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ABSTRACT 32 

Gene flow, demography, and selection can result in similar patterns of genomic variation and 33 

disentangling their effects is key to understanding speciation. Here, we assess transcriptomic variation to 34 

unravel the evolutionary history of Gryllus rubens and G. texensis, cryptic field cricket species with highly 35 

divergent mating behavior. We infer their demographic history and screen their transcriptomes for 36 

footprints of selection in the context of the inferred demography. We find strong support for a long history 37 

of bidirectional gene flow, which ceased during the late Pleistocene, and a bottleneck in G. rubens 38 

consistent with a peripatric origin of this species. Importantly, comparing the observed FST distribution 39 

with distributions from coalescent simulations under various demographic scenarios indicates that gene 40 

flow (without selection) strongly shaped patterns of genetic divergence. Genetic divergence at FST outlier 41 

loci could thus falsely be attributed to selection when not accounting for demographic history. We 42 

uncovered a subset of loci with signatures of selection, many of which are candidates for controlling 43 

variation in mating behavior. Our results underscore the importance of gene flow and demography in 44 

overall levels of genetic divergence and highlight that simultaneously examining demography and 45 

selection facilitates a more complete understanding of genetic divergence during speciation. 46 

 47 

 48 

INTRODUCTION 49 

The study of speciation and the origins of earth’s biodiversity are at the core of evolutionary biology. An 50 

important first step is understanding the mechanisms that drive genetic divergence between closely related 51 

groups of organisms. In the age of next-generation sequencing, our understanding of these mechanisms is 52 

rapidly advancing. However, a variety of processes such as gene flow, local variation in recombination 53 

and mutation rates, linked or background selection, and divergent selection often simultaneously influence  54 

genetic variation between diverging lineages and the different processes may leave similar signatures in 55 

the genome (Noor and Bennett 2009; Feder et al. 2012; Nachman and Payseur 2012; Cutter and Payseur 56 

2013; Seehausen et al. 2014; Burri et al. 2015). Therefore, to understand how populations diverge, how 57 
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reproductive isolation evolves, and how this affects the genome, it is essential that we examine both 58 

selective and neutral processes.  59 

Recently, the role of gene flow in speciation has drawn renewed attention (Smadja and Butlin 2011; Feder 60 

et al. 2013; Sousa and Hey 2013; Servedio 2015; Ravinet et al. 2017) . It was once thought that 61 

reproductive barriers could only evolve in allopatry (Mayr 1963; Bolnick and Fitzpatrick 2007). However, 62 

this view has shifted due to accumulating evidence for varying rates of gene flow during early divergence 63 

(Bolnick and Fitzpatrick 2007; Nosil 2008; Bird et al. 2012). Although ‘true’ sympatric speciation is likely 64 

rare, there is nowadays a general acceptance that some amount of gene flow occurs during many 65 

speciation events, i.e. parapatric speciation (Coyne and Orr 2004; Smadja and Butlin 2011; Arnold 2015). 66 

Speciation with gene flow has attracted special attention because strong divergent selection in 67 

combination with high migration rates may lead to higher genomic divergence in the regions harboring 68 

loci important for reproductive isolation and local adaptation (Turner et al. 2005; Nosil et al. 2009; Cutter 69 

and Payseur 2013; Feder et al. 2013; Ravinet et al. 2017). However, variation in levels of divergence 70 

across the genome may also strongly depend on locally reduced intraspecific diversity due to demographic 71 

effects or variation in mutation and recombination rates (Nachman and Payseur 2012; Cruickshank and 72 

Hahn 2014; Burri et al. 2015). Additionally, the likelihood of detecting the effects of selection above 73 

background levels of genomic variation is highly dependent on the genetic architecture of the traits under 74 

selection (Jiggins and Martin 2017) and the strength of selection (Ortiz-Barrientos and James 2017). These 75 

caveats warrant caution in the interpretation of the results from genomic scans, especially without a 76 

detailed understanding of the behavioral ecology and evolutionary history of the study system (Ravinet et 77 

al. 2017).  78 

Here, we assess the role of neutral demographic and selective mechanisms in driving genetic divergence 79 

between the transcriptomes of two sexually isolated field cricket species, Gryllus rubens and G. texensis. 80 

The species pair is widely distributed across the southern Gulf and Mid-Atlantic States in North America, 81 

with a broad sympatric region from eastern Texas through western Florida (Fig. 1). Males are 82 

morphologically cryptic (Gray et al. 2008) and there is no documented ecological divergence (Gray 2011). 83 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2017. ; https://doi.org/10.1101/193839doi: bioRxiv preprint 

https://doi.org/10.1101/193839
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

However, females differ in the length of the ovipositor (Gray et al. 2001), which tentatively reflects 84 

ecological adaptation to different soil types (Bradford et al. 1993). There is strong premating isolation 85 

between the species through species-specific long-distance mate attraction songs (Walker 1998; Gray and 86 

Cade 2000; Blankers et al. 2015a), close-range courtship songs (Gray 2005; Izzo and Gray 2011), and 87 

potentially through cuticular hydrocarbons (CHCs, Gray 2005), which are known to be used in chemical 88 

mate signaling in congeneric as well as more distantly related field cricket species (Tregenza and Wedell 89 

1997; Thomas and Simmons 2010; Maroja et al. 2014). Reproductive isolation is maintained in the zone 90 

of overlap, but there is no evidence for reproductive character displacement, indicating that reinforcement 91 

is unlikely to affect divergence in these species (Higgins and Waugaman 2004; Izzo and Gray 2004).  92 

Given their current distributions (Fig. 1), we hypothesize that interspecific gene flow has played a 93 

potentially dominant role in the evolutionary history of G. texensis and G. rubens. However, we expect 94 

contemporary gene flow to be unlikely because (1) the most distinctive phenotype in this system, the 95 

rhythm of the male song, is bimodally distributed among the species both in allopatry and in sympatry 96 

with no intermediates (i.e. F1 hybrids or backcrosses) collected (Walker 1998; Gray and Cade 2000; 97 

Higgins and Waugaman 2004; Izzo and Gray 2004; Blankers et al. 2015a), (2) there is no signature of 98 

reinforcement on female preferences as the strength of female preference for conspecific males does not 99 

vary between sympatry and allopatry (Gray and Cade 2000; Izzo and Gray 2004), and (3) lab-reared 100 

offspring of field inseminated females are always pure species (Walker 1998; Gray and Cade 2000; 101 

personal observations). A mitochondrial DNA study found evidence that suggests G. rubens has a 102 

peripatric origin from G. texensis (Gray et al. 2008) and we thus hypothesize that divergence between G. 103 

texensis and G. rubens is associated with a strong bottleneck for the latter but not the former species.  104 

In addition to understanding the evolutionary historical context in which G. texensis and G. rubens have 105 

evolved, we also aim to elucidate the role selection played during divergence. The striking variation in 106 

sexual communication behavior in this system involves multiple signaling parameters and corresponding 107 

preferences, likely across multiple communication channels (i.e. acoustic and chemical). This implies a 108 

strong selective pressure on genes related to chemical and acoustic mating signals. Variation in song 109 
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depends on (i) the morphology and resonant properties of the wings, (ii) neural networks called central 110 

pattern generators that control rhythmic wing movement, and (iii) neuromuscular properties of the 111 

muscles that affect the temporal rhythm of the song (reviewed in Gerhardt and Huber 2002). Similarly, 112 

song recognition and preference in females are controlled by a complex network of neurons and likely 113 

depend on properties of ion channels, in particular potassium channels mediating inhibitory effects 114 

