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Transcription factors (TFs) are primary regulators of gene expression
in cells, where they bind specific genomic target sites to control
transcription. Quantitative measurements of TF-DNA binding ener-
gies can improve the accuracy of predictions of TF occupancy and
downstream gene expression in vivo and further shed light on how
transcriptional networks are rewired throughout evolution. Here, we
present a novel sequencing-based TF binding assay and analysis
pipeline capable of providing quantitative estimates of binding en-
ergies for more than one million DNA sequences in parallel at high
energetic resolution. Using this platform, we measured the binding
energies associated with all possible combinations of 10 nucleotides
flanking the known consensus DNA target for two model yeast TFs,
Pho4 and Cbf1. A large fraction of these flanking mutations change
overall binding energies by an amount equal to or greater than con-
sensus site mutations, suggesting that current definitions of TF bind-
ing sites may be too restrictive. By systematically comparing esti-
mates of binding energies output by deep neural networks (NN) and
biophysical models trained on these data, we establish that dinu-
cleotide specificities are sufficient to explain essentially all variance
in observed binding behavior, with Cbf1 binding exhibiting signifi-
cantly more epistasis than Pho4. NN-derived binding energies agree
with orthogonal biochemical measurements and reveal that dynam-
ically occupied sites in vivo are both energetically and mutationally
distant from the highest-affinity sites.
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G

ene expression is extensively regulated by transcription
factors (TFs) that bind genomic sequences to activate

or repress transcription of target genes (1). The strength of
binding between a TF and a given DNA sequence at equilib-
rium depends on the change in Gibbs free energy (�G) of
the interaction (2–5). Thermodynamic models that explicitly
incorporate quantitative estimates of binding energies more
accurately predict occupancies, rates of transcription, and lev-
els of gene expression in vivo (4, 6–11). In addition, binding
energy measurements for TF-DNA interactions can provide
insights into the evolution of regulatory networks. Unlike
coding sequence variants that manifest at the protein level
to influence fitness, non-coding TF target site variants a�ect
phenotype by modulating the binding energies of these inter-
actions to a�ect gene expression (12, 13). Understanding how
TFs identify their cognate DNA target sites in vivo and how
these interactions change during evolution therefore requires
the ability to accurately estimate binding energies for a wide
ranges of sequences.

Most high-throughput e�orts to develop accurate models

of TF binding specificities have focused on the e�ects of muta-
tions within known TF target sites that dramatically change
binding energies. However, even subtle changes in binding
energies can have dramatic e�ects on both occupancy and
levels of transcription (14–17). Sequences surprisingly distal
from a known consensus motif can a�ect a�nities and levels of
transcription (18–21), and genomic variants in regulatory re-
gions outside of known TFBSs may be subject to non-neutral
evolutionary pressures (22). Therefore, understanding the
fundamental mechanisms that regulate transcription requires
the ability to not only measure binding energies for a large
number of sequences, but to do so at su�cient resolution to
resolve even small e�ects.

Despite the utility of comprehensive binding energy mea-
surements, existing characterization methods often lack the
energetic resolution and scale required to yield such datasets.
Currently, three dominant technologies are used to query DNA
specificities: methods based on systematic evolution of ligands
by exponential enrichment (SELEX) (23–28), protein binding
microarrays (PBMs) (29, 30), and mechanically-induced trap-
ping of molecular interactions (MITOMI) (31, 32). SELEX-
based methods require repeated enrichment and amplification
cycles followed by sequencing of the enriched TF-bound ma-
terial. Thus, these methods are optimized to identify the
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highest a�nity substrates from extremely large random pop-
ulations, but fail to measure moderately- or weakly- bound
sequences, much less measure their a�nities. Although PBMs
quantify the binding of TFs to DNA microarrays using a flu-
orometric readout with a broad dynamic range, the precise
relationship between measured fluorescence intensities and
binding energies is unclear because PBMs require wash steps
that disrupt binding equilibrium. The MITOMI platform,
based on mechanical trapping of molecular interactions by
microfluidic valves, enables high-resolution measurements of
concentration-dependent to yield absolute a�nities, but is lim-
ited to characterization of several hundred sequences. Recent
iterations of MITOMI-based binding assays have addressed
these throughput limitations by employing massively parallel
sequencing to increase sequence space coverage, but at the cost
of resolving binding energies (28, 33). Other techniques such
as high-throughput sequencing-fluorescent ligand interaction
profiling (HiTS-FLIP) couple massively parallel sequencing
with the ability to perform concentration-dependent binding
measurements; however, adoption of this technology has been
limited by the requirement for extensively customized sequenc-
ing hardware (34). Taken together, these TF-DNA binding
assays can sample vast sequence spaces, but it remains chal-
lenging to simultaneously measure binding energies at the scale
and resolution necessary to derive complete binding energy
landscapes.

