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Abstract 14 

The pathogenesis of severe Plasmodium falciparum malaria is incompletely understood. Since the 15 

pathogenic stage of the parasite is restricted to blood, dual RNA-sequencing of host and parasite 16 

transcripts in blood can reveal their interactions at a systemic scale. Here we identify human and 17 

parasite gene expression associated with severe disease features in Gambian children. Differences in 18 

parasite load explained up to 99% of differential expression of human genes but only a third of the 19 

differential expression of parasite genes. Co-expression analyses showed a remarkable co-regulation 20 

of host and parasite genes controlling translation, and host granulopoiesis genes uniquely co-21 

regulated and differentially expressed in severe malaria. Our results indicate that high parasite load 22 

is the proximal stimulus for severe P. falciparum malaria, that there is an unappreciated role for 23 

many parasite genes in determining virulence, and hint at a molecular arms-race between host and 24 

parasite to synthesise protein products. 25 

 26 
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Introduction 27 

Plasmodium falciparum malaria is one of the most important infectious diseases affecting 28 

humankind[1]. Progress has been made in malaria treatment and control in the last decade but this 29 

is threatened by the spread of antimalarial and insecticide resistance[2-4]. Understanding of 30 

pathogenic mechanisms associated with severe malaria (SM), which puts individuals at risk of death, 31 

has also progressed[1, 5, 6]. Immunopathology, vascular endothelial dysfunction and parasite 32 

sequestration (obstruction of the microvasculature by cytoadherent parasites) all have putative roles 33 

in SM[5], and high parasite load is also strongly associated with greater risk of severe disease[5, 7-34 

10]. Rodent models have contributed to mechanistic dissection of the pathogenic processes, but 35 

these cannot yet reproduce all of the features of naturally-occurring P. falciparum malaria[6, 11].  An 36 

integrated understanding of the respective roles and interactions of host and parasite in human SM 37 

is notably lacking, and whether SM involves excessive, proportionate or insufficient host responses 38 

to the parasite is largely unknown. Here we combine estimates of parasite load with host and 39 

parasite whole blood gene expression to investigate their associations with severity and different 40 

pathological features of SM, aiming to provide a global view of systemic host-parasite interaction. 41 

This approach allows us to harness the natural variation which occurs between humans infected 42 

with P. falciparum to better understand the different pathogenic processes which underlie SM.     43 

 44 

Results 45 

We performed dual-RNA sequencing on whole blood of 46 Gambian children with uncomplicated 46 

(UM, n=21) and severe (SM, n=25) P. falciparum malaria (Supplementary Table 1). After exclusion of 47 

var, rifin, stevor[12] and highly polymorphic regions in the parasite genome (see Methods), we 48 

obtained median 26.6 million (26.6 million SM, 26.7 million UM, P=0.913) human and 9.61 million 49 

(10.3 million SM, 5.03 million UM, P=0.346) parasite uniquely mapped reads from each subject (Fig 50 

1a), with considerably greater parasite read depth than a previous study conducted in adults with 51 

UM[13]. Systemic infection provokes changes in blood leukocyte subpopulations which could 52 
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dominate changes in gene expression[14] so we performed “gene signature” based 53 

deconvolution[15] to identify and adjust for heterogeneity in the major leukocyte subpopulations in 54 

each sample (Fig 1b, Supplementary Fig 1). Parasite gene expression in vivo is also influenced by the 55 

mixture of parasite developmental stages at the time of sampling because there is phasic variation in 56 

gene expression[16] and increasing RNA content during the intraerythrocytic developmental 57 

cycle[17]. Therefore we used the same deconvolution approach with “gene signatures” derived from 58 

highly synchronous parasite cultures[16, 18] to identify the contribution of parasites at different 59 

developmental stages (Supplementary Fig 2 and Fig 1c).  There was a trend towards greater 60 

proportions of late stage asexual parasites and gametocytes in children with SM (Fig 1d).  61 

 62 

Examination of principal component plots before and after adjustment for heterogeneity in the 63 

mixture of leukocytes and parasite developmental stages revealed that segregation of SM and UM 64 

cases was improved after adjustment (Fig 1e,f). Therefore we used these adjusted gene expression 65 

values for all subsequent analyses, essentially allowing us to compare gene expression as if all 66 

subjects had the same leukocyte and parasite population compositions. 67 

 68 

Whole blood genome-wide gene expression can be used to characterise host cellular responses and 69 

infer upstream regulators[19], whilst variations in P. falciparum gene expression are believed to 70 

reflect adaptation to the host environment and contribute to virulence[20, 21]. We identified 71 

significantly differentially expressed genes from human and parasite in SM vs UM (Fig 2a,b) and also 72 

for different subtypes of SM (hyperlactatemia (HL) and cerebral malaria (CM), alone or in 73 

combination) vs UM (Supplementary Figure 3). There were 770 human and 236 parasite significantly 74 

differentially expressed genes (DEGs, with false discovery rate (FDR)-adjusted P<0.05) between SM 75 

and UM (Supplementary Table 2 and 3). Some human genes had both conspicuously high expression 76 

in SM relative to UM (high log-fold change) and were also highly significant (Fig 2a):  the four most 77 

upregulated (MMP8, matrix metallopeptidase 8; OLFM4, olfactomedin 4; DEFA3, defensin A3; 78 
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ELANE, neutrophil elastase) notably all encode neutrophil granule proteins[22]. Interestingly the 79 

number of human and parasite DEGs was substantially higher when comparing the subgroup of 80 

subjects with cerebral malaria plus hyperlactatemia (CH, the most severe phenotype, n=12) vs UM, 81 

despite the smaller number of subjects (Supplementary Table 2, Supplementary Figure 3).  82 

 83 

Previous studies have shown a correlation between host gene expression and circulating 84 

parasitemia[23, 24], suggesting that this might explain some of the differences in gene expression 85 

between SM and UM. However peripheral blood parasite measurements underestimate the total 86 

number of parasites in the body because parasitized red blood cells can also become sequestered, 87 

accumulating in small blood vessels rather than remaining in circulation[12, 25]. The parasite 88 

protein, P. falciparum histidine rich protein 2 (PfHRP2), can be used as a plasma biomarker of total 89 

parasite load and is more strongly associated with severity[7, 8, 10] (Supplementary Table 1) and 90 

death[8, 10]. Therefore we examined the association of host and parasite gene expression with both 91 

circulating parasite density and PfHRP2 (restricting comparisons to subjects with data for both). We 92 

found 1886 human genes significantly (FDR P<0.05) correlated with log parasite density and 616 93 

significantly correlated with log PfHRP2 (102 common to both), whilst only 2 and 10 parasite genes 94 

were significant in the corresponding analyses (none common to both) (Supplementary Tables 4 and 95 

