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ABSTRACT 

 
The role of the sensory cortex, beyond the amygdala, has been increasingly recognized in animal 

associative learning and memory. Here, we examined olfactory cortical plasticity in human 

olfactory associative learning and memory, while elucidating related changes in emotional and 

perceptual responses. Psychophysical and neurometric analyses were conducted across an odor-

morphing continuum, with the two extreme levels differentially conditioned with aversive and 

neutral stimuli. Conditioned odors acquired distinct emotional values, tracked by ensemble 

response patterns in the orbitofrontal (high-level) olfactory cortex. Also observed were enhanced 

perceptual discrimination and divergent ensemble neuronal response patterns in the anterior and 

posterior piriform (low-to-intermediate-level) olfactory cortices. Whereas emotional-learning-

related changes, both behavioral and neural, maintained 8 days later, perceptual-learning-related 

changes, also both behavioral and neural, recovered by then, highlighting the human aptitude of 

forming persistent emotional memory and related sensory cortical plasticity in contrast to 

transient perceptual alterations of sensory stimuli associated with mild aversive experiences. 
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INTRODUCTION 

Aversive associative learning via conditioning generates reliable fear/threat learning and memory 

such that a conditioned stimulus (CS) takes on threat value and prompts conditioned responses of 

avoidance or attack. Decades of neuroscience research has reached a strong consensus: the 

amygdala plays a critical role in the acquisition and consolidation of threat learning and initiates 

and controls conditioned responses (LeDoux, 2000). These findings have generated prominent 

neural models of anxiety and depression, shedding important light on the pathophysiology of the 

emotional disorders (Davis, 1992; Dunsmoor and Paz, 2015). However, growing evidence is 

expanding this dominant view, incorporating the sensory system including the sensory cortex 

(Grosso et al., 2015a; Li, 2014; Weinberger and Bieszczad, 2011) and, to some extent, the 

thalamus (Do Monte et al., 2015; Penzo et al., 2015; Weinberger, 2004) as additional neural 

substrates for aversive associative learning and memory. 

 

Early animal electrophysiology research, dated to the 1950s, demonstrated plasticity in the 

primary and secondary auditory cortex via associative learning (Diamond and Weinberger, 1984; 

Galambos et al., 1955; Kraus and Disterhoft, 1982; Weinberger et al., 1984). Recent 

investigations have rekindled interest in this topic, corroborating and extending the early findings 

of associative sensory cortical plasticity to all sensory modalities in both humans and animals 

(Dunsmoor and Paz, 2015; McGann, 2015; Miskovic and Keil, 2012; Ohl and Scheich, 2005; 

Wilson and Sullivan, 2011). Animal evidence further suggests that this associative plasticity in 

the sensory cortex not only emerges immediately after conditioning but also shows long-term 

retention with growing specificity to the CS (Weinberger, 2004). Importantly, associative 

plasticity in the secondary sensory cortex, both immediate and long-lasting, plays a critical role 
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in threat memory, with the immediate plasticity being necessary for the formation (Cambiaghi et 

al., 2016a; Grosso et al., 2015b; Yang et al., 2016) and the lasting plasticity necessary for the 

long-term storage (Cambiaghi et al., 2016b; Grosso et al., 2015b, 2017; Kwon et al., 2012; Sacco 

and Sacchetti, 2010) of threat memory.   

  

In addition to ascribing threat value to the CS, aversive associative learning can also alter basic 

perceptual processing (e.g., detection and discrimination) of the CS (vs. non-CS), resulting in 

associative perceptual learning (Chapuis and Wilson, 2012; Li et al., 2008; McGann, 2015; 

Padmala and Pessoa, 2008; Wilson and Sullivan, 2011). Such associative perceptual learning has 

also been linked to sensory cortical plasticity, highlighting improved discrimination of the CS 

that is accompanied by divergent sensory cortical responses to the CS (vs. non-CS; Chapuis and 

Wilson, 2012; Li et al., 2008) and depends on the integrity of the sensory cortex (Aizenberg and 

Geffen, 2013). In comparison to typical (non-associative) perceptual learning that often requires 

prolonged sensory exposure and repeated training (Gibson and Walk, 1994; Gilbert et al., 2001), 

associative perceptual learning via conditioning possesses an extraordinary advantage of 

achieving substantial perceptual gain through only a few exposures to the CS (Huang et al., 

2007). Furthermore, such associative perceptual learning has the potential to maximize the 

benefit of threat learning by facilitating defensive response to the CS via enhanced CS detection 

(Åhs et al., 2013; Padmala and Pessoa, 2008; Parma et al., 2015) while limiting overgeneralized 

fear response via improved CS discrimination from similar but invalid cues (Aizenberg and 

Geffen, 2013; Chapuis and Wilson, 2012; Li et al., 2008). Nevertheless, the intricacy between 

emotional and perceptual aspects of aversive associative learning via conditioning, along with 

their corresponding forms of sensory cortical plasticity, has not been clearly elucidated. The 
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ultimate ecological benefits of associative learning would depend on their successful 

transformation into long-term memory. To date, human evidence of associative sensory plasticity 

has concerned primarily immediate (Li et al., 2008; Miskovic and Keil, 2012; Padmala and 

Pessoa, 2008) and short-term (~ 24 hours) effects (Apergis-Schoute et al., 2014), leaving an open 

question with respect to long-term associative plasticity in the human sensory cortex. 

 

Olfaction represents a unique sensory system, where sensory plasticity via associative learning 

has been observed across phylogeny and the entire sensory hierarchy, including the first-order 

receptor neurons (Davis, 2004; Kass et al., 2013; McGann, 2015; Wilson and Sullivan, 2011). 

Human olfactory aversive conditioning research, though scarce, has revealed remarkable 

perceptual improvement and olfactory cortical plasticity (Åhs et al., 2013; Li et al., 2008; Parma 

et al., 2015). Characterized by sensory encoding based on associative, content-addressable 

memory (Haberly, 2001; Wilson and Sullivan, 2011), the olfactory brain has been adopted as a 

model system for studying associative memory (Gluck and Granger, 1993; Haberly, 2001). 

Therefore, interrogation of associative plasticity in the olfactory cortex promises rich insights 

into emotional and perceptual learning and memory via conditioning. Here, in a human olfactory 

aversive conditioning paradigm incorporating a constellation of assessments (risk ratings, skin 

conductance response/SCR, sensory psychophysics, and functional magnetic resonance 

imaging/fMRI) and importantly, a retention test after an eight-day delay, we examined olfactory 

emotional and perceptual learning and memory and their respective olfactory cortical plasticity.  