The energetic resolution of direct binding energy measure-
ments is fundamentally limited to �1 RT (or �0.5 kcal/mol)
by intrinsic thermal noise. However, measuring binding to a
large library of sequences can yield even higher precision esti-
mates of binding energies for individual sequences by training
specificity models on large amounts of noisy data. The most
popular and widely used models represent TF specificities as
a position weight matrix (PWM), in which each nucleotide
at each position contributes additively and independently to
overall binding energies (35). These mononucleotide mod-
els are easily implemented, visualized, and interpreted, and
provide useful approximations of binding specificity for the
majority of studied TFs (9, 36–38). However, PWM-based
models fail to capture epistasis between nucleotides, which
can lead to inaccurate predictions, particularly for low-a�nity
sites (31, 39). This approximation can be further refined by
including contributions of higher-order sequence features, such
as dinucleotides or longer k-mers (40–49). Several recently
developed mechanistic models predict binding based on bio-
physical properties of DNA, such as the local shape of DNA
sequences (e.g. minor groove width, propeller twist, helical
twist, and roll) (50–54). However, these biophysical variables
are predicted directly from primary sequence, rendering the
relationship between the two somewhat degenerate. Deep
neural network (NN)-based models have shown considerable
success in learning complex patterns from large datasets across
a variety of applications, including predicting the function of
non-coding genomic sequences (55). Training NN models on
large sets of binding data therefore has the potential to yield
more accurate and higher-resolution estimation of binding
behaviors at a per-sequence level, revealing local topography
on of binding energy landscapes.

To address the need for technologies capable of high-
throughput thermodynamic measurements, we developed an
integrated high-throughput sequencing assay and analysis

pipeline capable of estimating both relative and absolute
binding energies (��G and �G, respectively) for >1 mil-
lion sequences in parallel, even for relatively small energetic
di�erences. Using Monte Carlo simulations designed to mimic
the e�ects of stochastic sampling noise on energetic resolu-
tion, we establish guidelines for the sequencing depth required
to resolve accurate binding energies for libraries of di�erent
sizes and expected energy ranges. We then deploy this assay
to measure comprehensive and quantitative binding energy
landscapes for >1 million mutations surrounding the known
consensus motif for two model yeast TFs (Pho4 and Cbf1).
Deep neural network (NN) models that incorporate all possible
higher-order, non-additive contributions were then trained on
these large datasets to yield high-resolution estimates of bind-
ing specificity for each sequence. Comparisons to orthogonal
biochemical a�nity measurements established that NN predic-
tions are highly quantitative, accurately predicting measured
binding energies over a range of 3 kcal/mol. A surprisingly
large number of sequences tested have e�ects on binding ener-
gies as great or greater than mutations in the core, suggesting
that current definitions of TFBSs are too restrictive and may
limit accurate predictions of TF occupancy in vivo. Compar-
isons between NN-derived predictions and predictions derived
from a series of biophysically motivated models reveal that din-
ucleotide specificity preferences are su�cient to explain nearly
all observed binding behavior, with Cbf1 exhibiting signifi-
cantly more epistasis than Pho4. Strikingly, most dynamically
occupied target loci for both Pho4 or Cbf1 are mutationally
distal from the energetically optimal flanking sequence repre-
senting the global minimum of the energy landscape, providing
evidence of evolutionary molecular selection for near-neutral
e�ects on binding energies. Taken together, these data demon-
strate the utility of our high-throughput approach to measure
relative binding energies and model determinants of substrate
specificity required to understand biological behaviors. Fur-
thermore, the experimental design and analysis frameworks
presented here may be extended to a wide variety of currently
incompletely characterized TFs, improving predictive models
of TF-DNA a�nities across species.