5). We then asked to what extent the differences between SM and UM phenotypes were dependent 96 

on parasite load. The number of human SM vs UM DEGs remained almost unchanged before and 97 

after adjustment for parasite density but was reduced by 98.6% after adjustment for PfHRP2, whilst 98 

parasite DEGs changed much less after the same adjustments (Figure 2c, Supplementary Tables 2 99 

and 3). Findings were similar when adjusting for parasite load in comparisons of each of the SM 100 

subtypes vs UM (Supplementary Tables 2 and 3). 101 

 102 

Genes associated with severity after adjustment for parasite load may include determinants of 103 

susceptibility to severe disease. Of particular interest amongst these, MMP8 (also known as 104 
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collagenase 1) is a metallopeptidase which causes endothelial barrier damage in several infection 105 

models[26, 27]; AZI2 (also known as NF-Kappa-B-Activating Kinase-Associated Protein 1, NAP1) 106 

encodes a regulator of the type 1 interferon response[28], a pathway which is known to control 107 

severity of disease in rodent malaria models[29]; whilst CX3CR1 is the receptor for fractalkine (a 108 

biomarker of CM in humans[30]) and a marker for a subset of monocytes which are particularly 109 

efficient at killing malaria parasites[31].  110 

 111 

Next we performed pathway analyses to better understand the biological functions of the significant 112 

genes in the preceding analyses. Human genes correlated with log parasite density were particularly 113 

enriched in pathways related to translation (especially exported proteins), oxidative phosphorylation 114 

and ubiquitination (Fig 2d, Supplementary Table 6), with predicted upstream regulation by RICTOR 115 

(RPTOR independent companion of MTOR complex 2), HNF4A (hepatocyte nuclear factor 4 alpha) 116 

and XBP1 (X-box binding protein 1; Supplementary Table 7). Genes correlated with log PfHRP2 were 117 

particularly enriched in inflammatory and immune response functions (specifically innate response 118 

and type 1 interferon, Fig 2d, Supplementary Table 6), with predicted regulation by IFN-γ, TGM2 119 

(transglutaminase 2) and IFN-α2 (Supplementary Table 7). Some of these immune response 120 

functions were also correlated with parasite density but were not significantly enriched because of 121 

the larger denominator in this analysis (Fig 2d, Supplementary Tables 6). We compared human DEGs 122 

from SM vs UM comparisons without adjustment and with adjustment for parasite density or 123 

PfHRP2 (Figure 2e, Supplementary Table 6)). In unadjusted analyses human genes were particularly 124 

enriched in processes controlling protein synthesis and targeting to the endoplasmic reticulum, cell 125 

stress and immune response and the most significant predicted upstream regulators were CSF3 126 

(colony stimulating factor 3, also known as granulocyte colony stimulating factor, GCSF), FAS (Fas cell 127 

surface death receptor) and PTGER2 (Prostaglandin E receptor 2, Supplementary Table 7 ). After 128 

adjustment for parasite density we observed little change in pathway enrichment associated with 129 

severe malaria, whilst adjustment for PfHRP2 reduced all pathway enrichments. In contrast parasite 130 
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pathways were less influenced by adjustment for either parasite density or PfHRP2 (Fig 2f, 131 

Supplementary Table 8), the most consistently significant being RNA processing, protein transport, 132 

and hemoglobin catabolism. Findings were broadly similar in corresponding analyses for all subtypes 133 

of SM (Supplementary Figure 4, Supplementary Table 6), with the exception that adjustment for 134 

parasite density produced a 5-fold increase in the number of DEGs in the hyperlactatemia (HL) vs 135 

UM comparison. This intriguing finding suggests that the response to circulating parasites in these 136 

groups with similar parasite density (Supplementary Table 1) may partially mask differences in gene 137 

expression associated with hyperlactatemia.     138 

 139 

To further explore pathophysiology we examined the correlation of human and parasite gene 140 

expression with lactate and hemoglobin concentrations and platelet count[32]. 1012 human genes 141 

were significantly correlated with lactate concentration, reducing by half after adjustment for 142 

parasite density and by 95% after adjustment for PfHRP2 (Fig 2c,g, Supplementary Table 4). Immune 143 

response pathways were prominent in unadjusted analysis (the negative association with type 1 144 

interferon being particularly notable), and the most significant predicted upstream regulators were 145 

interferon-γ, interferon-α, and TNF. Adjustment for parasite density retained most enrichment terms 146 

whilst adjustment for PfHRP2 removed almost all significant enrichment  (Fig 2g, Supplementary 147 

Table 6) but remaining genes included PKM (encoding the glycolytic enzyme pyruvate kinase M) and 148 

GYS1 (encoding the glycogenic enzyme glycogen synthase 1) (Supplementary Table 4). These findings 149 

suggest hyperlactatemia is driven by the parasite load-dependent inflammatory response, but also 150 

influenced by some parasite load-independent variation in control of host metabolism. 100 parasite 151 

genes were significantly correlated with lactate, with much less dependency on parasite load (Fig 152 

2c,h, Supplementary Table 5). Unexpectedly these included two glycolysis genes (hexokinase and 153 

acetylCoA synthetase), negatively correlated with lactate (Fig 2h, Supplementary Table 9), suggesting 154 

that rather than parasite-derived lactate driving hyperlactatemia, host-derived lactate may 155 

negatively regulate parasite glycolysis. Compared to lactate, platelet count was associated with 156 
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fewer human genes, and these were less dependent on parasite load (Fig 2c,i, Supplementary Table 157 

4). The most enriched pathways also differed considerably, with nucleosome assembly 158 

(predominantly histone genes), coagulation, and response to wounding genes, all negatively 159 

correlated with platelet count (Fig 2i), and the most significant predicted upstream regulators being  160 

IL13, RB1 (RB transcriptional corepressor 1), and IL1RN (Supplementary Table 7). Activation of 161 

coagulation pathways is increasingly recognised in severe malaria[33, 34], but free histones can also 162 

induce thrombocytopenia[35] and may be relevant in malaria. No human genes and few parasite 163 

genes were associated hemoglobin concentration in any analyses and only one parasite gene was 164 

associated with platelet count (Figure 2c, Supplementary Table 4,5).  165 

  166 

Taken together the preceding findings indicate that total parasite load is the dominant driver of host 167 

leukocyte gene expression in malaria, particularly inflammatory and immune response genes, and 168 

differences in parasite load explain almost all of the human gene expression differences between SM 169 

and UM. Despite this, specific parasite load-dependent pathways were differentially associated with 170 

distinct aspects of systemic pathophysiology, and circulating parasites correlated with patterns of 171 

host gene expression suggesting that parasite localization substantially alters the host-parasite 172 

interaction. In contrast to host genes, parasite gene expression showed little association with 173 

parasite load, implying that the non-polymorphic genes differentially expressed between SM and 174 