 

As differential conditioning induces specific conditioned responses and promotes perceptual and 

neural discrimination (Aizenberg and Geffen, 2013; Chen et al., 2011; Ito et al., 2009; Rescorla, 
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1976), we differentially conditioned two odors (extreme mixtures on an odor-morphing 

continuum) with an aversive and a neutral UCS to be the threat-relevant CS (CSt) and safety-

relevant CS (CSs), respectively (Figure 1A-C). The three intermediate mixtures not paired with 

the UCS served as control stimuli (i.e., non-conditioned stimuli/nCS), including nCSt (next to 

the CSt on the morphing continuum), nCSm (the middle nCS), and nCSs (next to the CSs). 

Psychometric analyses along the morphing continuum would reveal warped psychological 

distances along perceptual (Figure 1D) and emotional dimensions (Figure 1E) of the odor space, 

reflecting perceptual and emotional learning, respectively. Multivariate fMRI analyses including 

multivoxel pattern analysis (MVPA) and representational similarity analysis (RSA) were 

employed to assay sensory cortical plasticity, along the perceptual and emotional dimensions, 

across the human olfactory cortical hierarchy (including, from low to high levels, the anterior 

piriform cortex/APC, posterior piriform cortex/PPC, and olfactory orbitofrontal cortex/OFColf; 

Gottfried, 2010; Krusemark et al., 2013).  

 

 

RESULTS 

 

Associative perceptual learning and related sensory cortical plasticity 

 

To assess perceptual learning, we administered a two-alternative-forced-choice (2-AFC) odor 

discrimination task (ODT) before and after conditioning (Figure 1B). Validating the perceptual 

space along the odor-morphing continuum, a strong linear trend emerged (F1, 31= 79.62, P 

< .0001), with increasing rates of CSt responses (i.e., endorsing Odor A or B that constituted 80% 
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of the CSt) along the CSs-to-CSt continuum (Figure 2A). To test conditioning-related, 

associative perceptual learning, we examined discrimination between the CS and their 

neighboring nCS odors (relative to discrimination between the nCS odors as control conditions 

to tease out non-associative effects). A psychometric index, the perceptual discrimination index 

[PDI = (d1+ d4) – (d2 + d3)], was thus derived, where differential CSt response rates (i.e., d’s) 

between neighboring odors reflected their perceptual distances and the extent of odor 

discrimination (Figure 2A). Planned contrasts between pre- and post-conditioning PDI revealed a 

significant increase from pre- to post-conditioning on Day 1 (t31 = 1.84, P = .038, one-tailed; 

one-tailed tests were applied to all directional hypotheses in the study), but only a weak, 

nonsignificant trend on Day 9 (vs. the pre-conditioning PDI; t31 = .94, P = .177, one-tailed). 

These results suggest that conditioning caused short-term perceptual learning, expanding the 

distance between the CS and their neighboring nCS odors. Notably, despite these distance 

changes, CSt response rates at Day 1 post-conditioning maintained a strong linear trend along the 

morphing continuum (F1, 31= 44.49, P < .0001), and considerable perceptual distances remained 

among the nCS odors: greater CSt response rates for nCSt vs. nCSs (t31 = 2.05, P = .025, one-

tailed) and for nCSm vs. nCSs (t31 = 1.56, P = .065, one-tailed). Therefore, conditioning induced 

quantitative changes in the perceptual space across the odors, leaving their linear configuration 

largely intact. 

 

To isolate cortical correlates of conditioning-related perceptual learning, we applied RSA to 

assay dissimilarity (1- Pearson’s r) in neural response patterns (i.e., neural distances) to the odors. 

As illustrated in Figure 3A, we derived an analogous neurometric index, the neural 

discrimination index [NDI = (d1+ d4) – (d2 + d3); d = 1- r], to reflect neural distances between 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 25, 2017. ; https://doi.org/10.1101/193748doi: bioRxiv preprint 

https://doi.org/10.1101/193748


Human olfactory sensory cortex    p. 8 
	

the CS and their neighboring nCS (vs. distances between the nCS as the control condition; Figure 

3A). An omnibus ANOVA of Region (APC, PPC and OFColf) and Time (pre-, Day 1 post- and 

Day 9 post-conditioning) on the NDI revealed a region-by-time interaction (F3.0, 88.7 = 2.63, P 

= .056; Figure 3B). That is, both APC and PPC exhibited NDI increases from pre- to post-

conditioning on Day 1 (APC: t30 = 1.72, P = .048; PPC: t30 = 1.87, P = .035; one-tailed). 

However, similar to behavioral effects, this effect disappeared on Day 9 (with only a weak, 

nonsignificant trend in PPC; t30 = .92, P = .184). The OFColf did not exhibit NDI change at either 

time point (P’s > .293). Therefore, in parallel to perceptual learning, the APC/PPC showed short-

term divergence in neuronal population encoding of the CS versus their neighboring nCS.  

 

Emotional learning and related sensory cortical plasticity 

 

To assess emotional learning, we acquired post-conditioning risk ratings on a visual analog scale 

(0-100%) for the five odors, each of which was presented and rated three times, randomly 

intermixed, to ensure reliability. To minimize response bias and suggestibility, we averted pre-

conditioning risk ratings; baseline odor valence ratings confirmed comparable, neutral emotional 

values for the odors [P = .416; valence rating Mean (SD) = 50.6 (19.7)%, on a scale of 1-100%]. 

An ANOVA (Odor×Time) on risk ratings revealed a main effect of odor (F2.9, 90.5 = 3.55, P 

= .018; Figure 2B), but no Time or Odor-by-Time effects (P’s > .622; ratings on Days 1 and 9 

were thus collapsed in the follow-up contrasts). In support of acquired threat and safety meaning, 

respectively, maximal and minimal risk ratings were observed for CSt and CSs (CSt vs. CSs: t31 

= 3.02, P = .005), both differing from chance (50%; CSt: t31 = 2.67, P = .012; CSs: t31 = -2.40, P 

= .023). Ratings for the three nCS odors were comparable to each other (F1,31 = .14, P = .708), 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 25, 2017. ; https://doi.org/10.1101/193748doi: bioRxiv preprint 

https://doi.org/10.1101/193748


Human olfactory sensory cortex    p. 9 
	

forming a flat slope across them. The ratings hovered around chance (49.3 - 51.3%; P’s > .581) 

and were significantly lower than CSt and higher than CSs ratings (nCS vs. CSt: t31 = -2.41, P 

= .022; nCS vs. CSs: t31 = 1.92, P = .032; one-tailed). Therefore, akin to the differential 

conditioning manipulation, these nCS odors showed minimal conditioning generalization but 

rather merged into an affectively neutral cluster. Together, emotional learning following 

conditioning resulted in the emergence of three affective classes—threat, safety and neutrality. 