Results

A microfluidic approach employing high-throughput se-
quencing to derive comprehensive binding affinity land-
scapes. We sought to develop an assay that significantly ex-
tends the scale at which TF-DNA interactions can be probed
while maintaining the ability to quantitatively measure bind-
ing energies at high resolution. TF-DNA interactions can be
considered a two-state system, such that the a�nity of a given
interaction can be determined by the equilibrium partitioning
of sequences into bound and unbound states:

�G = ≠RT ln
1 [T F · DNA

bound

]
[T F

unbound

][DNA
unbound

]

2

In recent work, several groups have established that molecu-
lar counting of individual DNA molecules via high-throughput
sequencing can reliably measure bound and input concentra-
tions for each species (10, 39, 56). These assays generally
employ electromobility shift assays (EMSAs) to isolate bound
material. However, TF-DNA complexes are not at chemical
equilibrium during the electrophoresis step and complexes with
particularly fast dissociation rates may be underrepresented
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Fig. 1. DNA library design and assay overview. (A) Schematic of flanking sequence library design indicating locations of Illumina sequencing adapters (blue), unique molecular
identifiers (UMIs, red), variable flanking regions (orange), and E-box consensus. (B) Photograph of MITOMI device (left) and schematic showing device operation (right). (C)
Schematic showing downstream sample analysis. Counting of individual molecules within bound and input fractions allows calculation of relative binding energies for each
sequence (left, middle) to yield a comprehensive thermodynamic binding affinity landscape (Pho4 example). Each color-coded point (blue = -��G, red = +��G) represents a
sequence, grouped by Hamming distance from the highest affinity sequence and alphabetically ordered in clockwise polar coordinates.

within the bound fraction, leading to a systematic underesti-
mation of weak a�nity interactions (57). To address this issue,
we employed a microfluidic device incorporating pneumatic
valves with fast (�100 ms) actuation times to mechanically
“trap” DNA associated with TF proteins at equilibrium (28, 31–
33) (Fig. 1A). This device requires very small amounts of both
DNA substrate and expressed protein, eliminating the need for
cell-based protein production. Antibody-patterned surfaces
within the device capture meGFP-tagged TFs produced via
in vitro transcription/translation prior to washing, e�ectively
purifying the protein in situ. After TF capture, libraries of
DNA sequences are introduced and allowed to interact with
surface-immobilized TFs until equilibrium is reached. Mechan-
ical valves then sequester TF-bound DNA sequences, making it
possible to wash out unbound material without loss of weak in-
teractions (31, 32, 58) (Fig. 1B). Isolated bound DNA species
can then be eluted from the device and quantified using high-
throughput sequencing (Fig. 1C ). The concentration of DNA
within the device (�1 µM) is in excess of the immobilized TF
concentration (�30 nM), allowing approximation of unbound
concentrations via sequencing of the input library.

As a first application of this assay, we focused on two model
TFs from Saccharomyces cerevisiae, Pho4 and Cbf1. Although
Pho4 and Cbf1 are known to bind the same CACGTG vari-
ant of the 6-nucleotide enhancer-box (E-box) motif both in

vitro and in vivo (15, 17, 27, 59–61), they bind largely non-
overlapping sets of genomic loci and regulate distinct sets of
target genes (18, 62). To comprehensively probe how flank-
ing nucleotides a�ect Pho4 and Cbf1 binding a�nities, we
designed a library of 1,048,576 sequences in which the core
E-box sequence was flanked by all possible random combina-

tions of five nucleotides upstream and downstream, embedded
within a constant sequence empirically shown to exhibit negli-
gible binding (32) (Fig. 1A). Because only sparse quantities
of material are eluted from the device at the end of each ex-
periment, eluted material must be amplified by PCR prior
to Illumina sequencing. Constant sites at the 5’ and 3’ ends
allowed simultaneous PCR amplification and incorporation of
Illumina adapters, and unique molecular identifiers (UMIs) in-
cluded within each library sequence allowed accurate counting
of library species even in the presence of PCR bias (63). Each
UMI barcode was segmented and interspersed along the library
sequence to prevent the formation of an additional CACGTG
consensus site. After sequencing, relative binding a�nities
(��Gs) were calculated for all sequences by considering rela-
tive enrichment of individual DNA species in the TF-bound
fraction compared to the input library, thereby generating a
comprehensive binding a�nity landscape (example shown in
Fig. 1C ).