UM do not directly contribute to high parasite load, but may contribute to other aspects of 175 

pathogenesis or simply reflect parasite responses to the perturbed host environment.  176 

 177 

Whilst these independent analyses of host and parasite gene expression associations with severity 178 

are enlightening, dual-RNA sequencing can also be used to identify molecular interactions within and 179 

between species and their associations with severity[36]. Expression of groups of genes with 180 

common functional roles are often highly correlated and can be identified through co-expression 181 

network analysis[37]. We applied this methodology to identify correlated modules of genes, which 182 
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could originate from either or both species and were named according to the “hub gene” which has 183 

the greatest connectivity within the module. First we analysed all subjects together and generated a 184 

network with 26 modules (Fig 3 and Supplementary Table 9): 10 containing exclusively human genes, 185 

5 exclusively parasite genes, and 11 with both human and parasite genes (although most of these 186 

were highly skewed to a single species).  All modules showed significant functional enrichments 187 

regardless of host or parasite origin. The composite expression of genes within a module can be 188 

described by a module eigengene value and, as expected, there were significant associations 189 

between module eigengene values and severity, parasite load, and laboratory parameters (Figure 3). 190 

Only the HSPH1 (heat shock protein family H (Hsp110) member 1) module contained more than 10 191 

genes from both human and parasite, strongly enriched in human heat shock response genes and 192 

parasite RNA metabolism genes, perhaps indicating that these parasite genes particularly promote 193 

human cell stress. Some host-dominated and parasite-dominated modules were also highly 194 

correlated with each other, most notably the RPL24 (ribosomal protein L24) module (highly enriched 195 

in translation pathways) was strongly correlated with the remarkably homologous PF3D7_0721600 196 

(putative 40S ribosomal protein S5) parasite module. We excluded read mapping errors as an 197 

explanation for this, and suggest that this indicates co-regulation of conserved host and parasite 198 

translation machinery. Furthermore, most of these genes were also differentially expressed between 199 

SM and UM, perhaps indicating a “molecular arms race” between parasite and host to synthesise 200 

proteins which may, in excess, contribute to collateral tissue damage.  201 

 202 

Co-expression network modules can be used as units of analysis, affording considerable dimension 203 

reduction for whole-genome expression data. We used module eigengene values[37, 38] and 204 

parasite load (with which many modules were correlated, Fig 3) in linear regression models to 205 

determine the best within-sample predictors of severity, starting with all significant univariate 206 

associations and proceeding by backward selection (Supplementary Table 10). The best multivariate 207 

model combined MMP8, OAS1 (2'-5'-oligoadenylate synthetase 1) and LYSMD3 (LysM, putative 208 
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peptidoglycan-binding, domain containing 3) module eigengenes, but not parasite load. Interestingly 209 

these modules represent distinct aspects of the immune response: the MMP8 module, highly 210 

enriched in defence response genes with predicted upstream regulators CEBPA (CCAAT/enhancer 211 

binding protein alpha, a myeloid transcription factor) and CSF3, likely reflects granulopoiesis[22]; the 212 

OAS1 module is highly enriched for type 1 interferon response genes; the small LYSMD3 module, 213 

with limited GO enrichment, contains a functional network around interferon-γ (Supplementary 214 

Figure 5). The direction of association of the OAS1 module with severity changed from negative in 215 

univariate analysis to positive in the multivariate analysis, suggesting that inadequate 216 

downregulation of the type-1 interferon response in conjunction with upregulation of granulopoiesis 217 

and interferon-γ signalling may contribute to pathogenesis.   218 

 219 

Considering all subjects together for generation of co-expression networks maximises power to 220 

detect consistently co-regulated genes but may not identify sets of genes where co-regulation is 221 

altered by severity. For this reason we also created separate co-expression networks for UM and SM 222 

and compared the modules to identify differential co-expression (Fig 4, Supplementary Table 11). 223 

Eight modules showed significant preservation between networks, seven were partially preserved, 224 

and two were unique to SM (Figure 4a, Supplementary Table 11). Partial preservation was common 225 

amongst modules comprised predominantly from human or parasite genes (Figure 4a,b), and 226 

module preservation was not dependent on the proportion of module genes differentially expressed 227 

between SM and UM (Figure 4a,c).  Again, a MMP8 module was identified (exclusively human genes, 228 

many encoding neutrophil granule and phagosome components), unique to SM with 38% of genes 229 

significantly differentially expressed between SM and UM, enriched in host defence pathways 230 

(Supplementary Table 11) and predicted to be regulated by CEBPA, CSF3 and TNF. These findings 231 

strongly suggest this module represents emergency granulopoiesis[22] and mark this as a specific 232 

feature of SM. The TIPRL (TOR Signaling Pathway Regulator) module (99.2% human genes) was also 233 

unique to SM but contained very few (1.3%) DEGs, had limited GO enrichment (Supplementary Table 234 
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11), and the most significant predicted upstream regulator was the transcription factor HNF4A. Both 235 

TIPRL and HNF4A have regulatory roles in metabolic, inflammatory and apoptosis signal pathways, 236 

so the minimal change in expression of this module may represent an aberrant response in SM. 237 

Amongst the partially preserved modules we found evidence that host and parasite translation 238 

pathways were more tightly co-regulated in SM than UM, genes being distributed across fewer 239 

modules in SM (Fig 4a, Supplementary Table 11).  240 

 241 

Discussion  242 

We have shown that dual-RNA sequencing can be used to identify systemic host-pathogen 243 

interactions and potential pathogenic mechanisms associated with severe infection in humans. The 244 

differences in human and parasite gene expression between SM and UM were much clearer after 245 

adjusting for heterogeneity of leukocyte population and parasite developmental stage. Although the 246 

importance of accounting for such variation is well recognised[14], it has rarely been done in malaria 247 

or other infectious disease transcriptomic studies.  248 

Our most striking finding came from integrating parasite load with global gene expression, revealing 249 

the overriding effect of parasite load on the differences in human gene expression between SM and 250 

