of a particular genome each gene finder was run with the species-specific models trained on the genome in question. 
We observed that GeneMarkS-2 had lower error rate than the other gene-finders, e.g. more than 50% lower than 
the second best tool, Prodigal (Table 2B). The increase in the rate of false positive predictions made by Prodigal in 
high GC sequences was likely related to the tendency of Prodigal to predict longer ORFs as genes; longer ORFs  
appear more frequently in high GC sequences than in low GC ones.  

Glimmer3 had the lowest false positive rate in the length interval 300–600 nt  (Table 2B). GeneMarkS-2 
demonstrated lower than other tools frequencies of false positives in all the other length intervals. Interestingly, the 
GeneMarkS-2 improvement over GeneMarkS was mainly in reduction of false positives generated by atypical 
models (81 vs 9,231 by GeneMarkS). The reduction in false positives attributed to the typical models was much 
more modest (926 vs 1,642 by GeneMarkS-2). 
       Accuracy of gene start prediction assessed on the sets of genes with experimentally verified starts. 
This assessment was done on sets of genes from the genomes of A. pernix, D. deserti, E. coli, H. salinarum, 
M. tuberculosis, N. pharaonis, and Synechocystis sp. (Table 3).  

Speaking of the whole set of verified genes, we observed that GeneMarkS-2 correctly predicted the largest 
number of starts among all the gene finders. More precisely, GeneMarkS-2 showed an error rate of 4.4%, followed 
by Prodigal - 6.1%, GeneMarkS - 10.2% and Glimmer3 - 13.2% (Table 3).  

A factor in the GeneMarkS-2 improved start accuracy was the transition to more flexible modeling f  the 
regulatory signals. For instance, the archaea H. salinarum characterized as group A had the RBS sequence missing 
in (most) FGIOs; the detected promoter TATA box was located at a distance 22-24 nt from the TIS the distance 
indicating the presence of leaderless transcription (Fig. 3B). The RBS sites for the remaining FGIOs as well as for 
the IGIOs were identified at 6-8 nt distance from the TIS sites (Fig. 3C). The original GeneMarkS with Gibbs3  

A Bins	(nt): <	150 150-300 300-600 600-900 >	900 Total
362 13,985 65,948 83,745 177,446 341,486

GeneMarkS 135 504 444 200 305 1,588
Glimmer3 60 556 872 347 325 2,160
Prodigal 161 656 442 96 79 1,434
GeneMarkS-2 138 513 384 78 70 1,183

B Bins	(nt): <	150 150-300 300-600 600-900 >	900 Total
Algorithm

GeneMarkS 4,257 5,865 597 9 0 10,728
Glimmer3 13,590 882 70 35 40 14,617
Prodigal 4,455 7,897 1,669 1,988 889 16,898
GeneMarkS-2 645 345 17 0 0 1,007

False	positives	(FP)	in	simulated	sequence

	Algorithm Missed	annotated	genes	(FN)
COG	genes

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 26, 2017. ; https://doi.org/10.1101/193490doi: bioRxiv preprint 
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Table 3. Numbers of correctly predicted gene starts in the seven test sets of genes verified by N-terminal 
sequencing. 
 

 
 

Figure 3. Motif logos and spacer length distributions for genomes of H. salinarum (group A) and 
M. tuberculosis (group B). Motifs found by GeneMarkS are shown in 3A and 3D respectively. GeneMarkS-2 
detected a promoter signal in H. salinarum FGIOs with a better localization than GeneMarkS (3B). In 
M. tuberculosis, the ‘mixed’ motif found by GeneMarkS has no localization (3D). The motif found by 
GeneMarkS-2 in FGIOs has a localization typical for bacterial TATA box (3E). In both species GeneMarkS-
2 finds the RBS sites for IGIO genes (3C and 3F respectively).  
 
could derive (by design) only a single TATA box model with a less pronounced localization than GeneMarkS-2 
with GibbsL (Fig. 3A). 