(Hennig et al. 2014; Schoneich et al. 2015; Göpfert and Hennig 2016).  115 

Variation in song signals and preferences is thus expected to be manifested in changes in the properties of 116 

muscles, neuromuscular junctions, and channels mediating excitatory and inhibitory stimuli from within 117 

the nervous system. We predict that if selection on these traits has played an important role in establishing 118 

and maintaining reproductive isolation, loci showing putative footprints of selection can be tied to the 119 

biological processes associated with variation in secondary sexual characters in general, and properties of 120 

the nervous system that can be linked to song or song preference behavior in particular. 121 

 122 

MATERIALS & METHODS 123 

Sample collection 124 

Animals were collected in the USA in Lancaster and Austin (TX; ca. 80 G. texensis females) and in Lake 125 

City and Ocala (FL; ca. 40 G. rubens females) in autumn 2013 (Fig. 1 black dots). Collected females, 126 

which are typically already inseminated in the field, were housed in containers in groups of up to 15 127 

individuals with gravel substrate, shelter, and water and food ad libitum. Each container also contained a 128 

cup with vermiculite for oviposition. During two weeks, eggs were collected and transferred to new 129 

containers; hatchlings were then reared to adulthood. We used laboratory-raised offspring of the field-130 

caught females between one and three weeks after their final molt rather than field-caught specimens to 131 

standardize rearing conditions across all samples. All animals (males and females) were played back an 132 

artificial stimulus resembling the conspecific male song for 10 minutes prior to sacrificing the animal. The 133 

rationale here was that one of our primary objectives was to look at genetic divergence in relation to 134 
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mating behavior polymorphism. In case specific genes involved in female preference behavior were only 135 

expressed upon hearing a male song signal, this could potentially be overcome by a brief play back 30 – 136 

120 minutes prior to RNA preservation. Stimulus play back occurred for females and males to standardize 137 

the RNA sampling method across sexes. Within two hours of stimulus presentation, we sacrificed the 138 

cricket, removed the gut and then preserved the body in RNAlater following the manufacturer’s 139 

instructions; samples were then stored at -80 ºC until RNA isolation. A total of five males and five 140 

females were used from each of the two populations for each species (40 individuals in total; randomly 141 

sampled across containers when there were multiple containers for crickets from the same population). 142 

Total RNA extraction and directional, strand-specific Illumina library preparation were done as described 143 

in a recently published transcriptomic resource for Gryllus rubens (Berdan et al. 2016). 144 

SNP calling 145 

Raw reads were processed using Flexbar (Dodt et al. 2012) to remove sequencing primers, adapters, and 146 

low quality bases on the 3’ end of the individually barcoded reads. Samples were mapped to the G. rubens 147 

reference transcriptome (Berdan et al. 2016) using Bowtie2 (Langmead and Salzberg 2012) with default 148 

parameters but specifying read groups to mark reads as belonging to a specific individual. Duplicate reads 149 

were marked using ‘picard’ (http://broadinstitute.github.io/picard). The Genome Analysis Toolkit (GATK, 150 

DePristo et al. 2011; Van der Auwera et al. 2013) was used to call genotypes with the GATK-module 151 

‘UnifiedGenotyper’(Van der Auwera et al. 2013). The variants were then filtered to only retain high 152 

quality SNPs based on the recommendations on the GATK website 153 

(https://gatkforums.broadinstitute.org/gatk/discussion/comment/30641, accessed on 05/05/2015) and as 154 

described in a previous study (Berdan et al. 2015). The minor allele frequency (MAF) cut-off was set at 155 

0.025 (a minimum of two copies of the allele).  156 

Our sampling design was optimized to standardize the conditions under which we stored RNA samples, 157 

but potentially introduced a bias towards collecting related individuals. This may affect both demographic 158 

inference and the summary statistics used to identify selective sweeps. To correct for the potential cryptic 159 

relatedness, we used the PLINK methods-of-moments approach (Purcell et al. 2007) implemented in the 160 
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SNPrelate package (Zheng et al. 2012) in R (R Development Core Team 2016) to estimate kinship 161 

coefficients for all pairs based on the allele frequencies within each population sample. We excluded eight 162 

individuals that showed estimated kinship coefficients above 0.125 (half-sib level) with other individuals 163 

from their population, leaving 17 G. texensis and 15 G. rubens individuals for downstream analyses. 164 

The demographic history 165 

We first tested whether the contemporary populations show geographic genetic structure. We inspected 166 

allele frequency variation within and between species and populations using principal component analysis. 167 

We also ran STRUCTURE (Falush et al. 2003) using a single SNP locus per contig (8,835 randomly 168 

drawn SNPs). We used the admixture model with sampling location as prior information. We ran 169 

STRUCTURE with an MCMC chain length of 100,000 and with a burn-in length of 10,000 for K=1 170 

through K=5 (K=4 for the species-specific runs) with three repetitions for each K-value. Results were 171 

analyzed using STRUCTURE HARVESTER (Earl and vonHoldt 2012) using the log-likelihood to 172 

compare K=1 versus all other values for K and the delta K method (Evanno et al. 2005) to compare K=2 173 

versus all higher values of K. 174 

To investigate the demographic history of G. rubens and G. texensis, we used the approximate Bayesian 175 

computation framework (ABC, Beaumont et al. 2002). We used ABCsampler from the ABCtoolbox 176 

package (Wegmann et al. 2009) to simulate our data under different demographic scenarios in fastsimcoal 177 

v2.5.2.3 (Excoffier and Foll 2011; Excoffier et al. 2013) and to calculate summary statistics using 178 

arlsumstat v.3.5.1.3 in Arlequin v 3.5 (Excoffier and Lischer 2010). We performed the analysis using the 179 

sequences from 1000 randomly drawn contigs (not including contigs with zero SNPs), using fixed 180 

recombination and mutation rates (both 1e-8) and the same minor allele frequency cut-off for the 181 

simulated data as for the observed data (0.025). We initially calculated all between population summary 182 

statistics supported by arlsumstat. Then, using partial least squares regression (PLS), we retained the 183 

summary statistics with the highest predictive power (i.e. those with high factor loadings on the PLS 184 

components that significantly increase the predictive power of parameter estimates) for demographic 185 

estimates: the between-species mean and standard deviation of the number of polymorphic sites, the 186 
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number of private polymorphic sites, Tajima’s D, and nucleotide diversity (π) in each species, as well as 187 

pairwise (between species) FST and π.  188 

The demographic scenarios we compared are given in Fig. 3. We intentionally considered only relatively 189 

simple models with few parameters to avoid the risk of overparameterization (Csilléry et al. 2010). We 190 

first ran 200,000 iterations of a simple divergence model (DIV, 4 parameters, Fig. 3A), three gene-flow 191 

scenarios [Fig. 3B, continuous gene flow (CGF 6 parameters), ancestral gene flow (AGF 7 parameters), 192 

and recent gene flow (i.e., secondary contact, RGF, 7 parameters)], and three bottleneck models [Fig. 3C, 193 

bottleneck in G. rubens (RB, 6 parameters), in G. texensis (TB, 6 parameters), and in both species (BB, 8 194 

parameters)]. Prior ranges for population sizes and time points were chosen on a log-uniform scale 195 

spanning across several orders of magnitude and for bottleneck size and migration rates on a uniform scale 196 

not overlapping zero (Table 1).   197 

After simulating the scenarios, model selection and posterior predictive checks were performed in R. 198 