UM. Previous studies have examined the association between human gene expression and 251 

circulating parasitemia[13, 23, 24], but we found that estimation of total body parasite load was 252 

necessary to appreciate the full effect on host response. Our findings imply that SM is not the 253 

consequence of an excessive host response, but that there is an appropriate host response to an 254 

excessive pathogen load. This has important implications for other infectious disease, immunology, 255 

and pathogenesis research in humans. Total body pathogen load is much harder to measure in other 256 

infections in humans[39], yet failure to account for it may lead to misinterpretation of associations 257 

between host factors and severity or protection.  258 

Despite the dominant effect of parasite load, we found that specific sets of genes induced by 259 

infection were associated with different pathophysiological consequences of malaria. Distinct sets of 260 
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genes were correlated lactate concentration and platelet count, and associated with different 261 

clinical presentations of SM. Alternative analytical approaches repeatedly identified the association 262 

of genes expressed during neutrophil granulopoiesis (such as MMP8) and translation pathways with 263 

severe outcomes. There is plentiful evidence that neutrophil granule proteins are released in severe 264 

malaria[40, 41], can impair vascular endothelial functions such as barrier integrity[26, 27], and may 265 

therefore have a direct role in the pathogenesis of SM. Unfortunately neutrophil related signatures 266 

are not differentially expressed in the whole blood transcriptome of the widely used rodent 267 

experimental cerebral malaria model[42], which means that experimental testing of the role of 268 

neutrophils may be challenging.  269 

We observed an intriguing relationship between type 1 interferon responses and severity, which 270 

may help to tie together data from previous observations in humans and animal models. A previous 271 

small study found higher expression of type-1 interferon response genes in UM than SM and 272 

suggested that this may be protective against developing SM[43]. However we found that type-1 273 

interferon response genes were negatively correlated with parasite load, indicating that 274 

downregulation with increasing parasite load (and severity) is a more likely explanation. When we 275 

performed multivariate analyses using gene expression modules to explain severity, our results 276 

suggested that insufficient downregulation of type 1 interferons was in fact associated with severity. 277 

This would be more consistent with results in several animal models where genetic or antibody-278 

mediated ablation of type-1 interferon signalling improves outcome[44-47].   279 

The role of translation pathways is more speculative, but co-regulation of these genes between host 280 

and parasite, which becomes tighter in more severe disease, implies that there may be an inter-281 

species feedback loop. Increased translation is important for production of host defence effector 282 

proteins[48] and parasite proteins which enable survival[49]. Perhaps, as parasite load increases the 283 

host response increases, the parasite produces more proteins necessary to survive, and the cycle 284 

amplifies until parasite load and host response cause host organ damage and severe disease. 285 
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In addition to translation-related genes, we also identified hundreds of other parasite genes which 286 

were associated with severe disease. Many of these genes have as yet unknown function. However 287 

the enrichment of genes involved in protein transport, for example, suggests there may be layers of 288 

control which determine parasite protein export into the host cell and the molecular host-parasite 289 

interactions which predispose to SM.  Some of these aspects of parasite gene regulation may only be 290 

appreciated in vivo, in the parasite’s natural environment. 291 

The data we have generated and comprehensive analyses we have performed provide a unique and 292 

valuable resource for the research community. These should be launch points for future studies 293 

using alternative approaches to assess whether the mechanisms we have implicated through gene 294 

expression do indeed play causal roles in SM and may be targets for much needed adjunctive 295 

therapies.    296 
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Methods 297 

Subjects and samples  298 

Gambian children (under 16 years old) with P. falciparum malaria were recruited from three peri-299 

urban health centres, The MRC Gate Clinic, Brikama Health Centre, and The Jammeh Foundation for 300 

Peace Hospital, Serekunda, as part of a larger study of severe malaria[7, 50, 51]. Informed consent 301 

was obtained from the child’s parent or legal guardian for collection and subsequent use of samples. 302 

The study was approved by the Gambian Government / MRC Laboratories Joint Ethics Committee. 303 

All children underwent full clinical examination and were managed in accordance with the Gambian 304 

government guidelines. Malaria was defined by the occurrence of fever in the last 48 hours before 305 

recruitment and >5000 asexual parasites/μL in the peripheral blood. Subjects were further 306 

categorized into different severe malaria phenotypes using modified World Health Organization 307 

criteria: cerebral malaria (CM) was defined as Blantyre Coma Score (BCS) of 1 or 2, or a BCS of 3 if 308 

the motor response was 1, AND no hypoglycaemia, no rapid improvement in response to fluid 309 

resuscitation, no suspicion of meningitis; hyperlactatemia (HL), blood lactate concentration > 310 

5mmol/L; both CM and HL (CH)[7]. At the time of presentation to the clinic, prior to any antimalarial 311 

treatment or blood transfusion, capillary blood was used for measurement of lactate and glucose 312 

concentrations and thick and thin blood films, venous blood was collected into EDTA for sickle cell 313 

screen and full blood count, PAXgene blood RNA tube (BD), and sodium heparin (BD) for plasma 314 

separation[50]. Parasitemia was calculated using 50 high power fields on Giemsa-stained thin blood 315 

smears. Plasma P. falciparum histidine-rich protein II (PfHRP2) was measured by ELISA (Cellabs)[7].  316 

For the present study we used 46 subjects selected from those with ≥1µg RNA available which 317 

showed no / minimal evidence of degradation on visual inspection of a Bioanalyser (Agilent) trace 318 

(RNA integrity number calculations are not valid for dual species RNA analysis). To reduce potential 319 

confounding we aimed to frequency match subjects between SM and UM groups as closely as 320 

possible by age and gender, and if there remained a choice of samples available we selected those 321 
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with the most complete additional clinical and laboratory data. For UM samples we aimed to include 322 

an equal number with parasitemia above and below 5% (to maximise the chance of obtaining 323 

parasite reads in some of the subjects). For SM samples we aimed to include subjects with each of 324 

the common SM phenotypes seen in this part of the Gambia in approximately equal numbers, 325 

although final numbers were determined by availability and quality of RNA. Detailed information 326 

about the study subjects is shown in Supplementary Table 1 and Supplementary Dataset 1. 327 

Characteristics were compared between subject groups using one-way ANOVA for continuous data 328 

and Fisher’s exact test for categorical data. 329 

RNA sequencing  330 

Total RNA was extracted using the PAXgene Blood RNA kit (BD). Libraries were prepared from 1μg of 331 

total RNA using the ScriptSeq v2 RNA-seq library preparation kit (Illumina) with additional steps to 332 

remove ribosmal RNA (rRNA) and globin messenger RNA (mRNA) using the Globin-Zero Gold kit 333 