For the bacterial genome M. tuberculosis characterized as group B the original GeneMarkS did not find 
sufficiently strong RBS motif (Fig. 3D). GeneMarkS-2 revealed why it a bit difficult feat to accomplish. The new 
algorithm predicted that 40% of the M. tuberculosis operons were transcribed in the leaderless fashion, with the 
promoter Pribnow box located at a distance of 6-8 nt from the gene starts (Fig. 3F). The remaining ~60% of operons 
were predicted to have their RBS sites located at the same distance of 6-8 nt from the gene starts (Fig. 3E). 
Therefore, since both the promoter for genes without 5’ UTRs and RBS sites for genes with 5’ UTRs were located 

Species Gene-start	
model	type

#	of	verified	
gene	starts	

GeneMarkS Glimmer3 Prodigal GeneMarkS-2

A.	pernix* D 130 125 119 127 126
D.	deserti B 386 315 314 334 369
E.	coli D 769 725 714 751 740
H.	salinarum* A 530 502 454 514 523
M.	tuberculosis B 701 572 572 620 635
N.	pharaonis* A 315 309 288 309 312
Synechocystis E 96 81 79 92 92

(*archaea) Total 2,927 2,629 2,540 2,747 2,797
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at the same distance from the TIS sites, the Gibbs3 algorithm taking all the upstream sequences in one input failed 
to converge to a single model. 

On a general note, the performance of GibbsL in detecting SD RBS motifs in low and mid GC genomes was 
observed to be somewhat similar to the performance of Gibbs3 (though GibbsL tends to have higher localization 
peaks). However, in genomes with higher GC content, GibbsL derived the motifs with higher information content 
and more compact localization (Fig. S8, S9, S10).  

We also observed that the GibbsL performance is more robust than one of Gibbs3 when the length of sequences 
that are supposed to contain common motifs (i.e. the selected gene upstream regions) increased (Fig. S8, S9).   

Finally, we have observed that the width of the motif, an assigned parameter of the motif search by GibbsL, did 
not show significant influence on the results of gene start prediction (if changed between 5 nt to 10 nt, see Table 
S3). Indeed, if the motifs with larger widths were admitted, the derived RBS models did not show a significant 
change in information content (Fig. S11). 
 
Predicting leaderless transcripts in ~ 5,000 prokaryotic genomes 
GeneMarkS-2 was run on each of the ~5,000 representative genomes to generate a genome annotation along with 
a genome assignment to one of the five groups, A, B, … E, described above. Five separate trees were then created 
to represent the genomes belonging to each of the groups (Table S4, A-E). These trees show that genomes of similar 
ancestry tend to belong to the same group.  

Species that fell into group A were archaeal species with predicted prevalence of leaderless (polycistronic) 
mRNAs. A promoter model was derived for leaderless FGIO, while an RBS model was derived for the remaining 
genes. From the 238 archaeal genomes in our dataset, 199 were assigned to group A. In particular, some taxa had 
most (or all) of their members belonging to group A, such as Halobacteria (74 out of 74 species, 100%, assigned 
to group A), Methanomicrobia (40 out of 42, 95%), Thermococci (21 out of 21, 100%), Thermoplasmata (11 out of 
11, 100%), Archeoglobi (7 from 7, 100%), Thaumarchaeota (11 from 11, 100%) and Crenarchaeota (23 out of 35, 
65%) (see Table S4, A). The group A characteristic feature was first discovered in the hyperthermophylic archaeon, 
Pyrobaculum aerophilum (Slupska et al. 2001). We have inferred, however, that group D is a home for a significant 
fraction of the taxon Crenarchaea, where P. aerophilum belongs. Thus, many members of Crenarchaea should 
have low percentage of leaderless transcripts. 

Of a significant interest is group B (1028 out of 4769 bacteria) where we included bacterial species predicted 
to have frequent presence of leaderless mRNAs (Table S4, B). Species of group B are frequent in Actinobacteria 
(773 from 859, 90.0%), in Deinococcus-Thermus (37 out of 38, 97.4%) but rare in Proteobacteria (104 out of 1854, 
5.6%) and Firmicutes (36 out of 1064, 3.4%). Particularly high frequency of type B species was observed in 
Streptomycetales (129 out of 129, 100%) and in Corynebacteriales (197 out of 202, 97.5%) including 
Mycobacteriaceae (56 out of 57, 98.2%). 

The group C assignments were made for 495 bacteria and no archaea. The characteristic feature of this group 
is the presence of the same type signal in both FGIOs and IGIOs. We interpreted the signal as the non-SD type RBS 
since this signal is present upstream to IGIOs and cannot be a promoter. The species of group C are frequent in the 
FCB group (409 out of 455, 89.9%), but rare in Terrabacteria (1.7%) and Proteobacteria (2.0%). 