Because of their similarity, the three bottleneck models and the three gene flow models were treated as 199 

two groups of models that were first tested inter-se; the best model of each group was then tested against 200 

the other models. We first retained the 1% samples with the smallest Euclidean distance between the 201 

summary statistics of the simulated data and the observed data (‘1% nearest posterior samples’ from 202 

hereon) for each scenario separately. We then obtained a set of linear discriminants that maximized the 203 

distance among models within the nested categories (gene flow and presence of bottleneck). Next, 204 

posterior model probabilities were calculated based on these linear combinations of summary statistics 205 

using the ‘postpr’ function in the ‘abc’ package (Csilléry et al. 2012), retaining one gene flow (AGF) and 206 

one bottleneck model (RB) with the highest posterior probability (‘best model’ from hereon). Finally, we 207 

repeated model selection to select among a simple divergence scenario (DIV), the best gene flow (AGF) 208 

and bottleneck (RB) scenarios, and a scenario combining the best gene flow and the best bottleneck 209 

scenario (AGFRB, 9 parameters, Fig. 3D). Model selection was validated by performing leave-one-out 210 

cross validation with logistic regression.  211 
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To estimate demographic parameters, we then ran 1,000,000 new simulations under the model(s) with the 212 

highest posterior probability. Posterior predictive checks were performed by calculating the predicted R2 213 

and root mean squared error prediction (RMSEP) using the ‘pls’ package (Mevik and Wehrens 2007). We 214 

also used the ‘cv4abc’ function from the ‘abc’ package to evaluate prediction error. We estimated the 215 

demographic parameters with the ‘abc’ function using non-linear regression and a tolerance rate of 0.05. 216 

We were also interested in assessing the effects of demography, in particular the timing of gene flow, on 217 

the patterns of transcriptome-wide genetic variation (i.e. the FST distribution), rather than only on 218 

summary statistics. Therefore, for the 1% nearest posterior samples of the models simulating continuous, 219 

recent, and ancestral gene flow and the AGFRB model we obtained the simulated FST distribution for each 220 

posterior sample. The median and variation of these distributions were then visually contrasted with the 221 

observed FST distribution. 222 

The role of selection  223 

To assess the role of selection in driving genetic divergence, we employ two approaches that differ in their 224 

sensitivity to distinguish signals of selection from the confounding effects from past demographic events. 225 

Given sufficiently long divergence times and high levels primary or secondary gene flow, elevated 226 

sequence divergence can contrast the regions harboring loci involved in reproductive isolation from the 227 

rest of the genome (Nachman and Payseur 2012; Cruickshank and Hahn 2014). A recent selective sweep 228 

can also increase between population differentiation and decrease within population diversity, as well as 229 

shift the allele frequency spectrum (AFS) towards a higher frequency of rare alleles.  230 

We thus considered loci to be potentially under positive or divergent selection if they exceeded genomic 231 

background levels of (1) absolute sequence divergence (dxy) or (2) frequencies of rare alleles, low 232 

diversity, and high differentiation. We used VCFtools (Danecek et al. 2011) to calculate the following 233 

summary statistics: Tajima’s D (Tajima 1989), nucleotide diversity π (Nei and Li 1979), and weighted FST 234 

(Weir and Cockerham 1984) in 1000 bp windows, and the absolute difference between the frequency of 235 

the major allele in the two species. We also calculated the average interspecific pairwise distance dxy for 236 

each window as dxy =  π/(1-FST ), where π is the mean of the nucleotide diversity across species and FST is 237 
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the weighted mean FST (Hudson et al. 1992; note that this method is similar to the often used dxy = pi(1-pj) 238 

+ pj(1-pi), with pi and pj are the major or minor allele frequencies in species i and j, averaged across 239 

windows, weighed by the number of SNPs). We retained the top 1% contigs with respect to dxy predicting 240 

that these loci have diverged relatively early in the evolutionary history and remained shielded from gene 241 

flow throughout. We also retained all loci for G. texensis and G. rubens separately that had Tajima’s D 242 

below the 5% lowest simulated Tajima’s D values under the inferred demographic scenario and with 243 

values for π and FST in the lowest and highest 10%, respectively.  244 

For both these sets of outliers we checked for enriched Gene Ontology terms using ‘topGO’ (Alexa and 245 

Rahnenfuhrer 2016), part of the Bioconductor toolkit in R. The GO annotation was obtained from the G. 246 

rubens reference transcriptome (Berdan et al. 2016), which used the GO mapping module in Blast2Go 247 

(Conesa et al. 2005). We limited our gene set enrichment to biological process terms only and used the 248 

parent-child algorithm (Grossmann et al. 2007) to correct the P values for the ‘inheritance problem’ (i.e., 249 

the problem that higher GO terms inherit annotations from more specific descendant terms leading to false 250 

positives). We considered any GO term significantly enriched if the false discovery rate (Benjamini and 251 

Hochberg 1995) associated with the corrected P-value was below 10%.  Additionally, to get a more 252 

detailed picture of the putative functions of outlier loci, we looked up the GO annotation for the gene 253 

product with the highest similarity on Flybase (Gramates et al. 2017). 254 

RESULTS 255 

Transcriptomic divergence 256 

We sequenced RNA from 40 individuals (20 G. rubens and 20 G. texensis) on a HiSeq 2000 (Illumina, 257 

San Diego, CA, USA) obtaining on average 51,046,578 100-bp reads per individual (range 37,887,468-258 

72,304,968) at a sequencing depth of eight libraries per lane. Reads mapped to the G. rubens 259 

transcriptome at an average rate of 83.2% (Table S1). Mapping rates were not higher in G. rubens despite 260 

the use of the G. rubens transcriptome (G. rubens: 82.5%; G. texensis: 83.9%; one-tailed t-test T = -0.854 261 

df=19 P = 0.199), but females mapped at a significantly higher rate than males (86.2% versus 80.2%; two-262 

tailed t-test T = 4.68 df=19 P < 0.0001). At a MAF cut-off of 0.025 we found a total of 175,244 SNPs. 263 
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The average transition-transversion ratio was 1.6:1. Nucleotide diversity (π) was similar among G. rubens 264 

(π = 0.11, σπ = 0.14) and G. texensis (π = 0.13, σπ = 0.15). Median D was 0.07 (first quantile: 0.05, third 265 

quantile 0.20) and 2.7% of the SNPs (4,828) were fixed between the species (Fig. 2A). Average Tajima’s 266 

D was negative for both species, but the distribution across loci showed substantial variation (Fig. 2B, C).  267 

The demographic history 268 

We found no substantial evidence for population substructure within either species. The species axis was 269 

the predominant axis of variation among individuals in the Principal Component Analysis (23.93% of total 270 

SNP variation, Fig. S1A), followed by axes separating G. texensis (PC2, 6.13%) and G. rubens (PC4, 271 

4.35%) individuals. Variation within species was not related to geographic locations from which the 272 

individuals were collected (Fig. S1B, C). STRUCTURE further supported the finding that neither of the 273 

species was strongly differentiated geographically. The optimal K equaled 2 when we ran STRUCTURE 274 

with both species included (Fig. S2). Examining population structure within species revealed weak 275 

evidence for population substructure in both species at K=2, but K = 1 was the most parsimonious given 276 

the spread in log-likelihoods across K-values (Fig. S2). These results are robust across different subsets of 277 

SNPs and sample sizes (Fig. S3). 278 

To infer the role of gene flow and bottlenecks during the evolutionary history of G. texensis and G. 279 

rubens, we used a nested rejection procedure to select the best model out of eight different models varying 280 

in the presence and timing of bottlenecks and gene flow (Fig. 3). The gene flow and bottleneck models 281 

with the highest posterior probability were ‘ancestral gene flow’ (AGF Pposterior = 0.99 versus continuous 282 

gene flow, CGF: Pposterior = 0.00, and recent gene flow, RGF: Pposterior =0.01) and ‘G. rubens bottleneck’ 283 