Critically, the highly similar risk patterns on Day 1 and Day 9 indicate that emotional learning 

not only arose immediately but also developed into long-term emotional memory.  

 

We also examined SCR responses during the 2-AFC ODT, which, given the task demand of odor 

discrimination, could index arousal related to difficulty or uncertainty in discriminating the odors. 

An ANOVA (Odor×Time) revealed main effects of time (F2.0, 59.1 = 5.09, P = .009) and odor 

(F3.7, 110.3 = 3.54, P = .011) and a time-by-odor interaction (F5.1, 152.7 = 3.81, P = .003). Follow-up 

ANOVAs for each odor indicated a main effect of time for nCSm (F1.2, 37.4 = 10.32, P = .001) 

and CSt (F1.8, 54.4 = 3.24, P = .052) but no time effect for the other odors (P’s > .155). As 

illustrated in Figure 2C, the pre-conditioning SCR profile was marked by a maximal response to 

the nCSm (above all other odors, P’s <= .082), in line with the maximal perceptual ambiguity 

(and hence uncertainty-related arousal) at the midpoint of the morphing continuum. The SCR 

profile changed drastically post-conditioning on both Day 1 and Day 9, characterized by a large 

reduction in SCR to nCSm on both Day 1 and Day 9 (P’s <= .007). The time effect for CSt was 

due to a significant SCR reduction from pre- to Day 9 post-conditioning (P = .026). Overall, 

these SCR reductions highlight the largely resolved uncertainty of the nCSm, presumably as this 
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initially ambiguous mid-point odor became distinct being a prototype of the emergent neutral 

category.  

 

To isolate neural correlates of the three emergent affective categories, we implemented MVPA 

using the support vector machine (SVM) to classify fMRI response patterns to CSt, CSs and 

nCSm odors (i.e., category prototypes) during the 2-AFC ODT. Three-class odor classification 

accuracies were submitted to an omnibus ANOVA (Region×Time), which yielded a Region-by-

Time interaction (F3.5, 103.6 = 3.06, P = .025) and was followed with an ANOVA of Time for each 

region (Figure 4). In support of these emergent categories, classification in the OFColf improved 

from the preconditioning baseline, which was at chance [mean (SD) = 32.2 (8.4)%, P = .453], 

becoming reliable at post-conditioning on both days [Day 1/Day 9 mean (SD) = 38.1 (7.4) /36.3 

(7.3)%]: Day 1 t30’s > 3.09, P’s < .002; Day 9 t30’s > 1.99, P’s < .031, one-tailed, relative to pre-

conditioning or chance levels (Figure 4C, F).  

 

In the PPC, classification was reliable at pre-conditioning [accuracy = 36.1 (6.3)% > chance, t30 

= 2.42, P = .011, one-tailed; Figure 4B], confirming the critical role of PPC in odor quality 

encoding (Gottfried, 2010; Wilson and Sullivan, 2011). At post-conditioning on Day 1, PPC 

classification [35.5 (6.5)%] remained reliable (> chance: t30 = 1.85, P = .037, one-tailed) and 

comparable to the baseline (P = .749). However, on Day 9, PPC classification reduced to the 

chance level (P = .332), which, as indicated in the confusion matrix (Figure 4E), was caused by 

an overall bias to classify PPC ensemble responses as CSt-relevant, regardless of the actual odor 

input (t30 = 2.74, P = .010). Specifically, PPC showed misclassification of CSs and nCSm odors 

as CSt (vs. the true odors: t30 = 1.95, P = .060) although correct classification for CSt remained 
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high (vs. chance: t30 = 3.13, P = .004). Lastly, the APC did not show reliable classification at 

pre-conditioning (P = .257) or significant change following conditioning (P’s > .399; Figure 4A).  

 

Tuning shifts in the sensory cortex 

 

Stimulus tuning represents a fundamental organization principle in sensory processing, and 

animal research has revealed neuronal tuning shifts (towards the CS) in the sensory cortex, 

which consolidates over the course of days to weeks following conditioning (Weinberger, 2004).  

We thus adopted voxel-based tuning analysis of fMRI data (Serences et al., 2009) to track 

conditioning-induced tuning shifts. 

 

Based on the pre-conditioning (baseline) response, voxels in a given ROI were sorted into five 

odor classes by their “optimal odors” (evoking the maximal response among the five odors), 

after excluding voxels (10%) with lowest mutual information (MI, i.e., non-selective voxels; 

Serences et al., 2009). A Region-by-Odor ANOVA on the voxel percentages for each class 

indicated no effect of odor or region, confirming comparable baseline voxel distributions across 

the odor classes (P’s > .202). We then examined two specific voxel classes, tuned to nCSs and 

nCSt, respectively, concerning their post-conditioning tuning shifts towards the neighboring CS 

(vs. the neighboring nCS odor—nCSm—as the control; Weinberger, 2004). A tuning shift index 

(TSI) was thus derived (nCSs TSI = % CSs – % nCSm; nCSt TSI = % CSt – % nCSm) and 

submitted to a Region-by-Time ANOVA. A Region-by-Time interaction was observed (F1.8, 55.4 

= 4.24, P = .022), substantiated by greater TSI in the PPC on Day 9 than Day 1 post-conditioning 

(t30 = 2.03, P = .026, one-tailed; Figure 5A, B) and no effects of time in the APC or OFColf 
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(P’s > .242). Specifically, the PPC TSI was significant on Day 9 (vs. zero; t30 = 3.00, P = .005) 

but not on Day 1 post-conditioning (P = .802), indicating delayed tuning shifts to the CS. Figure 

5C highlights tuning shifts in PPC at post-conditioning Day 9 in a representative participant. 

 

 

DISCUSSION 

 

The growing literature of sensory cortical plasticity via conditioning has expanded our 

understanding of associative learning, motivating a multi-system, multi-dimension 

conceptualization of this process. The current study provides some initial insights into this 

broadened view of associative learning in humans. First, both emotional learning and perceptual 

learning can arise from aversive conditioning in humans, albeit involving different temporal 

profiles—immediate and lasting in the former versus immediate but transient in the latter. 