The group D was the largest: 2,935 bacteria and 39 archaea (Table S4, D). The group D species were 
characterized by the dominance of leadered mRNA with detectable RBS motifs having the Shine-Dalgarno 
consensus. Among the group D bacteria 39% were Gram-positive and 61% were Gram-negative. However, the 
majority, 57%, of Gram-positive bacteria were assigned to group D. More than that, if we exclude Actinobacteria, 
that rarely belong to group D (78 out of 859, 9.1%) and mostly appear in group B, we would see that 96% of 
remaining Gram-positive bacteria belong to group D.  

Finally, 311 bacterial species were assigned to Group E (Table S4, E) characterized by the absence of 
pronounced regulatory signals upstream to most genes. Species of this group are relatively frequent in 
Cyanobacteria (90 out of 127, 70.9%) and in Burkholderiales (63 out of 166, 37.9%). 

The summary list of the distribution of the ~5,000 species among groups A-E is given in Table 4. 
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Table 4. Distribution of archaeal and bacterial genomes among groups A-E. 

 
Discussion 
Gene finding accuracy evaluation. We demonstrated in several tests that, on average, GeneMarkS-2 is a more 
accurate tool than the current frequently used gene finders.  

Particularly, GeneMarkS-2 had lower frequencies of false negative and false positive errors assessed on the sets 
of genes validated by mass-spectrometry and the COG annotation (Table 1). Also, the numbers of false positive 
predictions made by GeneMarkS-2 in simulated non-coding sequences were significantly smaller than the numbers 
observed for other tools (Table 2B). 

The array of atypical models employed in GeneMarkS-2 improved the prediction of horizontally transferred 
(atypical) genes. In our observations, the deviation of GC composition of atypical genes from the genome average 
could be as large as 16% (e.g. 798 nt long E. coli gene b0546 characterized as DLP12 prophage, with GC content 
36% vs 52% GC in the bulk of the E. coli genes). The GC content of atypical genes frequently is lower than the GC 
content of the ‘typical’ ones; this bias is attributed to the possibility that many atypical genes could be transferred 
from AT rich phage genomes. ‘Atypical’ genes with large GC deviations are expected to appear more frequently in 
high GC genomes with the larger space for downward variation.  

All over, the atypical genes may constitute a significant fraction of the whole gene complement (e.g. about 15% 
of genes in the E. coli genome (Borodovsky et al. 1995)). In the study of the ~5,000 genomes we found that the 
distribution of the fraction of predicted atypical genes in prokaryotic genomes are rather similar between archaea 
and bacteria with the average of about 8-9% (Fig. 4).  

Comparison of the COG annotated genes missed by the three gene finders showed that atypical gene constituted 
30% among 780 (534+246) genes missed by Prodigal and 42% from 1605 (1359+246) genes missed by Glimmer3 
(Fig. S12). Prediction of typical and atypical genes by a single model (as in Glimmer3 and Prodigal) makes 
prediction of atypical genes more difficult. Improved prediction of atypical genes by GeneMarkS-2 is a compelling 
argument in favor of the use of atypical models.   

One of the positive features of the approach implemented in GeneMarkS-2 is the ability to identify atypical 
genes as bacterial or archaeal (it is due to the division of the atypical models into distinct bacterial and archaeal 
types (Zhu et al. 2010)). The insights into the possible origin of horizontally transferred genes could be particularly 
useful for genomes of thermophilic bacteria and mesophilic archaea.  

Assessment of the accuracy of gene start prediction was done on the sets of genes verified by the N-terminal 
sequencing (Table 3). These sets were available for seven genomes that came from all groups except group C. 
GeneMark-S2, that shows the best performance overall, incorrectly predicted 120 starts out of 2,927 while the 
second best, Prodigal, made wrong predictions of 170 gene starts. Notably, Prodigal performs better on E. coli, 
however, the set of verified genes from this species was used for supervised training of the Prodigal gene start 
prediction model. GeneMarkS-2 makes more accurate predictions for genomes of groups A and B where the 
leaderless transcription is frequent and some genes do not have RBS sites. 