(RB Pposterior = 0. 94 versus G. texensis bottleneck, TB: Pposterior = 0.06 and both bottleneck, BB: Pposterior 284 

= 0.00), respectively. We combined these best models into a model with both ancestral gene flow and a 285 

bottleneck for G. rubens (AGFRB) and compared that model against a simple divergence model (DIV) 286 

and the AGF and RB models. The combined model had the highest posterior probability (AGFRB: Pposterior 287 

= 0.77; AGF: Pposterior = 0.23; DIV: Pposterior = 0.00; RB: Pposterior = 0.00; Fig. 3, Fig. 4). Similar results were 288 
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obtained using the full sample, including additional, but potentially related individuals: AGFRB: Pposterior = 289 

0.75; AGF: Pposterior = 0.21; DIV: Pposterior = 0.03; RB: Pposterior = 0.01). 290 

As posterior probabilities may differ even among very similar models, it is critical to evaluate statistical 291 

support for model choice. Overall, model choice was well supported. For each selection step, we used 292 

cross validation to verify that models can be distinguished by assuming one of the models is the ‘true’ 293 

model and then performing 1,000 independent model selection steps under that assumption. The accuracy 294 

with which the assumed ‘true’ model was chosen was high for the gene flow models 97%, 58%, and 56% 295 

for AGF, CGF, and RGF, respectively), bottleneck models (86%, 86%, and 72% of the time for RB, TB, 296 

and BB respectively), and the final model selection step (86%, 82%, 92%, 96% for DIV, AGF, RB, 297 

AGFRB, respectively). It is important to note that the AGFRB model had the highest support overall and 298 

final model selection was well supported, but there is overlap of the posterior distribution of the summary 299 

statistics in multivariate space between the AGF and AGFRB models (Fig. 4).  300 

Because there was some overlap between the posteriors of AGF and AGFRB (Fig. 4), and AGFRB only 301 

differs from AGF in the addition of a bottleneck, both models were used to infer the evolutionary history. 302 

Divergence times were distributed rather widely in both the AGF and AGFRB scenario, but the median of 303 

both models was around 350,000 years ago (700,000 generations ago). The ancestral effective population 304 

size was estimated around 250,000, an order of magnitude higher than the model estimates for current 305 

effective population sizes in G. rubens (~53,000 for AGFRB and ~18,000 for AGF) and G. texensis 306 

(~83,000 and ~58,000; Table 1, Table S2, Fig. 6A). A bottleneck for G. rubens was estimated at 11% of 307 

the current effective population size (Table 1, Fig. 6C) and recovery to current population sizes was 308 

achieved around 22,000 years ago (Table 1, Fig. 6B). Ancestral gene flow was bidirectional (median m = 309 

0.32 and 0.13 for gene flow from G. texensis into G. rubens and vice versa, respectively; Table 1, Fig. 6C) 310 

and ceased around 16,000 years ago (Table 1, Table S2, Fig. 6B). The parameter estimates for the main 311 

model, AGFRB, were robust to the inclusion of additional, but potentially related, individuals; except for 312 

the median divergence time and the timepoint of recovery from the bottleneck (both higher for the full 313 
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data), the inclusion of more samples gave similar results but at slightly higher accuracy (narrower HPD 314 

interval, Table S3, Fig. S4). 315 

Statistical support for parameter inference varied across demographic events. Overall, the observed 316 

summary statistics fell well within the range of the simulated multivariate summary statistics under the 317 

AGF and AGFRB models (Fig. 4) and 95% HPD intervals of the distributions were generally narrow (Fig. 318 

6, Table 1). For some demographic parameters (current population sizes for G. rubens [NRUB] and G. 319 

texensis [NTEX], and time since cessation of gene flow [TISO] support was high (R2 > 0.81; RMSEP < 0.44); 320 

for other parameters estimated error rates were appreciably higher (Table 1, Table S2).  321 

We compared FST distributions simulated under the AGF, CGF, RGF, and AGFRB models with the 322 

observed FST distribution as a measure of the effect of demography on the patterns of transcriptome-wide 323 

genetic variation. We found that the observed distribution (red line in Fig. 5) closely matched the 324 

simulated distribution of the two models with ancestral gene flow for most parts, including the secondary 325 

peak at the highest FST bin (0.95 < FST ≤ 1.00, Fig. 5C, D). In contrast, the observed FST distribution 326 

showed substantial mismatch with the recent and continuous gene flow models. 327 

The role of selection  328 

There were 80 contigs with dxy values in the 99th percentile. The putative gene products corresponding to 329 

these 80 contigs were significantly enriched (FDR < 10%) for pheromone biosynthesis, hormone 330 

biosynthesis, mating behaviour, and protein maturation (Table 2). Several of the most divergent loci match 331 

genes involved in Drosophila melanogaster sex pheromone pathways, such as α-esterase and 332 

Desaturase1, mushroom body development and neuromuscular synaptic targets, such as S-lap1 and trn, 333 

and acoustic mating behaviour, such as Juvenile hormone esterase and calmodulin (Table S4).  334 

There were 55 and 92 contigs that showed possible signatures of recent selective sweeps (Tajima’s D 335 

below 5% of the simulated sequences under the AGFRB scenario and π and FST in the 90th percentile) in 336 

G. texensis and G. rubens, respectively. The combined set of outlier loci was not significantly enriched for 337 

any biological processes after FDR correction. The most strongly enriched GO terms were predominantly 338 
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higher order GO terms such as ‘organelle organization’, ‘primary metabolic process’, and ‘regulation of 339 

biological process’, but also contained more specific terms: ‘sperm mitochondrion organization’, ‘oocyte 340 

fate determination’, and ‘regulation of female receptivity’ (Table 2). Six contigs were shared between the 341 

species-specific sets. Three of these have no functionally characterized gene products, the other three are 342 

neuroglian (nrg), which is involved in various aspects of nervous system development and associated with 343 

male and female courtship behavior in D. melanogaster; discs large 1 (dlg1), which affects neuromuscular 344 

junctions and changes fruit fly behaviour across several domains including circadian activity and 345 

courtship; and secretory 23 (sec23), which is an important component in differentiation of extra-cellular 346 

membranes in neurons and epithelial cells (Table S5). Several other gene products associated with contigs 347 

in the species- specific sets have functional roles in calcium or potassium channel activity (e.g., nervana2, 348 

expressed in the Drosophila auditory organs), nervous system development (e.g. muscleblind, which also 349 

alters female receptivity during courtship), veined-wing song generation (e.g. period), as well as many 350 

genes related to metabolic and cellular processes. 351 

DISCUSSION  352 

Here, we illuminate the role of demographic and selective processes in the divergence of Gryllus rubens 353 

and G. texensis, sibling species with large, overlapping distributions and strong phenotypic divergence in 354 

sexual traits with limited divergence in other phenotypes. We find strong support for a long history of 355 

ancestral gene flow and a bottleneck following the origin of G. rubens. Importantly, our data also lend 356 

support to the hypothesis that loci that show high interspecific differentiation relative to the genomic 357 

background may do so mostly because of demographic and other neutral processes, rather than due to the 358 

interplay between gene flow and selection. Interestingly, several loci that reveal a putative role for positive 359 

or divergent selection are potential orthologs of D. melanogaster genes involved in (chemical and 360 

acoustic) mating behavior, the main distinctive phenotype in this system and the strongest form of 361 

reproductive isolation between the species. This work represents an important first step in assessing the 362 

contribution of neutral and selective forces to genetic divergence in a model system for sexual selection 363 

research. 364 
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Neutral divergence and demography  365 