Assay simulations determine sequencing depth require-
ments for binding affinity measurements. Accurately estimat-
ing concentrations of DNA in TF-bound and input samples
via sequencing requires that measured read counts reflect true
abundances. However, read counts can be distorted by stochas-
tic sampling error, particularly for low read count numbers
(64, 65). To understand how stochastic sampling error de-
pends on read depth, library size, and the expected range of
binding energies across library sequences, we began by con-
sidering a previously published experiment that quantified
interactions between the E. coli LacI repressor and a library
of 1,024 binding site variants via deep sequencing (library
R3.2) (39). Each sequence was sampled to an average depth
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Fig. 2. Probing the relationship between assay accuracy, read depth, library size, and
energy range. (A) Normalized median accuracy (Pearson’s r2 ú f , where f = the
fraction of observed species) scores comparing results for downsampled data with
“true” values as a function of read depth. The mononucleotide model reference values
were based on PWM predictions that assume perfect additivity (39). Individual ��G
recovery (blue) and model recovery (red) shown. (B) Median squared Pearson’s
correlation coefficients between recovered and “true” values (r2, left) and median
fraction of observed species (right) as a function of binding affinity range for various
library sizes (rows) sequenced to different depths. (C) Simulations parameterized
to reflect putative flank library conditions. Median squared Pearson’s correlation
coefficient (r2) between recovered and true values (blue) and fraction of observed
species (red) as a function of mean reads per sequence for ten replicate simulations;
a cyan rectangle denotes the assay configurations presented here.

of roughly 103 reads per species, yielding ��G measurements
with negligible sampling noise. To understand how read depth
a�ects the recovery of accurate ��G measurements, we down-
sampled these data to simulate lower sequencing depths of
102–106 reads, split evenly between bound and input fractions
(ca. 0.05–5,000 reads per sequence). We then assessed the
accuracy of recovered ��G values at these lower sequencing
depths by calculating the squared Pearson’s correlation coef-
ficient (r2) between ��G values for each species calculated
from downsampled data and published values calculated from
the full data set. To minimize the e�ect of a few high accu-
racy values dominating the correlation statistic, each r2 was
normalized by the fraction of observed species (Fig. 2A). For
this 1,024-species library with binding energies that span �3
kcal/mol, �2 ◊ 105 total reads (�100 reads per sequence) were
su�cient to recover highly-accurate ��G values for every
sequence.

Measuring accurate ��Gs for a 1,048,576 species library
represents a 1000-fold increase in scale from these prior ex-
periments. To understand more generally the determinants of
��G measurement accuracy, we generated a simulated test
set of “true” relative binding energies and implemented Monte
Carlo simulations designed to mimic stochastic sampling dur-
ing high-throughput sequencing. For given combinations of
library sizes, sequencing depths, and binding energy ranges, we
calculated the median squared Pearson’s correlation coe�cient
between calculated ��G values and “true” values, as before.
As expected, accuracy improves and library coverage expands
with increasing sequencing depth (Fig. 2B, S1A, S1B). As
the di�erence in expected binding energies increases, accu-
racy improves but the fraction of sequences observed from the
input library decreases. Nearly all existing motif discovery
libraries used in SELEX-type experiments probe on the order
of 1018–1024 species with read depths of several thousand total
reads. Extrapolating from the conditions considered in these
simulations, such sparse sequencing depth relative to library
size samples only the highest a�nity sequences, representing
an infinitesimal fraction of the input library. This limited set
of observations likely misses smaller peaks within a binding
energy landscape.

Previous observations of concentration-dependent Pho4
and Cbf1 binding to E-box motifs with mutations in the first
flanking nucleotide revealed di�erences in a�nities spanning
�1 kcal/mol (31). To guide sequencing assays, we therefore
examined in detail simulations sampling a 1,048,576-member
library with this energy range at mean read depths per species
ranging between 10≠1–103 (103–108 total reads) (Fig. 2C).
Although 95% of sequences can be recovered from as few as
4–5 reads per species, high read depths of �102 counts per
species (108 total reads per TF) are required to yield individual
��G measurements with accuracies of �80% and errors of
�0.2 kcal/mol.