Particularly, the experimental study of D. deserti identified 384 genes with verified TIS, 262 of which had TSS 
annotated with dRNA-Seq (de Groot et al. 2014). It was also shown that 167 out of the 262 genes had leaderless 
transcription. In this genome GeneMarkS-2 correctly predicted 34 more starts than Prodigal. Prodigal detects RBS 
motifs only; this restriction reduces accuracy of start prediction for genes with leaderless transcription. 

Total
Number % Number % Number

Group	A 199 83.6 - - 199
Group	B - - 1,028 21.6 1,028
Group	C 0 0.0 495 10.4 495
Group	D 39 16.4 2,935 61.5 2,974
Group	E 0 0.0 311 6.5 311
Total 238 100 4,769 100 5,007

Archaeal	Genomes Bacterial	Genomes
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Figure 4. Distributions of the percentage of predicted atypical genes in archaeal and bacterial genomes. 
 

 
 
Characterization of the patterns around gene starts. Prediction of the extent of leaderless transcription  

GeneMarkS-2, unlike other gene finders, is able to infer the presence of leadered or leaderless transcripts due 
to the differences in the regulatory signals predicted upstream to the gene starts.  

Bacterial and archaeal genomes show different patterns with respect to the frequency of leaderless transcription 
(Fig. 5). The archaeal species have the bimodal distribution of the frequencies. Large number of studied archaeal 
genomes are predicted to have 60% to 80% of the operons transcribed in the leaderless fashion. Still some sizable 
fraction of the group A archaeal genomes had 25-35% of operons transcribed in the leaderless way. Among bacterial 
genomes of group B, the majority has 25% to 50% of the operons transcribed in the leaderless fashion.  

We compared computational predictions of the fractions of the leaderless transcripts with the fractions observed 
in the dRNA-Seq experiments with the genes expressed in Deinococcus deserti (de Groot et al. 2014) Haloferax 
volcanii (Babski et al. 2016), Sulfolobus solfataricus (Wurtzel et al. 2010), and M. tuberculosis (Cortes et al. 2013). 
The values of predicted and observed percentages of leaderless transcripts were determined on the sets of genes that 
had identical starts both in GeneMarkS-2 prediction and annotation. These results were as follows: in archaea D. 
deserti, ~62% vs 62% (1,707 transcripts),  in H. volcanii 86% vs 82% (1,406 transcripts);  S. solfataricus 78% vs 
76% (859 transcripts), in bacteria M. tuberculosis 42% vs 34% (1310 transcripts). 
Thus, the predictions were in reasonably good agreement with the experiment. 

Genomes with experimentally characterized small numbers of leaderless genes (Sharma et al. 2010; Nicolas et 
al. 2012; Dugar et al. 2013; Kroger et al. 2013; Lin et al. 2013; Wiegand et al. 2013; Shao et al. 2014; Thomason et 
al. 2015) (TSS experiments) were all classified as group D. Genomes with large proportion of leaderless transcripts 
were all classified by GeneMarkS-2 as group B (Cortes et al. 2013; Pfeifer-Sancar et al. 2013; de Groot et al. 2014; 
Shell et al. 2015) or group A (Koide et al. 2009; Wurtzel et al. 2010; Toffano-Nioche et al. 2013; Jager et al. 2014; 
Babski et al. 2016). 

Experiments on Synechocystis sp demonstrated the prevalence of the leadered transcription (Mitschke et al. 
2011). However, in less than 15.5% of genes GeneMarkS-2 detected the RBS motif with the SD consensus. The 
experiments have shown that mutating some “A” rich sequences at 15-45 nt upstream to gene start which was still 
within long 5’ UTR sequence, led to changes in gene expression (Mutsuda and Sugiura 2006). The mechanism used 
for the TIS recognition in majority of Synechocystis sp genes is unknown. 

It was observed that translation initiations of the three types, SD-RBS based, non-SD RBS based, and leaderless 
are present in E. coli (Shean and Gottesman 1992; Barrick et al. 1994; Resch et al. 1996). Further observations have 
shown that the distribution of the numbers of genes controlled by each of the three mechanisms could vary 
significantly between the species (Gualerzi and Pon 2015). If a particular mode appears rarely in a given species, 
GeneMarkS-2 training procedure (described below) will not be able to take this mode into account due to the 
insufficient size of the training set.  
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Figure 5. Distributions of the percentage of leaderless transcripts among all transcripts in archaeal group A and 
bacterial group B. 
 