We sequenced the transcriptomes of 40 individuals across four populations. Our observed 366 

transition:transversion ratio of 1.6:1 compares well with the estimate (1.55) from another cricket species 367 

pair, G. firmus and G. pennsylvanicus (Andrés et al. 2013), and suggests that sequencing errors did not 368 

contribute unduly to SNP discovery. Divergence across ~175K SNPs showed a bimodal and slightly right-369 

skewed distribution of absolute (allele frequency) divergence, D (Fig. 2), and genetic differentiation, FST 370 

(Fig. 5). The FST distributions simulated under our top two scenarios were also right-skewed and strongly 371 

resembled the observed distribution of genetic differentiation, in strong contrast to FST distributions 372 

corresponding to other models. Most importantly the simulated distributions under the most likely 373 

demographic scenarios, AGF and AGFRB, showed secondary peaks at FST > 0.95. This indicates that a 374 

significant proportion of our fixed loci may have risen to fixation due to neutral effects and emphasizes 375 

the shortcomings of traditional FST outlier approaches (Narum and Hess 2011; Lotterhos and Whitlock 376 

2014). 377 

We find strong evidence for a long history of bidirectional gene flow before G. rubens and G. texensis 378 

became fully reproductively isolated around 16,000 years ago, sometime during the last Pleistocene 379 

glacial cycles. This finding adds to a growing body of work that suggest divergence can occur in the face 380 

of gene flow (Bolnick and Fitzpatrick 2007; Nosil 2008; Bird et al. 2012; Feder et al. 2013). A large 381 

amount of recent work has focused on the role of gene flow in speciation, especially in combination with 382 

divergent or positive selection. In the genic view of speciation (Wu 2001) most areas of the genome are 383 

homogenized among populations during divergence with gene flow, and regions showing excess 384 

differentiation are thus likely protected by selection. This idea has been tested in many model systems 385 

with mixed results (Turner et al. 2005; Ellegren et al. 2012; Nosil et al. 2012; Cruickshank and Hahn 386 

2014; Burri et al. 2015; Marques et al. 2016). Recent work suggests that genomic mosaics may in fact be 387 

mostly a consequence of linked selection caused by differences in recombination rates and density of 388 

selected loci and are thus expected to be conserved in pairwise comparisons even among distantly related 389 

taxa (Nachman and Payseur 2012; Burri et al. 2015; Van Doren et al. 2017). Our results support this idea 390 
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as our demographic simulations recreated heterogeneous patterns similar to our observed data. Although 391 

selection certainly contributed to transcriptome divergence in G. rubens and G. texensis our results 392 

suggest a larger role for neutral processes. 393 

In addition to bi-directional gene flow, the early stages of divergence between G. texensis and G. rubens 394 

were also influenced by a substantial bottleneck in G. rubens. There is some overlap between the AGF (no 395 

bottleneck) and AGFRB (with a G. rubens bottleneck) scenarios in the simulated summary statistic 396 

distribution, but the latter has a substantially higher posterior probability and corroborates the peripatric 397 

origin for G. rubens hypothesized in a previous study (Gray et al. 2008). Although that study used a single 398 

mitochondrial locus, it was done with extensive geographic sampling, and both studies suggest a 399 

bottleneck for G. rubens. Furthermore, estimates of strong admixture between populations within species 400 

and divergence time estimates are overlapping (this study: median ~ 0.35 million years ago; Gray et al. 401 

study: 0.25 – 2.0 mya). Estimates for current effective population sizes (roughly between 50 and 80 402 

thousand for the AGFRB model and between 20 and 60 thousand for the AGF model) are surprisingly low 403 

given the potential census population size for G. texensis is in the millions (Gray et al. 2008). Potentially, 404 

the discrepancy is due to recent population expansion (Ptak and Przeworski 2002; Nadachowska-brzyska 405 

et al. 2013) or variation in individual mating success (Lande and Barrowclough 1987), as is observed in 406 

wild populations of closely related species (Ritz and Köhler 2010; Rodriguez-Munoz et al. 2010). 407 

The role of selection  408 

A central aim of this study was to elucidate the role of (sexual) selection during divergence within the 409 

context of the inferred demographic history. The species have strongly divergent mating behaviors with no 410 

evidence for reinforcement (Gray and Cade 2000; Higgins and Waugaman 2004; Izzo and Gray 2004; 411 

Blankers et al. 2015a). Many other cricket species show similarly strong divergence in various aspects of 412 

their mating behavior and several lines of evidence from various taxa indicate that this is at least in part 413 

driven by selection (Gray and Cade 2000; Bentsen et al. 2006; Shaw et al. 2007; Bailey 2008; Thomas and 414 

Simmons 2009; Oh and Shaw 2013; Blankers et al. 2017; Pascoal et al. 2017). Here, we show that the 415 

striking behavioral divergence is to some extent reflected in elevated sequence divergence of loci with 416 
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putative functions in acoustic and chemical mating behavior. We find evidence that the set of loci showing 417 

the highest levels of sequence divergence are enriched for contigs bearing significant similarity to genes 418 

with known function in mating behavior in D. melanogaster. In addition, among the six contigs that 419 

showed evidence for a selective sweep in both species, three are potential orthologs of genes that affect 420 

neuromuscular properties in fruit flies and have effects on the flies’ mating behavior. Several other 421 

outliers are potential orthologs of genes that can be tied to mating behavior variation in Drosophila spp. 422 

Given the substantial time since divergence and the long history of gene flow, high sequence divergence is 423 

expected for loci that have experienced limited homogenizing effects from gene flow relative to the rest of 424 

the genome. The theoretical support for speciation with gene flow driven by divergence in secondary 425 

sexual characters is very thin at best (van Doorn et al. 2004; Weissing et al. 2011; Servedio 2015). Here 426 

we provide exciting and rare evidence for speciation with primary gene flow while both phenotypic (Gray 427 

and Cade 2000), quantitative genetic (Blankers et al. 2015b, 2017), and genomic analyses (this study) of 428 

selection highlight a role for selection on mating behavior in driving reproductive isolation. A compelling 429 

alternative interpretation of the findings here is that the peripatric origin of G. rubens has allowed for an 430 

initial phase of reduced gene flow; during this phase mating signals and preferences may have diverged 431 

sufficiently (aided by a founder effect following a population bottleneck) to maintain reproductive 432 

isolation during a subsequent phase of range expansion culminating into the contemporary, widespread 433 

and largely overlapping species’ distributions. More empirical studies examining the role of gene flow and 434 

selection in systems characterized by strong sexual isolation are needed to test the theoretical predictions 435 

for speciation by sexual selection. However, this study along with other recent findings in finches 436 

(Campagna et al. 2017), fresh water stickleback (Marques et al. 2017), and cichlids (Malinksy et al. 2015) 437 

provide exciting first genomic insights into the role of mating behavior divergence, sexual selection, and 438 

gene flow in the earliest phases of speciation. 439 

Although a large proportion of loci identified in our scan match our expectations, we acknowledge that 440 

there is a substantial risk on false positives, as both linked (background) selection and demographic effects 441 

are expected to confound the signatures of positive or divergent selection (Cruickshank and Hahn 2014; 442 
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Ravinet et al. 2017). By using coalescent simulations under the inferred evolutionary history, we have 443 

accounted for some confounding effects from demography. However, there is still potential neutral genetic 444 

variation that is unaccounted for, most notably the potentially confounding effects of recent population 445 

expansion and variation in recombination rates. We therefore caution that there is the uncertainty 446 

associated with the results obtained here and with genomic scans on quantitative traits in general (Jiggins 447 

and Martin 2017). Nevertheless, our findings provide exciting incentive for validation using alternative 448 

methods (e.g., QTL mapping) and follow-up functional genomic analyses.  449 

Unsurprisingly, not all “outlier” contigs could be linked to mating behavior. The rest of these outliers are 450 

likely comprised of three groups: (1) Loci that are physically linked to loci under selection: In the earliest 451 

phases of speciation, only loci directly under strong divergent selection will differ. However, gene 452 

frequencies at tightly linked loci will also change and, given sufficient time as well as low to moderate 453 

migration and recombination rates, these loci will be swept to fixation along with selected sites (Smith and 454 