Second, both threat and perceptual learning recruit the sensory cortex, although engaging 

dissociable structures in the sensory cortical hierarchy—OFColf and PPC (delayed involvement) 

for the former and APC and PPC for the latter. Third, low-level tuning reorganization can 

develop in the secondary sensory cortex (i.e., the PPC) over time, potentially solidifying sensory 

cortical representation of the acquired emotional value in the CS.  

 

Differential conditioning promotes divergent conditioned responses to the CS and minimizes 

conditioning generalization, especially when the CS are related (as in the current study where 

CSs and CSt shared the same odor components; Aizenberg and Geffen, 2013; Chapuis and 

Wilson, 2012; Chen et al., 2011). Accordingly, we observe that emotional learning manifested in 
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the threat CS and safety learning in the safety CS, while the intermediate nCS odors exhibited 

minimal conditioning generalization and merged into a category of emotionally neutral stimuli. 

Interestingly, the nCSm odor (midpoint of the odor morphing continuum), which evoked a large 

SCR before conditioning due to the maximal ambiguity in odor discrimination, showed a marked 

reduction in SCR after conditioning. This effect corroborates emotional learning such that the 

acquired emotional distinctiveness of the nCSm helped resolve its ambiguity, akin to the idea of 

“emotion as information” (Damasio et al., 1996). Accompanying this emotional learning, 

multivoxel patterns of fMRI responses demonstrated that the OFColf, a higher-order olfactory 

cortex, reliably classified odors containing the acquired affective values (threat, neutrality, and 

safety) after conditioning. This effect, contrasting the failed classification of these invariant 

odors at pre-conditioning, indicates associative plasticity in the OFColf to support emotional 

learning, consistent with the known function of the OFC in value representation and associative 

learning (Gottfried and Zald, 2005). Importantly, these convergent multi-modal (risk ratings, 

SCR, and OFColf plasticity) effects of emotional learning emerged not only immediately and but 

also persisted through Day 9, accentuating emotional memory and the contribution of the OFColf 

to the storage of acquired emotional value. 

 

The PPC, a secondary (intermediate-level) olfactory cortex, showed reliable odor classification 

before conditioning, consistent with its critical role in odor quality representation (Gottfried, 

2010; Wilson and Sullivan, 2011). While accuracy of PPC odor classification did not change 

immediately post-conditioning, a striking new pattern of odor classification emerged on Day 9 

such that the PPC no longer accurately classified the odors but rather decoded them 

predominantly as the threat CS odor, regardless of the actual input. While threat and safety 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 25, 2017. ; https://doi.org/10.1101/193748doi: bioRxiv preprint 

https://doi.org/10.1101/193748


Human olfactory sensory cortex    p. 14 
	

values could be acquired via similar mechanisms (Grosso et al., 2015b; Weinberger and 

Bieszczad, 2011), this classification/decoding bias to threat in the PPC highlights delayed 

plasticity that may underpin long-term threat memory, potentially facilitating threat memory 

retrieval by favoring threat decoding or readout. This intriguing disparity in PPC and OFColf 

plasticity appears to accord with theories concerning the neural hierarchy of affect, such that 

intermediate structures (e.g., thalamus) promote complete aversion (to both negative and positive 

cues) while higher-order forebrain structures maintain balanced affective responses (Smith et al., 

2010). In this sense, the olfactory cortical hierarchy may host an affective hierarchy in itself, as 

the intermediate-level PPC favors threat decoding and promotes defensive behavior while the 

higher-level OFColf exerts top-down regulation to optimize emotional responses. 

 

Associative perceptual learning manifested in expanded perceptual distances between the CS and 

their neighboring nCS odors, as demonstrated in the 2-AFC odor discrimination task. 

Accompanying this perceptual expansion, dissimilarity (distance) in the multivoxel response 

patterns increased between the CS and their neighboring nCS odors in the APC and PPC. Both 

the psychometric and neurometric indices incorporated distances between the nCS odors as 

controls, thereby largely excluding simple time effects or non-associative perceptual learning via 

mere sensory exposure. These associative perceptual and neural changes closely resembled 

previous findings from our lab, where aversive conditioning led to perceptual and neural (PPC) 

discrimination of the CS odor and a highly similar nCS odor (Li et al., 2008). As APC and PPC 

represent low and intermediate levels of the olfactory cortical hierarchy, critical for basic 

encoding of olfactory objects (Gottfried, 2010; Wilson and Sullivan, 2011), their plasticity in 
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parallel to perceptual learning thus highlights updated sensory analysis of olfactory input via 

associative learning, resulting in altered olfactory perception. 

 

In contrast to emotional learning, this perceptual learning largely preserved the linear perceptual 

space along the odor-morphing continuum, with the three intermediate nCS remaining somewhat 

distinguishable perceptual objects. This finding underscores dimensional, quantitative 

modification of odor perception, accentuating the relative stability of perceptual (vs. emotional) 

processing. Also in contrast to emotional learning, perceptual learning and related plasticity 

dissolved over time such that both perceptual and neural spaces across the odor-morphing 

continuum largely recovered on Day 9, accentuating the constancy of olfactory perception and 

reliability of basic sensory cortical encoding. Therefore, even though the sensory cortex is 

sufficiently malleable to exhibit immediate plastic changes to represent acquired biological 

significance, such changes may succumb to the ecological pressure for the lower-level sensory 

cortices to maintain fidelity to the external physical world and generate relatively stable percepts. 

It may require chronic aversive exposures (e.g., repeated conditioning sessions; Parma et al., 

2015) or highly traumatic experiences for perceptual learning and related cortical plasticity to 

develop into stable, long-term memory traces.  

 

Reflecting associative learning on the level of basic sensory processing, stimulus tuning in the 

PPC shifted to favor the CS odors, consistent with animal data (Weinberger, 2004; Weinberger 

and Bieszczad, 2011) and a recent human study using scalp electroencephalogram (McTeague et 

al., 2015). Also coinciding animal findings, this CS-specific odor retuning arose only on Day 9, 

indicating a time-dependent process likely involved in the transformation of associative learning 
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into long-term memory (Weinberger, 2004). Moreover, the site of this retuning—the PPC, a 

secondary olfactory cortex—conformed to animal findings, emphasizing conditioning-induced 

plasticity and long-term memory storage in the secondary sensory cortex (relative to primary or 

higher sensory levels; Diamond and Weinberger, 1984; Grosso et al., 2015b, 2017; Holschneider 

et al., 2006; Poremba et al., 1998). The timing (Day 9 only) and site (PPC only) of tuning shifts 

paralleled changes in higher-order, spatially distributed neuronal ensemble responses in the PPC 

(i.e., biased PPC classification to the threat CS on Day 9). Synergy between these two processes, 

threat tuning and preferential threat decoding, could play a critical role in sensory cortical 

encoding of threat odors in the fashion of content-addressable memory, ensuring sufficient 

neural and behavioral responses to these threat cues even though the chemical makeup is often 

diluted, distorted or fragmented by various factors through the journey to the nasal cavity.  