(Epicentre). Strand-specific libraries were sequenced using the 2x100 bp protocol with an Illumina 334 

HiSeq 2500 instrument. In order to eliminate batch effects, samples were randomized for the order 335 

of library preparation. For sequencing, 5-6 samples were run per lane, and each lane contained at 336 

least one sample from each disease type, randomly allocated in a block design. Library preparation 337 

and sequencing were carried out by Exeter University sequencing service. 338 

Genomes and RNA annotations  339 

Human reference genome (hg38) was obtained from UCSC genome browser 340 

(http://genome.ucsc.edu/) and P. falciparum reference genome (release 24) was obtained from 341 

PlasmoDB (http://plasmodb.org/). Human gene annotation was obtained from GENCODE (release 342 

22) (http://gencodegenes.org/releases/) and P. falciparum gene annotation from PlasmoDB (release 343 

24) (http://plasmodb.org). 344 

Read Mapping and quantification  345 
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RNA-seq data was mapped to the combined genomic index containing both human and P. 346 

falciparum genomes using the splice-aware STAR aligner, allowing up to 8 mismatches for each 347 

paired-end read[52]. Reads were extracted from the output BAM file to separate parasite-mapped 348 

reads from human-mapped reads. Reads mapping to both genomes were counted for each sample 349 

and removed. BAM files were sorted, read groups replaced with a single new read group and all 350 

reads assigned to it, and indexed to run RNA-SeQC, a tool for computing quality control metrics for 351 

RNA-seq data[53]. HTSeq-count was used to count the reads mapped to exons with the parameter “-352 

m union”[54]. Only uniquely mapping reads were counted. 353 

Since our analysis of P. falciparum gene expression was reliant on a reference genome, families of 354 

highly polymorphic var, stevor, and rifin genes were removed from downstream analyses as these 355 

exhibit great sequence diversity between parasites and are likely to be incorrectly characterized[12]. 356 

Additional highly polymorphic regions within the P. falciparum genome which might also be 357 

incorrectly characterized were identified using schizont stage RNA-seq data from 9 clinical isolates 358 

(Duffy et al., manuscript submitted). In total, 139 genes were identified with highly polymorphic 359 

regions. A reference GTF file containing P. falciparum gene annotations was modified to remove 360 

these regions without removing the genes, and the resulting read count data generated using the 361 

modified GTF file was used for downstream analysis.  362 

Outlier identification  363 

With the R package edgeR, raw read counts of each data set were normalized using a trimmed mean 364 

of M-values (TMM), which takes into account the library size and the RNA composition of the input 365 

data[55]. A multi-dimensional scaling (MDS) plot was used to identify the distances between 366 

samples that correspond to leading biological coefficient of variation. Up to the 6th dimension of 367 

MDS was plotted to fully observe the variation between samples, with two dimensions visualized at 368 

a time in scatter plot format. Three parasite samples were consistently found to be positioned away 369 

from other samples in each pair of dimensions, indicating outliers. This was further supported by low 370 
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correlations observed between either of these outliers with other samples. These three samples 371 

were excluded from further parasite gene expression analysis: one sample (HL_478) had very low 372 

parasite reads making estimation of gene expression impossible and the other two samples (CH_285 373 

and UM_589) were conspicuous outliers on MDS plots, possibly due to imperfect library preparation. 374 

Deconvolution analysis  375 

To account for inter-individual variation in the proportions of different types of blood leukocyte, and 376 

for variation in the distribution of circulating parasites through the intraerythrocytic developmental 377 

cycle, deconvolution analysis was performed on RNA-seq data using CellCODE[15]. This uses a multi-378 

step statistical framework to compute the relative differences in cell proportion represented as 379 

surrogate proportion variables (SPVs). It requires a reference data set that contains gene expression 380 

profiles for each cell type of interest. Five major immune cell populations were selected from 381 

Immune Response In Silico (IRIS)[56] to constitute the human reference data set: neutrophil, 382 

monocyte, CD4+ T-cell, CD8+ T-cell, and B-cell. Fragments Per Kilobase of transcript per Million 383 

mapped reads (FPKM) values were calculated from human RNA-seq data and log-transformed to 384 

simulate a microarray data set. For the parasite reference data set, RNA-seq data sets were obtained 385 

for four specific stages in the parasite asexual and sexual stage (0 hour, 24 hour, 48 hour, and 386 

gametocyte stage V)[16, 18], normalized by relative library sizes of samples (i.e. size factors) using 387 

edgeR. An identical normalization method was also applied for the input parasite RNA-seq data. A 388 

trial-and-error approach was taken to obtain the optimum SPV values for each cell-type. For human 389 

deconvolution, a cutoff value of 1.2 and a maximum number of marker genes of 50 appeared 390 

optimal. For parasite deconvolution, a cutoff value of 1.7 and a maximum number of marker genes 391 

of 50 appeared optimal. 392 

Validation of CellCODE for P. falciparum developmental stage deconvolution (for which its use has 393 

not previously been reported) was performed by comparison with previously reported “stage-394 

specific” marker genes[57] and by assessing performance in synthetic data sets constructed by 395 
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mixing together in varying proportions randomly selected reads from RNA-seq reference 396 

datasets[16, 18] of the different parasite developmental stages.  397 

Differential gene expression and linear regression analysis 398 

Prior to carrying out any downstream analyses genes with very low TMM-normalized read counts (< 399 

5 counts-per-million (cpm) in < 3 samples and undetected in the remainder) were excluded. The 400 

generalized linear model tool in edgeR was employed to perform differential gene expression 401 

analysis (DGEA) between disease groups with adjustment for leukocyte and parasite SPVs, and in 402 

subsequent analyses additional adjustment for log parasite density and log PfHRP2.  403 

Linear regression analysis was performed in edgeR to identify genes significantly associated with 404 

clinical variables of interest. Input gene expression values included adjustment for SPVs. The 405 

variables considered were: log PfHRP2, log parasite density, lactate concentration, platelet counts, 406 

and hemoglobin concentration. Additional analysis for lactate, platelets and hemoglobin were 407 

conducted including adjustment for log parasite density and log PfHRP2.  408 

In both DGEA and linear regression analyses, false Discovery Rate (FDR) was computed for each 409 

individual analysis using the Benjamini-Hochberg procedure[58]. Genes with FDR below 0.05 were 410 

considered to be differentially expressed. 411 

Gene ontology and KEGG pathway enrichment analysis 412 

Gene ontology (GO) terms for genes were obtained from Bioconductor package “org.Hs.eg.db” for 413 

human and “org.Pf.plasmo.db” for parasite. Input gene lists were significantly differentially 414 

expressed genes or genes that were significantly associated with laboratory variables. Fisher’s exact 415 

test was used to identify significantly over-represented GO terms from these gene lists. The 416 

background sets for each species consisted of all expressed genes detected in the data set with the 417 

exclusion of those with very low expression as described above. Enrichment analysis for biological 418 

process terms was carried out using the "goana()" function in edgeR. The least redundant GO terms 419 

with greatest significance in each analysis were identified for reporting using the tool REVIGO[59]. 420 