Haigh 1974) in a process called divergence hitchhiking (Feder et al. 2012; Via 2012); (2) Loci that are 455 

under selective forces that we have not yet elucidated: It is unlikely that divergent selection only targets 456 

loci involved in mating behavior and other traits may be differentiated between G. rubens and G. texensis. 457 

For example, females differ in the length of the ovipositor (Gray et al. 2001), a trait which reflects 458 

potential ecological adaptation to different soil types (Bradford et al. 1993); (3) Loci that are not under 459 

selection: Genetic drift can cause loci to drift to fixation and demographic effects such as bottlenecks and 460 

migration patterns (Holsinger and Weir 2009) can aid this process. Our simulations predict a significant 461 

number of fixed loci (1.90% on average for the AGFRB scenario) solely due to neutral processes (Fig. 5). 462 

Additionally, practical limitations of discovering low-frequency SNPs causing ascertainment bias (Clark 463 

et al. 2005) can contribute to misinterpretation of the patterns of genetic diversity (Vitti et al. 2013). A 464 

genomic map of Gryllus and further analyses would make strong headway into determining which of these 465 

categories the other potential outliers fall into. 466 

Finally, there may be loci that are under selection but that were not detected by our scan because they 467 

simply were not being expressed. We sequenced samples from first generation laboratory offspring rather 468 
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than animals directly from the field. Despite the fact that no differences between G. texensis and G. rubens 469 

in ecology, microhabitat use, or feeding behavior have been described, the laboratory conditions have 470 

potentially limited our potential to detect genetic differences related to local adaptation. 471 

The results presented here offer unprecedented insight into the evolutionary history and the role of 472 

demography and selection in driving transcriptomic divergence in two field cricket sister species. We 473 

inferred that a long period of bidirectional, ancestral gene flow and a bottleneck in G. rubens preceded 474 

completion of reproductive isolation (Fig. 3). Importantly, the timing of gene flow appears to have 475 

significantly influenced the pattern of divergence (i.e. the FST distribution) that we observe (Fig. 4). We 476 

also uncovered several loci that show signatures of positive or divergent selection and show that these 477 

contigs are potentially associated with courtship behavior, neuromuscular development, and chemical 478 

mating behavior. Future work will place these data on a genomic map allowing us to determine how 479 

genetic divergence is distributed relative to loci under selection. These findings provide important steps 480 

towards understanding the role of selective and neutral processes in shaping patterns of divergence and the 481 

role of sexual selection during speciation-with-gene flow. They also highlight the strength of combining 482 

information on (i) the phenotypes that contribute to reproductive isolation, (ii) demographic inference, and 483 

(iii) scans for loci under selection. 484 
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FIGURE LEGENDS 734 

Fig. 1. Geographic distributions for G. texensis (red) and G. rubens (blue). The sympatric zone is marked 735 
with turquoise. The distributions are approximate and based on the Singing Insects of North America data 736 
base (http://entnemdept.ufl.edu/Walker/buzz/). The black dots in Texas and Florida represent the sampling 737 
locations for G. texensis and G. rubens, respectively.  738 
 739 
Fig. 2. Genomic divergence. The distribution of the interspecific allele frequency difference, D, across  740 
SNPs (A), of the absolute divergence, dxy, in 1000 bp windows (B), and of Tajima’s D in 1000 bp 741 
windows for G. rubens (C) and G. texensis (D), respectively 742 
  743 
Fig. 3. Demographic scenarios for Approximate Bayesian Computation. Eight scenarios were simulated 744 
under the ABC framework. (A) A simple divergence scenario (DIV) with a log uniform prior on the 745 
divergence time (TSPLIT), the ancestral population size (NANC) and the current effective population sizes for 746 
G. rubens and G. texensis (NRUB, NTEX). (B) Three different gene flow models with either continuous gene 747 
flow (CGF), ancestral gene flow (AGF), or recent gene flow (RGF) were additionally defined by 748 
parameters describing migration rates (MTEX>>RUB, MRUB>>TEX; uniform priors not overlapping zero) and 749 
the time point of cessation of gene flow (TISO) or secondary contact (TCONT), both with log uniform priors. 750 
(C) Three bottleneck models defined by the time point of recovery to current population sizes (TBOT; log 751 
uniform prior) and the relative population size reduction (BOTSIZE; uniform prior not overlapping zero) for 752 
G. rubens (RB), G. texensis (TB), or both (BB). (D) An additional model (AGFRB) combining the best 753 
gene flow (AGF) and best bottleneck (RB) model, marked by the black, dashed rectangles. The posterior 754 
probabilities for model selection are given left of the square (opening) brackets for the three gene flow and 755 
the three bottleneck models, and right of the square (closing) brackets for the final model selection step. 756 
 757 
Fig. 4. Distribution of observed and simulated data sets in multivariate summary statistic space. For each 758 
of the four models used in the final model selection step (see also Fig. 2) the distribution of the 1% 759 
posterior samples with the smallest Euclidean distance to the observed data is shown relative to the 760 
coordinates of the observed data. The multivariate summary statistic space is constrained by the first two 761 
linear discriminants (see text for details) representing linear combinations of the summary statistics used 762 
in model selection. 763 
  764 
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Fig. 5. FST distributions of simulated and observed data. The distribution of Weir and Cockerham’s FST as 765 
calculated by the program arlsumstat are shown for 2000 simulated data sets under the ancestral gene flow 766 
and a bottleneck for G. rubens (AGFRB, box-and-whiskers top panel) scenario, the ancestral gene flow 767 
(AGF, box-and-whiskers bottom panel) scenario, and the observed data (1000 haplotype sequences, red 768 
solid line). The histograms show the density to enhance comparison between simulated and observed data.  769 
 770 
Fig. 6. Demographic parameter estimation. The density distribution under the AGFRB (A-C) and the AGF 771 
(D-F) are shown for the ancestral and current population sizes (A, D), the time point for divergence, 772 
cessation of gene flow, and recovery to current population sizes after the bottleneck (B, E), and the 773 
migration rates and bottleneck size (C, F). The density lines have been trimmed to the existent parameter 774 
distribution (i.e., no density extrapolation) and have been smoothed by adjusting the bandwidth. For lines 775 
within one panel the same smoothing bandwidth has been used. 776 
 777 

TABLES 778 

 779 

Table 1. ABC estimates. Prior distributions (log-scale), posterior predictive checks and posterior 780 
parameter estimates (log scale, median and 95% highest posterior density interval) for the model are 781 
shown. 782 