 

In sum, the current study shed some new light on the human associative learning and memory, 

disentangling its emotional and perceptual aspects and elucidating their corresponding forms of 

sensory cortical plasticity. Dissociable temporal patterns and cortical substrates are involved in 

these two aspects of associative learning, serving complementary ecological purposes. Threat 

learning via conditioning maintains a lasting threat signal to effectively alert the defense system 

whereas perceptual learning is transient, barring chronic aversive exposures or traumatic 

experiences (Parma et al., 2015), preserving a reliable cortical code and stable psychological 

percept for a sensory stimulus. Importantly, the understanding of sensory cortical plasticity via 

aversive conditioning would promote novel inventions for psychiatric disorders such as post-

traumatic stress disorder, by targeting the sensory cortex beyond the limbic-prefrontal-cortical 

circuitry. The temporal nature of sensory cortical plasticity also highlights a critical period for 
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intervention when the conditioning-related changes are still dynamic and fluid. Timely 

interventions following trauma could hold special therapeutic promise by preventing early 

sensory cortical plasticity from consolidating into an enduring content-addressable threat 

memory. 

 

 

MATERIALS AND METHODS 

 

Participants 

 

Thirty-three individuals (13 males; age 19.9 ± 2.0 years, range 18–25) participated in this two-

session fMRI experiment in exchange for course credit or monetary compensation. All 

participants were right-handed, with normal olfaction and normal or corrected-to-normal vision. 

Participants were screened to exclude acute nasal infections or allergies affecting olfaction, any 

history of severe head injury, psychological/neurological disorders or current use of psychotropic 

medication. All participants provided informed consent to participate in the study, which was 

approved by the University of Wisconsin-Madison Institutional Review Board. Two participants’ 

fMRI data were excluded due to metal artefact and excessive movement, leaving 31 participants 

(11 males) for the fMRI analysis.  

 

Stimuli 

 

Two generally neutral odorants, acetophenone (5% l/l; diluted in mineral oil) and eugenol (18% 

l/l) labeled as odors “A” and “B” in the experiment, were systematically mixed to create a 
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morphing continuum of odor mixtures. These two odorants were rated similarly on valence, 

intensity, familiarity and pungency and have been used as neutral odorants in previous research 

in our lab (Krusemark and Li, 2013; Novak et al., 2015). The odor continuum consisted of five 

binary mixtures: 80% A/20% B, 65% A/35% B, 50% A/50% B, 35% A/65% B, and 20% A/80% 

B (Figure 1A). The two extreme mixtures (20% A/80% B and 80% A/20% B) served as 

conditioned stimuli (CS), differentially conditioned as CS-threat (CSt) and CS-safety (CSs) via 

paired presentation with aversive or neutral unconditioned stimuli (UCS; disgusting or neutral 

images and sounds), respectively. Seven disgusting images (three about dirty toilets and four 

about human vomit) and seven neutral images (household objects) were selected from the 

International Affective Picture Set (IAPS; Lang et al., 2008) and internet sources (You and Li, 

2016). To strengthen the potency of UCS, each disgust or neutral image was accompanied by a 

sound of human vomiting or white noise, respectively. Assignment of CSt to either 20% A/80% 

B or 80% A/20% B was counterbalanced across subjects. The three intermediate mixtures (35% 

A/65% B, 50% A/50% B, and 65% A/35% B) served as non-conditioned stimuli (nCS), 

operationalized as nCSt, nCSm, and nCSs based on their distance to the CSt or CSs.  

 

Odor stimuli were delivered at room temperature using an MRI-compatible sixteen-channel 

computer-controlled olfactometer (airflow set at 1.5 L/min), which permits rapid odor delivery in 

the absence of tactile, thermal or auditory confounds (Forscher and Li, 2012; Krusemark and Li, 

2012; Krusemark et al., 2013; Lorig et al., 1999). Stimulus presentation and collection of 

responses were controlled using Cogent2000 software (Wellcome Department of Imaging 

Neuroscience, London, UK) as implemented in Matlab (Mathworks, Natick, MA).  
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Two-alternative forced-choice odor discrimination task (2-AFC ODT) 

 

During this task, each odor trial began with a visual get-ready cue, followed by a 3-2-1 

countdown, and a sniffing cue, upon which participants were to take a steady and consistent sniff 

and indicate whether the odor smelled like odor A or B by button pressing (Figure 1B). Each of 

the five odor mixtures was presented 15 times, in a pseudo-random order with no odor repeated 

over two trials in succession. Seven additional trials with a central, blank rectangle on the screen 

(no response required) were randomly intermixed with the odor trials to help minimize olfactory 

fatigue and establish a non-odor fMRI baseline. Trials recurred with a stimulus onset asynchrony 

of 14.1 s.  

 

Experiment procedure 

 

Pre-experiment session: Approximately a week prior to Day 1 fMRI session, participants visited 

the lab. Acetophenone and eugenol were introduced as odors “A” and “B”. All included 

participants were able to reliably endorse 80% A/20% B and 20% A/80% B as Odors A and B, 

respectively, after practicing on a 2-AFC ODT with corrective verbal feedback. Participants also 

provided ratings of the five odor mixtures on valence, intensity, familiarity and pungency using 

visual analog scales (VAS; 0-10).  

 

Experiment Day 1: Participants completed a pre-conditioning 2-AFC ODT, then differential 

conditioning and a post-conditioning 2-AFC ODT. During differential conditioning, CSt and CSs 

odors were presented (randomly intermixed, seven trials each) for 1.8 s while the aversive or 
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neutral UCS were presented respectively for 1.5 s at 1s after CS odor onset, with 100% 

contingency. To prevent extinction, during the post-conditioning 2-AFC ODT (on both Day 1 

and Day 9), five extra trials of CSt paired with the aversive UCS were randomly inserted (Li et 

al., 2008; Onat and Büchel, 2015; Padmala and Pessoa, 2008). Data from these trials were 

excluded from analysis. After the post-conditioning ODT, each of the five odor mixtures was 

presented (randomly intermixed, three trials each), to which participants rated on a VAS the 

likelihood (0-100%) of receiving an aversive UCS following the odor. 