Ingenuity Pathway Analysis (Qiagen) was used for prediction of upstream regulators of groups of 421 

differentially expressed genes, and to identify functional networks.  422 
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Construction of a coexpression network 423 

The weighted gene coexpression network analysis (WGCNA) tool was used to construct a gene 424 

coexpression network[38]. The input data for WGCNA was read counts for each gene feature 425 

normalized using TMM method and then adjusted for SPVs using the command 426 

"removeBatchEffect()" from the R package edgeR. Both human and parasite expression data were 427 

analyzed together as a single set of genes for each subject. In order to comprehensively study the 428 

relationships between genes, two sets of networks were created: one with all samples from SM and 429 

UM groups, and the other with two separate sub-networks, generated from samples from SM and 430 

UM groups respectively. Network creation was conducted following the WGCNA tool guidelines: 431 

1) Hierarchical clustering was performed at a sample level to detect outliers based on the WGCNA 432 

tool threshold, which were removed from the subsequent network generation (HL_171 and 433 

UM_492). 434 

2) An appropriate soft-thresholding power (b) was chosen by applying the scale-free topology 435 

criterion. This was such that the power value enables the resulting gene network to satisfy the scale-436 

free topology of approximately (R2 > 0.80). 437 

3) Adjacency, which represents the connection strength of two genes in a network, was calculated. 438 

Coexpression similarity was calculated by taking the absolute value of the correlation coefficient, 439 

multiplying by 0.5 and adding 0.5 to create a signed network, where the presence of strongly 440 

negatively correlated gene pairs is downsized. 441 

4) The adjacency matrix was transformed into a topological overlap matrix (TOM) in order to 442 

minimize the effects of spurious associations and noise in the network. 443 

5) Hierarchical clustering on TOM dissimilarity was done to create hierarchical clustering tree of 444 

genes. 445 

6) The dynamic tree cut method was used to group the genes that are highly correlated with one 446 

another into gene modules where minimum module size and the tree height at which genes below 447 

the height is grouped together were specified.  448 
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7) Module eigengene values for each module were calculated, which represents the overall gene 449 

expression profile of a module. Correlation analysis between modules was performed using 450 

eigengene values to identify modules with high similarity, which were then merged together. 451 

The resulting network consisted of genes (represented as nodes in the network) and correlations 452 

between genes (represented as edges in the network), and highly correlated genes grouped 453 

together into modules. To characterize the gene network, several analysis steps were carried out. 454 

The most connected genes in each module were identified as the hub genes. Based on the module 455 

eigengene value, the connections between modules were determined. Pearson correlation analysis 456 

between module eigengene values and clinical variables was performed to identify gene clusters 457 

that are highly associated with clinical traits. Gene set enrichment analysis was performed on each 458 

module to identify significantly enriched GO terms. This data was summarised using OmicCircos[60]. 459 

From two separate sub-networks generated from SM and UM groups respectively, the preservation 460 

of gene connections across SM and UM groups was determined by assessing an overlap of genes for 461 

each module pair (from SM and UM sub-networks respectively), the significance of overlap was 462 

measured using the hypergeometric test. For each significantly preserved module pair, the hub 463 

genes and the significantly enriched GO terms were compared. 464 

The gene network was exported to Cytoscape (http://www.cytoscape.org/) for visualisation. Only 465 

gene pairs with adjacency value of 0.03 or higher were exported to remove genes with low 466 

connections from the network visualization. SM and UM sub-networks were exported separately 467 

and subsequently combined into a single network using the Cytoscape embedded tool "Merge". By 468 

doing so, duplicate genes representing overlap between SM and UM sub-networks were removed, 469 

and connections between genes remained intact such that genes that can only be found on SM sub-470 

network and also connected to the genes that can be found on both networks were not connected 471 

to the genes that can be found on UM sub-network and also connected to the same overlapping 472 

genes.  473 

Logistic regression for association of module eigengenes with severity 474 

Logistic regression was performed using the glm package in R to identify module eigengene values 475 

with univariate association with severity. All modules with significant univariate associations 476 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 25, 2017. ; https://doi.org/10.1101/193631doi: bioRxiv preprint 

http://www.cytoscape.org/
https://doi.org/10.1101/193631


20 
 

(P<0.01) in addition to log PfHRP2 concentration were used in backward selection to identify the 477 

best multivariate model in which all terms were significant. 478 

  479 

Data availability  480 

Sequence data that support the findings of this study will be deposited in ArrayExpress with the 481 

accession codes made available at the time of publication. Source data for Supplementary Table 1 482 

are provided with the paper as Supplementary Dataset 1.  483 
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Figure 1. Whole blood dual RNA-sequencing and deconvolution. (a) Uniquely mapped reads from human (red) and P. falciparum (blue) 715 

from subjects with severe (SM, n=25) and uncomplicated malaria (UM, n=21). (b,c) Heatmaps showing signature gene expression for 716 

different leukocyte (b) and parasite developmental stage (c) populations (rows) and their relative intensity in individual subjects with SM, 717 

including different SM phenotypes (CH, cerebral malaria plus hyperlactatemia; CM, cerebral malaria; HL, hyperlactatemia), and UM 718 

(columns).  (d) Surrogate proportion variables for parasite developmental stages compared between SM and UM using the Mann-Whitney 719 

test (bold line, box and whiskers indicate median, interquartile range and 1.5-times interquartile range respectively). (e,f) Principal 720 

component plots showing the effect of deconvolution on the segregation of subjects with UM and SM, adjusting human (e) and parasite (f) 721 

gene expression for differences in proportions of leukocytes or parasite developmental stages respectively. Analyses of human gene 722 

expression (b,e): SM, n=25; UM, n=21.  Analyses of parasite gene expression (c,d, f): SM, n=23; UM, n=20.  723 
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Figure 2. Association of gene expression with severity features and dependency on parasite load. (a, b) Volcano plots showing extent 724 

and significance of up- or down- regulation of human (a) or P. falciparum (b) gene expression in SM compared with UM (red and green, P 725 