Parameter 

Priora Validation Posterior 

minimum maximum R2 RMSEP 2.5% Median 97.5% 

LOG10(NANC) 4.0 6.0 (lu) 0.13 0.93 4.83 5.46 6.01 

LOG10(NRUB) 3.0 6.0 (lu) 0.90 0.32 4.55 4.73 4.89 

LOG10(NTEX) 3.0 6.0 (lu) 0.75 0.50 4.60 4.92 5.10 

LOG10(TSPLIT)b 5.0 7.0 (lu) 0.02 0.99 4.53 5.89 7.22 

LOG10(TISO)b 3.0 7.0 (lu) 0.90 0.32 4.29 4.50 4.65 

LOG10(TBOT)b 5.0 7.0 (lu) 0.48 0.72 4.45 4.64 4.87 

BOTSIZE 0.01 0.5 (u) 0.16 0.91 0.02 0.11 0.31 

MTEX>>RUB 0.01 0.5 (u) 0.06 0.97 0.06 0.32 0.51 

MRUB>>TEX 0.01 0.5 (u) 0.06 0.97 0.02 0.13 0.38 
a priors are uniformally (u) or log-uniformally (lu) distributed and do not overlap zero for migration rates 783 
and bottleneck size. 784 
b the timing of demographic events is in (logarithm of) number of generation and both species have two 785 
generations annually. 786 
 787 
Table 2. GO enrichment results. The top ten terms of the Gene Ontology enrichment is shown for the dxy 788 
outliers and the Allele Frequency Spectrum (AFS) outliers. For each Biological Process, the number of 789 
annotated transcripts and the number of observed and expected transcripts in the sample with a given 790 
annotation are shown. The Fisher’s exact test P-value is corrected using the parent-child algorithm 791 
(Grossmann et al. 2007). The FDR is the false discovery rate based on the corrected P-values. 792 
 793 

GO Term #Annot #Sample #Exp P-value FDR 

  dxy     

GO:0042811 pheromone biosynthetic process 44 4 0.2 4.30E-06 0.0027 

GO:0042810 pheromone metabolic process 49 4 0.22 3.60E-05 0.0071 

GO:1903317 regulation of protein maturation 24 3 0.11 3.70E-05 0.0071 

GO:0042446 hormone biosynthetic process 82 4 0.37 4.50E-05 0.0071 

GO:1903318 negative regulation of protein maturation 23 3 0.1 0.0001 0.0152 

GO:0044705 multi-organism reproductive behavior 359 6 1.62 0.0002 0.0232 

GO:0019098 reproductive behavior 367 6 1.65 0.0005 0.0380 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2017. ; https://doi.org/10.1101/193839doi: bioRxiv preprint 

https://doi.org/10.1101/193839
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

GO:0007618 mating 400 6 1.8 0.0005 0.0380 

GO:0006551 leucine metabolic process 3 2 0.01 0.0011 0.0734 

  AFS     

GO:0006996 organelle organization 2271 41 21.7 0.0003 0.3545 

GO:1902589 single-organism organelle organization 1791 32 17.1 0.0004 0.3545 

GO:0044238 primary metabolic process 4836 59 46.2 0.0007 0.4181 

GO:0090066 regulation of anatomical structure size 375 12 3.6 0.0014 0.5867 

GO:0050789 regulation of biological process 4028 52 38.5 0.0025 0.5867 

GO:0030382 sperm mitochondrion organization 6 2 0.1 0.0027 0.5867 

GO:0065007 biological regulation 4463 56 42.7 0.0027 0.5867 

GO:0007294 germarium-derived oocyte fate determination 46 4 0.4 0.0028 0.5867 

GO:0030716 oocyte fate determination 58 4 0.6 0.0033 0.5867 

GO:0045924 regulation of female receptivity 7 2 0.1 0.0035 0.5867 

GO:0006996 organelle organization 2271 41 21.7 0.0003 0.3545 

Table S1. Individual RNA-seq read mapping statistics. Mapping rates were calculated using bowtie2 with 794 
default parameters.  795 

Sample ID Species Population Sex Mapping rate 

30037 rub G. rubens Ocala f 84.52% 

30038 rub G. rubens Ocala f 85.33% 

30039 rub G. rubens Ocala f 85.66% 

30040 rub G. rubens Ocala f 84.35% 

30041 rub G. rubens Ocala f 84.85% 

30057 rub G. rubens Lake City f 88.40% 

30058 rub G. rubens Lake City f 82.10% 

30059 rub G. rubens Lake City f 88.86% 

30060 rub G. rubens Lake City f 87.83% 

30061 rub G. rubens Lake City f 90.23% 

30052 rub G. rubens Ocala m 78.01% 

30053 rub G. rubens Ocala m 80.72% 

30054 rub G. rubens Ocala m 78.60% 

30055 rub G. rubens Ocala m 79.76% 

30056 rub G. rubens Ocala m 80.43% 

30062 rub G. rubens Lake City m 77.89% 

30063 rub G. rubens Lake City m 77.70% 

30064 rub G. rubens Lake City m 77.56% 

30065 rub G. rubens Lake City m 70.75% 

30066 rub G. rubens Lake City m 86.67% 

30027 tex G. texensis Lancaster f 83.09% 

30028 tex G. texensis Lancaster f 83.20% 

30029 tex G. texensis Lancaster f 81.61% 

30030 tex G. texensis Lancaster f 83.80% 

30031 tex G. texensis Lancaster f 80.42% 

30042 tex G. texensis Austin f 91.22% 

30043 tex G. texensis Austin f 91.78% 

30044 tex G. texensis Austin f 90.01% 

30045 tex G. texensis Austin f 89.94% 

30046 tex G. texensis Austin f 87.70% 

30032 tex G. texensis Lancaster m 76.17% 

30033 tex G. texensis Lancaster m 77.76% 

30034 tex G. texensis Lancaster m 77.24% 

30035 tex G. texensis Lancaster m 80.79% 
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30036 tex G. texensis Lancaster m 76.77% 

30047 tex G. texensis Austin m 86.40% 

30048 tex G. texensis Austin m 87.22% 

30049 tex G. texensis Austin m 88.52% 

30050 tex G. texensis Austin m 79.15% 

30051 tex G. texensis Austin m 86.18% 

 796 
 797 
 798 
 799 
 800 
Table S2. ABC estimates for the AGF scenario. Prior distributions (log-scale), posterior predictive checks 801 
and posterior parameter estimates (log scale, median and 95% highest posterior density interval) for the 802 
model are shown. 803 

Parameter 

Priora Validation Posterior 

minimum maximum R2 RMSEP 2.5% Median 97.5% 

LOG10(NANC) 4.0 6.0 (lu) 0.0 0.96 4.72 5.36 5.95 

LOG10(NRUB) 3.0 6.0 (lu) 0.93 0.27 3.52 4.27 4.66 

LOG10(NTEX) 3.0 6.0 (lu) 0.93 0.27 3.48 4.77 5.05 

LOG10(TSPLIT)b 5.0 7.0 (lu) 0.06 0.97 4.84 5.81 6.73 

LOG10(TISO)b 3.0 7.0 (lu) 0.79 0.46 4.02 4.48 4.77 

MTEX>>RUB 0.01 0.5 (u) 0.17 0.91 0.02 0.27 0.94 

MRUB>>TEX 0.01 0.5 (u) 0.12 0.94 0.04 0.26 0.56 
a priors are uniformally (u) or log-uniformally (lu)distributed and do not overlap zero for migration rates 804 
and bottleneck size. 805 
b the timing of demographic events is in (logarithm of) number of generation and both species have two 806 
generations annually. 807 
 808 
Table S3 ABC estimates for the full sample (including 8 individuals from half-sib pairs), AGFRB 809 
scenario. Prior distributions (log-scale), posterior predictive checks and posterior parameter estimates (log 810 
scale, median and 95% highest posterior density interval) for the model are shown. 811 