 

Experiment Day 9: Participants completed another post-conditioning 2-AFC ODT. After that, 

another set of UCS risk likelihood ratings was carried out. Finally, we conducted an independent 

olfactory localizer scan to isolate functional ROIs. Four additional odorants (α-ionone, citronellol, 

methyl cedryl ketone, 2-methoxy-4-methylphenol), neutral in valence and matched for intensity 

were presented (15 trials/odor), along with 30 air-only trials pseudo-randomly intermixed, while 

participants performed a simple odor detection task.  

 

SCR recording and analysis 

 

During the ODT, skin conductance response (SCR) was continuously acquired at a sampling arte 

of 1000 Hz using a BioPac MP150 (BIOPAC systems, Goleta, CA) from two MRI-compatible 

Ag/AgCl electrodes placed on the middle phalanx of the second and third digits of the non-

dominant (left) hand. Offline data analysis of SCR waveforms was conducted in Matlab, after 

low-pass filtering (0.5 Hz) to eliminate MRI scanning artifacts. For each odor trial, evoked SCR 

response was defined by the magnitude of trough-to-peak SCR deflection during the interval 
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between 0.5 s and 7 s post odor onset, with a minimal evoked deflection of 0.02 µS (Flykt et al., 

2007). Since SCR tends to habituate over repeated trials during emotional learning, we modeled 

the SCR response with an exponential decay function at a rate of ¼ session length (Büchel et al., 

1998; Li et al., 2008).  

 

Respiratory monitoring 

 

Respiration measurements were also acquired (1000 Hz) during the ODT, using a BioPac MP150 

with a breathing belt affixed to the participant’s chest to record abdominal or thoracic contraction 

and expansion. Offline data analysis of respiration waveforms was conducted in Matlab. For 

each odor trial, a sniff waveform was extracted from a 6 s window post sniff onset and was 

baseline-corrected by subtracting the mean activity within 1 s preceding sniff onset. Sniff 

parameters (inspiratory volume, peak amplitude, and peak latency) were generated by averaging 

across all 15 trials per odor.  

 

Imaging acquisition and preprocessing 

 

Gradient-echo T2 weighted echoplanar images (EPI) were acquired with blood-oxygen-level-

dependent (BOLD) contrast on a 3T GE MR750 MRI scanner, using an eight-channel head coil 

with sagittal acquisition. Imaging parameters were TR/TE = 2350/20 ms; flip angle = 60°, field 

of view = 220 mm, slice thickness = 2 mm, gap = 1 mm; in-plane resolution/voxel size = 1.72×

1.72 mm; matrix size = 128×128. A high-resolution (1×1×1mm3) T1-weighted anatomical 

scan was acquired. Lastly, a field map was acquired with a gradient echo sequence, which was 
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coregistered with EPI images to correct EPI distortions due to susceptibility. Five scan runs, 

including pre-conditioning, conditioning, Day 1 post-conditioning, Day 9 post-conditioning, and 

odor localizer, were acquired. Six “dummy” scans from the beginning of each scan run were 

discarded in order to allow stabilization of longitudinal magnetization. Imaging data were 

preprocessed in SPM12 (www.fil.ion.ucl.ac.uk/spm), where EPI images were slice-time 

corrected, realigned, and field-map corrected. Images collected on both Day 1 and Day 9 fMRI 

sessions were spatially realigned to the first image of the first scan run on Day 1, while the high-

resolution T1-weighted scan was co-registered to the averaged EPI of both scan sessions. All 

multivariate pattern analyses were conducted on EPI data that were neither normalized nor 

smoothed to preserve signal information at the level of individual voxels, scans, and participants. 

A general linear model (GLM) was computed on pre-conditioning, conditioning, Day 1 post-

conditioning and Day 9 post-conditioning scans. Applying the Least Squares All (LSA) 

algorithm, we set each odor trial as a separate regressor, convolved with a canonical 

hemodynamic response function (Abdulrahman and Henson, 2016). Six movement-related 

regressors (derived from spatial realignment) were included to regress out motion-related 

variance. For the odor localizer scan, we applied a GLM with odor and no odor conditions as 

regressors, convolved with a canonical hemodynamic response function and the temporal and 

dispersion derivatives, besides the six motion regressors of no interest. A high-pass filter (cut-off, 

128 s) was applied to remove low-frequency drifts and an autoregressive model (AR1) was 

applied to account for temporal nonsphericity. 

 

ROI definition 
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To delineate learning-induced sensory cortical plasticity, we focused on a set of a priori ROIs 

across the olfactory cortical hierarchy: anterior piriform cortex (APC), posterior piriform cortex 

(PPC), and olfactory orbitofrontal cortex (OFColf). Amygdala and hippocampus, critical limbic 

areas involved in acquisition of emotional and contextual associative memory, were included in 

the supplemental analysis (Figure S1). All five ROIs were manually drawn on each participant’s 

T1 image in MRIcro (Figure S2; Rorden and Brett, 2000), with the OFColf in reference to a meta-

analysis (Gottfried and Zald, 2005) and prior literature (Howard et al., 2009) and the other ROIs 

in reference to a human brain atlas (Mai et al., 1997). Left and right hemisphere counterparts 

were merged into a single ROI. We then applied functional constraints to these anatomical ROIs 

based on the odor-no-odor contrast conducted on the independent odor localizer scan for each 

participant, with a liberal threshold at P < 0.5 uncorrected (Li et al., 2008).  

 

Multivariate fMRI analysis 

 

To delineate neural plasticity, we applied multivariate fMRI analysis to characterize changes in 

ensemble neuronal response patterns to the odor mixtures following conditioning. Two types of 

multivariate analyses were conducted across the olfactory cortical hierarchy (including, from low 

to high, the APC, PPC, and OFColf) and over limbic regions (i.e., amygdala and hippocampus). 

While the multivoxel pattern analysis (MVPA) uses pattern classification techniques to decode 

the category of objects or distinct psychological states, the representation similarity analysis 

(RSA) uses correlations across multivoxel patterns of responses to assess the degree of 

similarity/relation in patterns evoked by different stimuli (Kriegeskorte et al., 2008; Poldrack and 

Farah, 2015). Therefore, we used the MVPA to isolate the neural underpinnings of the emergent 
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affective categories, and the RSA to identify the neural plasticity that matched the warped 

psychological space of the odor mixtures following conditioning.  