 
Regulatory models in Group C 

GeneMarkS-2 currently assigns 495 out of 4,769 bacteria (and none out of 238 archaea) to group C. We take 
as an example the genome of Bacteroides ovatus. Experimental evidence shows that, while its 16S rRNA features 
the bona fide anti-Shine-Dalgarno pattern, the SD-matching sequences appear upstream to the TIS sites in only ~3% 
of genes. A-rich sequences were observed in the upstream regions of the majority of B. ovatus genes. It was shown 
experimentally that mutating these A’s reduces the gene expression levels. Thus one would imply that the A-rich 
sequences are important for TIS recognition (Wegmann et al. 2013). GeneMarkS-2 identified the A-rich non-SD 
type motif with consistent localization at ~9 nt from TIS (Fig. 6).  

GeneMarkS-2 assigned 90% of Bacteroidetes/Chlorobi genomes to Group C (408 of 450). While not much is 
known about the non-SD mechanisms in bacteria, the clustering of the species assigned to group C within parts of 
the taxonomy tree lends additional credibility to the results (Table S4, C).  

For instance, in Bacteroides (which includes B. ovatus) 21 out of 23 genomes were assigned to group C. In 
these 21 genomes, GeneMarkS-2 found motifs similar to the ones revealed in B. ovatus in conservation pattern and 
localization distribution.  

Also, 30 out of the 30 Flavobacterium genomes (a genus from Bacteroidetes/Chlorobi) were assigned to group 
C. The 6 nt wide motifs similar in the conservation pattern to the ones of B. ovatus were situated at the same distance 
from TIS sites (Fig. S13 for Flavobacterium frigidarium).  

While genomes of the species from these taxa are similar, there are some differences in the derived motifs. In 
particular, Bacteroides tend to have a few strong A nucleotides next to the ‘core’ motif and close to TIS, while 
Flavobacterium do not (Fig. S14). The ‘core’ 6 nt motif (TAAAAA) is present in both taxa; it is located at ~ 9 nt 
from TIS. Consistency of this observation was tested for all 21 Bacteroides and 30 Flavobacteria. Finally, the 6 nt 
core motif is not easy to detect in Prevotella (a close relative of Bacteroides) when the motif width is set to 6 nt. 
However, a motif with width 15 is easier to detect. 

Note that unlike B. ovatus, other Group C species may have the 16S rRNA with a mutated or truncated tail (Lim 
et al. 2012). 

In the recent publication (Nakagawa et al. 2017) leaderless and non-SD initiation were included into the same 
class. Here, we made distinction between the leaderless transcripts and, thus, the absence of RBS (groups A and B) 
and the leadered transcripts with non-SD patterns in 5’UTR (group C). 

Overall, GeneMarkS-2 provides the means for revealing genomes that use non-SD RBS as well as for the 
delineation of the motifs and their use in gene prediction.  

Final remarks. Remaining difficulties in automatic genome annotation are concerned about some minor 
fractions of genes in any given genome. 
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Figure 6. The motif logo and the spacer length distribution of Bacteroides ovatus, a group C genome. 

 
  
Few genes still escape detection by ab initio tools, e.g. genes significantly biased in higher order oligonucleotide 

composition or genes containing frameshifts. When an orthologue of such a gene is present in the database, the 
frameshift identification can be done rather easily. Some frameshifts, however, are functional and conserved in 
evolution, such as prfB gene, encoding the translation initiation factor (Craigen and Caskey 1986) or genes 
regulating some mobile elements (Sharma et al. 2011). Still, the fraction of genes with the programmed frameshifts 
is minor. The pseudogenes, especially expressed pseudogenes, could mislead gene finding tools into generating 
predictions that eventually would be classified as false positive.  

An extension of GeneMarkS (known as GeneMarkS+) integrating external evidence, e.g. protein homology, 
into ab initio gene prediction was developed recently and was used in the latest version of the NCBI prokaryotic 
genome annotation pipeline as integrator of several types of evidence into genome annotation (Tatusova et al. 2016). 
Similarly, GeneMarkS-2 has already been extended to the “plus” version (paper in preparation).  
       
      Software availability 
The software and input files used in this study have been made available through the website 
http://topaz.gatech.edu/GeneMark/genemarks2.cgi 
Running time of GeneMarkS-2 is currently ~ 3 minutes on genome of the size of E. coli.  
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