<0.05 after Benjamini-Hochberg adjustment for false discovery rate (FDR); orange and green, absolute log2-fold change (FC) in expression > 726 

1; the 10 most significant genes are annotated; human comparison SM n=25, UM=21; parasite comparison SM n=23, UM=20).  (c) Number 727 

of human and parasite genes associated with severity category and laboratory markers of severity before and after adjustment for 728 

parasite load expressed as either log circulating parasite density or log PfHRP2 concentration. Only subjects with complete data for every 729 

parameter are included. (d-i) Most significantly enriched, non-redundant, gene ontology terms for genes significantly associated with log 730 

parasite density (d) and log PfHRP2 (e),  and the effect of adjustment for these measures on genes significantly associated with severity (f-731 

i) (numbers above bars indicate the number of up-regulated/positively-associated and down-regulated/negatively-associated genes within 732 

each category). (e,f) Human (e) and P. falciparum (f) genes significantly differentially expressed in SM vs UM.  (g,h)  Human (g) and P. 733 

falciparum (h) genes significantly correlated with blood lactate concentration. (i) Human genes significantly correlated with platelet count. 734 
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 735 

Figure 3. Interspecies gene expression modules and their associations with severity.  Circos plot showing gene expression modules 736 

obtained from whole genome correlation network analysis using expression of all human and parasite genes from each subject (SM, n=22; 737 

UM, n=19) as the input. From outside to inside: labels, hub gene and most enriched GO term (with enrichment P-value) for each module; 738 

track 1, module eigengene value for each subject; track 2, clinical phenotype (Red=CH, Orange=CM, Green=HL, Yellow=UM); track 3, hub 739 

gene expression (log CPM) for each subject; track 4, heatmap for correlation with laboratory measurements (clockwise: log parasite 740 

density, log PfHRP2, lactate, platelets, haemoglobin; colour intensity represents Pearson correlation coefficient as shown in legend); track 741 

5, module size and composition (length proportional to number of genes in module; red, human genes; blue, parasite genes); polygons 742 

connect modules with significant (FDR P<0.01) Pearson correlation between eigengene values (width proportional to -log10 FDR P-value; 743 

red=positive correlation, blue=negative correlation)   744 
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Figure 4. Severity-associated differential co-expression within the interspecies gene expression network. (a-c) Cytoscape visualisation of 745 

merged co-expression networks derived separately from SM (n=22) and UM (n=19). Networks were merged such that genes found in both 746 

sub-networks (represented as arrow-shaped, larger-sized nodes) are connected to genes found in only one sub-network (represented as 747 

circular-shaped and smaller-sized nodes). (a) Genes and gene clusters are coloured and annotated by module, species, most enriched gene 748 

ontology terms, and conservation between sub-networks (preserved, module pairs from SM and UM sub-networks display highly 749 

significant overlap with each other and much less significant overlap with other modules; partially preserved, module clusters display 750 

significant overlaps with two or more modules in the other subnetwork; unique, gene clustering only found in one sub-network); genes in 751 

black do not belong to any characterized module. (b) Identical network layout with genes coloured by species (red, human; blue, P. 752 

falciparum). (c) Identical network layout with genes coloured by whether they are significantly differentially expressed in SM vs UM (red, 753 

human; blue, P. falciparum; black, not differentially expressed).   754 
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Supplementary Material 755 

 Supplementary Table 1. Characteristics of study subjects (n=46) 756 

 
CM (n=5) CH (n=12) HL (n=8) UM (n=21) 

P (F 
value) 

Age (years) 4.3 (4.2-4.8) 4.9 (3.6-5.7) 5.0 (3.8-8.3) 6.0 (4.0-9.0) 0.24 
(1.47) 

Male (%) 3 (60%) 5 (42%) 7 (88%) 13 (62%) 0.24 

Parasitemia 
(%) 

8.3 (5.3-9.0)4 12.6 (9.4-19.0) 9.6 (1.8-12.2) 5.1 (3.8-7.0) 0.02 
(3.67) 

Parasites  
(x105 /uL) 

2.3 (1.7-3.1) 3 3.5 (2.7-8.4) 11 2.8 (0.7-5.0) 2.3 (1.6-3.2) 0.02 
(3.55) 

Clones 2 (1.5-2.5) 4 2 (1-2) 9 1 (1-2) 5 2 (1-2) 15 0.68 
(0.51) 

PfHRP2 
(ng/mL) 

202 (93-528) 4 763 (374-1750) 470 (164-2214) 163 (128-227) 0.001 
(6.20) 

Duration of 
illness (days) 

2.0 (1.7-3.0) 2.0 (2.0-2.5) 2.0 (2.0-3.5) 2.7 (2.0-3.0) 0.57 
(0.68) 

Hb (g/dL) 9.7 (7.4-10.4) 9.3 (7.8-11.5) 11 9.1 (7.4-11.0) 10.8 (9.9-12.1) 0.10 
(2.24) 

WBC (x109/L) 9.8 (8.2-12.9) 4 8.8 (6.4-9.4) 11 15.3 (7.9-16.8) 

7 

9.5 (7.7-11.8) 0.30 
(1.27) 

Platelets 
(x109/L) 

41 (40-82) 4 36 (23-65) 11 59 (33-132) 122 (96-132) 0.04 
(3.15) 

Lymphocyte 
(%) 

29.8 
(20.6-37.3) 4 

37.8 
(29.9-49.9)11 

22.3 
(14.7-37.3) 

23.9 
(16.0-33.5)20 

0.05 
(2.78) 

Neutrophil  
(%) 

55.1 
(49.0-69.6) 4 

48.3 
(39.6-56.2) 10 

61.5 
(55.6-74.9) 7 

68.0 
(59.9-79.6)20 

0.01 
(4.25) 

Monocyte  
(%) 

7.1 
(6.0-7.7) 4 

7.8 
(6.8-8.6) 10 

6.6 
(5.1-7.8) 7 

6.7 
(4.8-7.3)20 

0.38 
(1.05) 

CM, cerebral malaria; CH, cerebral malaria plus hyperlactatemia; HL, hyperlactatemia (CM, CH, and HL are all subgroups of severe malaria, 757 

SM); UM, uncomplicated malaria. Data are median (IQR), superscripts indicate the number of subjects with data for each variable if less 758 

than the total; P (F) for ANOVA comparing all groups (degrees of freedom =3) except for sex where P is for Fisher’s exact test.  759 
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Supplementary Table 2. Human genes differentially expressed between severe malaria 760 

phenotypes and uncomplicated malaria in unadjusted and parasite load-adjusted analyses.  761 