 

Multivoxel Pattern Analysis (MVPA): We implemented a linear Support Vector Machine (SVM) 

to perform supervised three-class pattern classification between CSs, nCSm, and CSt. For each 

ODT in each participant, beta values for each CSs, nCSm, and CSt trial (15 trials per odor, 45 in 

total) were extracted for all voxels within each functional ROI, and were normalized (Z-scored) 

across trials for each voxel. Applying leave-one-out cross-validation, we iteratively left out a set 

of pattern vectors (3 trials/odor) as the testing set and trained a linear SVM (LIBSVM; 

http://www.csie.ntu.edu.tw/cjlin/libsvm) on the remaining vectors (12 trials/odor). We used the 

optimal C parameter (determined by an extensive grid-search—2-11 ~ 215) for the SVM, which 

then classified the three odors based on the testing set. The classification outcome, averaged 

across 15 iterations, yielded a 3 X 3 confusion matrix. Each row represented a target (or actual) 

odor, and each column represented the probability of the odor being classified as one of the three 

possible odors. Accordingly, the diagonal entries indicated correct classifications (i.e., hits) 

whereas the off-diagonal values indexed mis-classifications (i.e., misses). The overall 

classification accuracy was defined as the average classification accuracy across the diagonal 

values. 

 

Representational similarity analysis (RSA): For each ODT in each participant, trial-wise beta 

values were extracted for all voxels within a functionally constrained ROI. These beta values 

were averaged across all 15 trials of each odor mixture, resulting in an odor-specific linear vector 

of beta values across a given ROI. Pearson’s correlation (r) was computed between all pairs of 
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pattern vectors (5 odors×3 times), resulting in a 15×15 correlation matrix—the representational 

similarity matrix. To directly represent neural distances, this matrix was converted into a 

representational dissimilarity matrix (RDM) by replacing the r values with dissimilarity scores (1 

– r; Fisher transformed). Dissimilarity scores (d’s) between CSs and nCSs (d1), nCSs and nCSm 

(d2), nCSm and nCSt (d3), and nCSt and CSt (d4) were then extracted to form a neural 

discrimination index [NDI = d1+d4 – (d2+d3)]. 

 

Tuning analysis 

 

Based on animal tuning analyses (Bakin and Weinberger, 1990; Weinberger et al., 1993), we 

adapted a voxel-based tuning analysis used for visual sensory encoding (Dubois et al., 2015; 

Serences et al., 2009) to assess odor tuning in the olfactory sensory cortices. For each ODT in 

each participant, trial-wise beta values (5 odors×15 trials), after removing the mean beta for a 

given trial across all voxels in an ROI, were normalized (by z-scoring) across trials. We 

computed the mutual information (MI) to quantify the amount of information each voxel 

conveyed about the odors. First, we converted the beta values into a discrete variable (B) by 

dividing the range of betas into a set of equidistant bins (b). The size of the bins was determined 

by Freedman-Diaconis’ rule [bin size = (max(B) – min(B))/2*IQR*n-1/3], where n is the number 

of trials (n = 75). We selected the median bin size of all voxels within an ROI based on pre-

conditioning data, and held it constant for the post-conditioning sessions (Day 1 and Day 9). 

Next, we computed for each voxel the entropy of (discretized) responses (B) as follows: 

𝐻 𝐵 =	−	 𝑝 𝑏 𝑙𝑜𝑔+𝑝(𝑏)
.∈0

 

where	𝑝 𝑏  is the proportion of trials whose responses fall into bin b. Then, we computed 
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conditional entropy 𝐻 𝐵|𝑜 , the entropy of responses given knowledge of the odor condition, as 

follows: 

𝐻 𝐵|𝑜 = 	−	 𝑝 𝑜
2∈3

𝑝 𝑏 𝑜 𝑙𝑜𝑔+𝑝(𝑏|𝑜)
.∈0

	 

where 𝑝 𝑏 𝑜 	is the proportion of trials falling into bin b when responding to a certain odor (o). 

The index of mutual information 𝑀𝐼 𝐵;𝑂 ,	or the amount of information the responses of a 

voxel carries for an odor, was calculated as the reduction in entropy of responses given 

knowledge of the odor condition: 

𝑀𝐼 𝐵;𝑂 = 𝐻 𝐵 − 	𝐻(𝐵|𝑜) 

As odor-informative voxels yield high MI, voxels with low MI values suggest no mutual 

dependence between the distribution of responses (B) and odor (O), indicating indiscriminant or 

random responses to all odors. Voxels with bottom 10% MI values in a given ROI were thus 

excluded as non-informative voxels. For each remaining voxel, its preferred odor (tuning) was 

defined as the odor eliciting the largest beta among the five odor mixtures. As such, we sorted all 

the informative voxels at pre-conditioning into five classes. In parallel to animal research (Bakin 

and Weinberger, 1990), we targeted the two classes of voxels that were tuned to nCSs and nCSt, 

respectively, before conditioning, and tested whether these voxels shifted their tuning 

preferences to CS after conditioning. At Day 1 and Day 9 post-conditioning, respectively, we 

examined percentages (%) of these voxels tuned to each of the five odor mixtures (after 

excluding the bottom 10% MI, non-informative voxels). If tuning indeed shifted to the CS, we 

would expect greater % of these voxels tuned to CSs (for nCSs) and CSt (for nCSt), respectively, 

relative to the neighboring odor, nCSm. As such, we computed a tuning shift index (TSI) for the 

nCSs and nCSt voxels: % CSs – % nCSm and % CSt – % nCSm, respectively, for Day 1 and 

Day 9 post-conditioning in each ROI and participant. 
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Statistics 

 

Given the considerable sample size, we performed parametric tests here. When multiple factors 

were involved (e.g., Region and Time) in testing a hypothesis, we would protect the tests with an 

omnibus ANOVAs (with Greenhouse-Geisser correction for non-sphericity). Specifically, we 

performed a 2-way ANOVA (Time×Odor) on the SCR and risk ratings, 2-way ANOVAs (Time

×Region) on the NDI and SVM accuracy, and a 3-way ANOVA (Time×Region×Valence) on 

the TSI scores. Paired t-tests were conducted following significant F statistics. Planned t-

contrasts were applied on PDI given the simplicity of these tests. Two-tailed P’s were applied to 

all tests except for those addressing clearly directional hypotheses (i.e., PDI, NDI, SVM 

accuracy, risk ratings, and TSI). 
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FIGURES 

 