Parameter 

Priora Validation Posterior 

minimum maximum R2 RMSEP 2.5% Median 97.5% 

LOG10(NANC) 4.0 6.0 (lu) 0.05 0.974 4.94 5.32 5.72 

LOG10(NRUB) 3.0 6.0 (lu) 0.89 0.333 4.70 4.79 4.87 

LOG10(NTEX) 3.0 6.0 (lu) 0.88 0.346 4.73 4.85 4.94 

LOG10(TSPLIT)b 5.0 7.0 (lu) 0.01 0.997 5.49 6.23 6.74 

LOG10(TISO)b 3.0 7.0 (lu) 0.81 0.438 4.27 4.53 4.72 

LOG10(TBOT)b 5.0 7.0 (lu) 0.02 0.990 5.14 5.19 5.32 

BOTSIZE 0.01 0.5 (u) 0.01 0.995 0.09 0.15 0.23 

MTEX>>RUB 0.01 0.5 (u) 0.12 0.938 0.05 0.12 0.18 

MRUB>>TEX 0.01 0.5 (u) 0.12 0.938 0.01 0.18 0.75 
a priors are uniformally (u) or log-uniformally (lu) distributed and do not overlap zero for migration rates 812 
and bottleneck size. 813 
b the timing of demographic events is in (logarithm of) number of generation and both species have two 814 
generations annually. 815 
 816 
Table S4 and Table S5 show specific loci, values for population genetic statistics, and annotation, and are 817 
not included here for formative reasons, but are available upon request. 818 
 819 
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Fig.1. Geographic distributions for G. texensis (red) and G. rubens (blue). The sympatric zone is marked 
with turquoise. The distributions are approximate and based on the Singing Insects of North America data 
base (http://entnemdept.ufl.edu/Walker/buzz/). The black dots in Texas and Florida represent the sampling 
locations for G. texensis and G. rubens,respectively. 
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Fig. 2. Genomic divergence. The distribution of the interspecific allele frequency difference,D,across 1
SNPs (A), of the absolute divergence, dxy,in 1000 bp windows (B), and of Tajima’s D in 1000 bp 2
windows forG. rubens(C) and G. texensis(D), respectively3
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Fig3. Demographic scenarios for approximate Bayesian computation. Eight scenarios were simulated 

under the ABC framework. (A) A simple divergence scenario (DIV) with a log uniform prior on the 

divergence time (TSPLIT), the ancestral population size (NANC) and the current effective population sizes for 

G. rubens and G. texensis (NRUB, NTEX). (B) Three different gene flow models with either continuous gene 

flow (CGF), ancestral gene flow (AGF), or recent gene flow (RGF) were additionally defined by parameters 

describing migration rates (MTEX>>RUB, MRUB>>TEX; uniform priors not overlapping zero) and the time point 

of cessation of gene flow (TISO) or secondary contact (TCONT), both with log uniform priors. (C) Three 

bottleneck models defined by the time point of recovery to current population sizes (TBOT; log uniform 

prior) and the relative population size reduction (BOTSIZE; uniform prior not overlapping zero) for G. 

rubens (RB), G. texensis(TB), or both (BB). (D) An additional model (AGFRB) combining the best gene 

flow (AGF) and best bottleneck (RB) model, marked by the black, dashed rectangles. The posterior 

probabilities for model selection are given left of the square (opening) brackets for the three gene flow and 

the three bottleneck models, and right of the square (closing) brackets for the final model selection step.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2017. ; https://doi.org/10.1101/193839doi: bioRxiv preprint 

https://doi.org/10.1101/193839
http://creativecommons.org/licenses/by-nc-nd/4.0/


LD1

0-4 4

0

-4

-2

4

2

L
D

2

LD1

0-4 4

0

-4

-2

4

2

L
D

2
LD1

0-4 4

0

-4

-2

4

2

L
D

2

LD1

0-4 4

0

-4

-2

4

2

L
D

2

A B DCDIV Observed RB AGF AGFRB

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ST

F
ST

FST FST

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig4. Distribution of observed and simulated data sets in multivariate summary statistic space. For each 

of the fourmodels used in the final model selection step (see also Fig 2) the distribution of the 1% 

posterior samples with the smallest Euclidean distance to the observed data is shown relative to the 

coordinates of the observed data. The multivariate summary statistic space is constrained by the first two 

linear discriminants (see text for details) representing linear combinations of the summary statistics used 

in model selection.

Fig5.FST distributions of simulated and observed data. The distribution of Weir and Cockerham’s FST as 
calculated by the program arlsumstat are shown for 2000 simulated data sets under the ancestral gene flow 

and a bottleneck for G. rubens (AGFRB, box-and-whiskers top panel) scenario, the ancestral gene flow 

(AGF, box-and-whiskers bottom panel) scenario, and the observed data (1000 haplotype sequences, red solid 

line). The histograms show the density to enhance comparison between simulated and observed data. 

recent gene flowA B continuous gene flow

ancient gene flowC D ancient gene flow + G. rubens bottleneck
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Fig6. Demographic parameter estimation. The density distribution under the AGFRB (A-C) and the AGF 

(D-F) are shown for the ancestral and current population sizes (A,D), the time point for divergence, 

cessation of gene flow, and recovery to current population sizes after the bottleneck (B,E), and the 

migration rates and bottleneck size (C,F). The density lines have been trimmed to the existent parameter 

distribution (i.e., no density extrapolation) and have been smoothed by adjusting the bandwidth. For lines 

within one panel the same smoothing bandwidth has been used.
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Fig S1. Population substructure in G. rubens and G. texensis. Variation in allele frequencies between 

species and between populations within species (Lake City and Ocala for G. rubens; Lancaster and Austin

for G. texensis)is shown. The allele frequency variation in all 175,244 SNPs is summarized in the first 

four principal components teasing apart the species (PC1), and the populations in G. texensis (PC 2) and 

G. rubens (PC 4). Note that clustering along the PCs explaining within species variation among 

populations is much weaker compared to clustering of the species along PC1.
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Lancaster Austin

Fig S2.STRUCTURE results. For each of the species, STRUCTURE was run for 100,000 iterations at 

values for K=1 through K=4 (K=5 for the species combined). The mean natural logarithm of the probability

and the delta K (increase or decrease in likelihood between consecutive runs for different values of K) were

 inspected to determine the most likely predicted number of populations. A run of G. rubens and G. texensis 

separately showed in both cases that, although the highest likelihood was for K=2 , differences with K=1 

were only marginal and a defined pattern in population substructure was absent (see also the bar plots at the 

bottom). The run for the species combined (K=2) shows no introgression of G. texensis genes into the 

G. rubens or vice versa.
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Figure S3. Relative natural log transformed probability of the data under different values for K. The raw

probabillities from Structure relative to the maximum probability is shown for each K, for three random sets

of 8835 SNPs (one per contig), and for G. rubens, G. texensis, and for the species combined (excluding seven

individuals to correct for cryptic relatedness). Within each panel, the dots show each of the three iterations and

the lines show the trend in the average difference in probaility with the maximum probability for three

different sample sizes: two random individuals per population (red),  five random individuals per population

(green), and all the individuals sampled from the populations.
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Fig S4. Demographic parameter estimation. The density distribution under the AGFRB (A-C) and the AGF 

(D-F) are shown for the ancestral and current population sizes (A,D), the time point for divergence, 

cessation of gene flow, and recovery to current population sizes after the bottleneck (B,E), and the 

migration rates and bottleneck size (C,F). The density lines have been trimmed to the existent parameter 

distribution (i.e., no density extrapolation) and have been smoothed by adjusting the bandwidth. For lines 

within one panel the same smoothing bandwidth has been used.
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