  762 

Supplementary Table 3. P. falciparum genes differentially expressed between severe malaria 763 

phenotypes and uncomplicated malaria.  764 

  765 

Supplementary Table 4. Human genes significantly correlated with parasite load measurements 766 

and laboratory parameters.  767 

  768 

Supplementary Table 5. P.falciparum genes significantly correlated with parasite load and 769 

laboratory parameters.  770 

  771 

Supplementary Table 6. Gene ontology terms associated with human differentially expressed or 772 

significantly correlated genes in unadjusted and parasite load-adjusted analyses.  773 

  774 

Supplementary Table 7. Predicted upstream regulators associated with human differentially 775 

expressed or significantly correlated genes in unadjusted and parasite load-adjusted analyses.  776 

  777 

Supplementary Table 8. Gene ontology terms associated with parasite differentially expressed or 778 

significantly correlated genes in unadjusted and parasite load-adjusted analyses.  779 

  780 

Supplementary Table 9. Summary of modules obtained from combined whole genome correlation 781 

network.  782 

 783 

 784 
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Supplementary Table 10. Univariate and multivariate associations of module eigengene values and 785 

parasite load with severity. 786 

  787 

 
Univariate  
log odds 

Univariate 
P-value 

Multivariate  
log odds 

Multivariate  
P-value 

MMP8 12.4 0.00130 66.1 0.0152 
LYSMD3 9.49 0.00353 28.6 0.0178 
PF3D7_1129400 10.0 0.00388   
RPL24 7.77 0.00463   
OAS3 -6.73 0.00943 47.7 0.0261 
HSPH1 9.74 0.0117   
TNRC6B -6.44 0.0136   
KIF11 6.15 0.0179   
PF3D7_1415300 -8.77 0.0184   
PF3D7_1252500 -5.50 0.0216   
PF3D7_1105600 -5.91 0.0218   
LMAN1 5.63 0.0255   
PF3D7_0721600 5.33 0.0283   
PF3D7_0520100 4.99 0.0307   
TPM3 4.44 0.0560   
ANKRD49 3.43 0.133   
MT.ND4 2.48 0.251   
PF3D7_0405400 2.18 0.289   
MUC19 -2.18 0.315   
PF3D7_0812900 -1.85 0.367   
SH3BGRL2 -1.41 0.491   
PSMC3 1.17 0.568   
PF3D7_1024800 -1.08 0.596   
PF3D7_1138700 0.938 0.643   
CPSF6 0.647402239 0.747   
MPP1 0.02183521 0.991   
Log parasite density 1.17 0.0339   
Log PfHRP2 1.4031 0.00440   

Log odds are per unit change in the variable, calculated using logistic regression. The multivariate 788 

model was derived by backwards selection from all variables with univariate P<0.01.    789 
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Supplementary Table 11. Summary and overlap of whole genome correlation sub-networks for 790 

severe and uncomplicated malaria.  791 

  792 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 25, 2017. ; https://doi.org/10.1101/193631doi: bioRxiv preprint 

https://doi.org/10.1101/193631


39 
 

 793 

Supplementary Fig 1. Estimates of the relative proportions of leukocyte subpopulations in subjects with severe and uncomplicated 794 

malaria. (a-e) Surrogate proportion variables compared by severity category for neutrophils (a), monocytes (b), CD4+ T-lymphocytes (c), 795 

CD8+ T-lymphocytes (d), and B-lymphocytes (e) using the Mann-Whitney test (UM, n=21; SM, n=25; bold line, box and whiskers indicate 796 

median, interquartile range and 1.5-times interquartile range respectively).  797 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 25, 2017. ; https://doi.org/10.1101/193631doi: bioRxiv preprint 

https://doi.org/10.1101/193631


40 
 

 798 

Supplementary Fig 2. Validation of the gene-signature approach to estimate parasite developmental stage proportions. (a-c) Correlation 799 

of surrogate proportion variables (SPV) with read counts for putative “stage-specific” marker genes (see Methods): (a) 0hr SPV vs. early 800 

asexual stage marker gene PFE0065w; (b) 48hr SPV vs. late asexual stage marker gene PF10_0020; (c) Gametocyte V SPV vs. developing 801 

gametocyte marker gene PF14_0367 (R for Pearson correlation, n=43). (d-g) Correlation of SPVs with actual proportion of reads derived 802 

from each parasite developmental stage in synthetic mixtures of varying proportions of stage-specific RNA-seq reads from early ring-stage 803 

(0 hour, d), trophozoite (24 hour, e), late schizont (48 hour, f) and mature gametocyte (Stage V, g). R for Pearson correlation, n=43.  804 
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  805 

Supplementary Fig 3. Differential gene expression between severe malaria phenotypes and uncomplicated malaria. Volcano plots 806 

showing extent and significance of up- or down- regulation of human (left hand column) or P. falciparum (right hand column) gene 807 

expression in comparisons between specific phenotypes of SM vs UM (red and green, P <0.05 after Benjamini-Hochberg adjustment for 808 

false discovery rate (FDR); orange and green, absolute log2-fold change (FC) in expression > 1; the 10 most significant genes are 809 

annotated).  810 
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  811 

Supplementary Fig 4. Gene ontology terms associated with genes differentially expressed between severe malaria phenotypes and 812 

uncomplicated malaria, unadjusted or adjusted for parasite load. Most significantly enriched, non-redundant, gene ontology terms for 813 

genes significantly differentially expressed (DEGs) between SM phenotypes and UM (numbers above each bar indicate the number of up-814 

regulated and down-regulated genes within each category). Comparisons are only shown if they include multiple significantly enriched GO 815 

terms. (a) CH (n=11) vs UM (n=21) human DEGS, (b) CH (n=11) vs UM (n=20) P. falciparum DEGs, (c) HL (n=8) vs UM (n=21) human DEGS, 816 

(d) CH+CM (n=14) vs UM (n=20) P. falciparum DEGs, (e) CH+HL (n=19) vs UM (n=21) human DEGS, (f) CH+HL (n=18) vs UM (n=20) P. 817 

falciparum DEGs.  818 
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  819 

Supplementary Fig 5. Top functional network for the small LYSMD3 module. Functional networks were identified in Ingenuity Pathway 820 

Analysis software and the top scoring network is portrayed in radial layout which places the most interconnected gene at the centre. 821 

Genes within the module are shaded. 822 

  823 
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Supplementary Dataset 1. Subject-level clinical and laboratory data 824 
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