 
Figure 1. Odor stimuli and experiment design. (A) A continuum of five odor mixtures with 
systematically morphed proportions (illustrated by the gray wheels) of odors A and B. The two 
outside mixtures (20% A/80% B and 80% A/20% B) were differentially conditioned as CSt 
(threat) and CSs (safety) via paired presentation with unconditioned stimuli (UCS: combined 
sounds and pictures of aversive or neutral emotion), respectively. Assignment of CSt to 20% 
A/80% B or 80% A/20% B was counterbalanced across subjects. The three intermediate 
mixtures (35% A/65% B, 50% A/50% B, and 65%A /35% B) served as non-conditioned stimuli 
(nCS) and were operationalized as nCSt, nCSm, and nCSs based on their distance to CSt or CSs 
along the odor-morphing continuum. (B) Paradigm of a two-alternative-forced-choice (2-AFC) 
odor discrimination task (ODT). Fifteen trials of each of five odor mixtures were presented 
pseudo-randomly for 1.8 seconds, to which participants made judgments of either Odor A or B 
with button pressing. The task was performed pre-, Day 1 post- and Day 9 post-conditioning, 
while fMRI, skin conductance response (SCR), and respiration were recorded. (C) Experiment 
schedule. Day 1 consisted of pre-conditioning 2-AFC ODT, conditioning, post-conditioning 2-
AFC ODT, and odor risk rating. Day 9 consisted of post-conditioning 2-AFC ODT, odor risk 
rating, and an olfactory localizer scan (with a new set of neutral odors). (D) Hypothetical 
perceptual distances along the odor continuum as warped by conditioning. (E) Hypothetical 
emotional distances along the odor continuum as warped by conditioning; a tilted slope (red 
dotted line) or a flat slope (blue solid line) across the three nCS would support conditioning 
generalization or the lack thereof.  
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Figure 2. Behavioral and SCR effects of olfactory conditioning. (A) 2-AFC ODT 
performance at all three time points. The rate of CSt responses (i.e., endorsing Odor A or B that 
constituted 80% of CSt) at pre-conditioning confirmed a linear increase along the CSs-to-CSt 
continuum. The perceptual distance (d) between two neighboring odors was reflected by their 
differential CSt response rate. Perceptual discrimination index (PDI) was calculated by the sum 
of perceptual distances between the CSt and CSs and their neighbors (d1 + d4) minus the sum of 
perceptual distances between the nCS and their neighbors (d2 + d3). Conditioning increased PDI 
from pre- to Day 1 (but not Day 9) post-conditioning. (B) Subjective ratings of the likelihood of 
receiving aversive UCS following an odor mixture. The patterns at both times post-conditioning 
conformed to the predicted profile of specific (vs. generalized) conditioning. The three distinct 
levels, i.e., lowest risk for CSs, chance-level risk for nCS (i.e. nCSs, nCSm, nCSt), and highest 
risk for CSt, indicated the emergence of distinct affective categories of safety, neutrality, and 
threat. (C) SCR during the 2-AFC ODT. SCR responses were first fitted with an exponential 
decay function to account for habituation over repeated trials (Li et al., 2008). Largest SCR 
decay was observed for nCSm at pre-conditioning, which decreased markedly at post-
conditioning (Day 1 and Day 9). Error bars represent s.e.e. (individually adjusted s.e.m.).   
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Figure 3. Sensory cortical pattern dissimilarity across the odor space. (A) Group-average 
representational dissimilarity matrices (RDMs) for APC, PPC, and OFColf at each time point. 
Each cell of the matrix reflects pattern dissimilarity (1- Pearson’s r) between corresponding odor 
pairs. Cells right off the diagonal reflect pattern dissimilarity between CSs and nCSs (d1), nCSs 
and nCSm (d2), nCSm and nCSt (d3), and nCSt and CSt (d4), which were used to calculate a 
neural discrimination index [NDI = d1 + d4 – (d2 + d3)]. (B) NDI at three time points (pre-, Day 
1 post-, and Day 9 post-conditioning) for each ROI. Both APC and PPC demonstrated an 
increase of NDI from pre- to Day 1 post-, but not Day 9 post-conditioning. Error bars represent 
s.e.m. * P < .05.  
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Figure 4. Sensory cortical classification of odors by acquired emotional value. (A-C) Three-
class (CSs vs. nCSm vs. CSt) SVM classification accuracies for the APC, PPC, and OFColf at 
three time points (pre-, Day 1 post-, and Day 9 post-conditioning). OFColf showed reliable 
classification at post-conditioning (both Day 1 and Day 9) but not at pre-conditioning. PPC 
showed above-chance classification at pre- and Day 1 post-, but not Day 9 post-conditioning. 
Chance (33.3%) is indicated by a gray dashed line. *: P < .05, one-tailed (* inside the bars: vs. 
chance; * between the bars: post- vs. pre-conditioning). (D-F) Confusion matrices (top) and their 
line-graph renditions (bottom) for APC, PPC, and OFColf at three time points. For each confusion 
matrix, rows represent target (or actual) odors and columns represent the classifier prediction (%) 
for each odor class (sum = 100%). Diagonal entries (highlighted by yellow dashed lines) indicate 
correct classification. For line-graph renditions of confusion matrices, each line represents a 
target odor, with the x-axis indicating the predicted odors. Notably, PPC on Day 9 showed a 
general bias to classify all odors as the CSt (*: predicted CSt rate > predicted CSs and nCSm 
rates collapsed; P < .05). Chance (33.3%) is indicated by a gray dashed line. Error bars represent 
s.e.m.   
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Figure 5. Sensory cortical tuning shifts to the CS. (A) Odor tuning profiles (%) of nCSs and 
nCSt voxels (defined by the pre-conditioning “optimal odor”) at post-conditioning (Day 1 and 
Day 9) in the APC, PPC, and OFColf. (B) Tuning shift index (TSI) at post-conditioning (Day 1 
and Day 9) for each ROI. TSI scores for the CSs and CSt were defined as (% CSs - % nCSm) 
and (% CSt - % nCSm), respectively. PPC showed a significant increase in TSI to both CS on 
Day 9 relative to Day 1 post-conditioning. (C) Odor tuning maps for a representative participant. 
nCSs and nCSt voxels were combined (denoted as “nCS-target”) and arranged in the descending 
order of MI (left to right and top to bottom), colors of which indicate their post-conditioning 
optimal odors. The PPC map at Day 9 post-conditioning contains a disproportional number of 
red voxels (13/36). Red = “CS-neighbor” (i.e. the adjacent CS: CSt for nCSt, CSs for nCSs); 
sand = “nCS-target”; light yellow = nCSm; light blue = “nCS-distant” (i.e., the nCS towards the 
other end of the odor-morphing continuum); dark blue = “CS-distant” (the CS at the other end of 
the continuum). Error bars represent s.e.m. * P < .05, one-tailed (* inside the bars: vs. zero; * 
between the bars: Day 9 vs. Day 1 post-conditioning). 
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