Modeling specificity from noisy individual measurements im-
proves assay resolution. The requirement for high-depth se-
quencing may be cost-prohibitive for studies involving many
TFs or when considering large DNA libraries. In those sce-
narios, modeling can be used to infer the determinants of
binding specificity while minimizing stochastic sampling noise
from sparse sequencing measurements. To illustrate the power
of this approach, we again considered the published LacI re-
pressor dataset (39). Although �102 reads per sequence were
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required for accurate ��G estimates, 101 to 102-fold fewer
reads per sequence allowed the generation of additive mononu-
cleotide PWM models with similar predictive power to those
generated from the entire dataset (Fig. 2A). However, while
PWMs yield reasonably good approximations of high a�nity
sequences, these models fail to explain the variance among
lower a�nity target sites that exhibit high sequence diversity
(31, 39).

A neural network (NN) trained on millions of noisy indi-
vidual per-sequence measurements can capture all measurable
higher-order complexity, thereby yielding a high-resolution
model capable of accurately predicting binding over a wide
range of energies. However, this increased predictive power
comes at the cost of interpretability. To improve the accu-
racy of our energetic estimates while preserving the ability
to gain mechanistic insights, we applied a novel integrated
measurement and modeling approach (Fig. 3A). First, we
collected millions sequencing-based estimates of per-sequence
��Gs. Next, we trained a NN model on these sequencing
data to obtain high-resolution energetic predictions for each
substrate that capture the e�ects of all possible higher-order
epistatic interactions among nucleotides. Finally, we parsed
and quantified the biophysical mechanisms responsible for
observed TF-DNA binding behaviors by systematically com-
paring correlations between predictions made by the NN model
and a series of biophysically-motivated linear models (mononu-
cleotide, nearest-neighbor dinucleotide, and all dinucleotide
models). This integrated scheme simultaneously yielded a
novel binding energy landscape of unprecedented scale and
energetic resolution and allowed dissection of the biophysical
mechanisms responsible for Pho4 and Cbf1 specificity.

High-throughput, comprehensive estimates of absolute bind-
ing affinities for Pho4 and Cbf1. We used the assay and DNA
library described above to acquire four replicate measurements
of Pho4 and three of Cbf1 at sequencing depths ranging from
approximately 5 to 50 million reads allocated to either bound
or input samples (Tab. S1). For each experiment, ��Gs
were calculated for each sequence from the measured ratio of
bound to input read counts (Fig. S2). As predicted, mea-
sured per-sequence ��Gs between two experiments at low
read depth (ca. 6–8 million limiting counts) show no correla-
tion; conversely, at higher read depths (�24 million limiting
counts), this correlation increases to r2 = 0.67 (Fig. S3, Tab.
S2). To further improve resolution, we trained a NN regres-
sion model that predicted the measured ��G for each input
flanking sequence. Accuracy of the network against both the
observed training data and an unobserved validation dataset
was recorded throughout training. Training of the network was
stopped once accuracy against the validation dataset failed
to improve, protecting against overfitting to the training data
(Fig. S4). Predictions from NN models trained on the 2
high-depth Pho4 replicates showed excellent correlation (r2

= 0.94), validating the ability to apply such models to derive
accurate, reproducible estimates of binding energies. For all
analyses moving forward, we therefore use per-sequence ��G
estimates output from the NN trained on a composite dataset
of all replicates (Fig. S5).

Estimates of absolute binding energy and dissociation con-
stants (�G and Kd, respectively) allow direct comparison
between di�erent TFs and across experimental platforms, and
further enable quantitative predictions of TF occupancy in vivo

under known cellular conditions. However, sequencing-based
measurements of �Gs from sparse datasets can underestimate
the true a�nity range due to systematic undersampling of
bound reads for low-a�nity sequences. In addition, given that
the NN is trained only on relative binding a�nities (��Gs),
it cannot return estimates of absolute energies (�Gs). NN-
derived ��G estimates can be projected onto an absolute
scale by calibrating to a set of high-resolution biochemical
measurements of �Gs with a linear scaling factor and o�set.
To generate a set of high-confidence �Gs, we applied the tradi-
tional fluorometric MITOMI assay to measure concentration-
dependent binding behavior for surface-immobilized Pho4 and
Cbf1 TFs interacting with all single-nucleotide variants of
AGACA_TCGAG, a medium a�nity reference flanking se-
quence (where the underscore indicates the CACGTG core
motif) (Fig. S6A, S6B). For each oligonucleotide, observed
binding was fit to a single-site binding model, yielding both
Kds and �Gs for each sequence (Tab. S3). The entire set of
NN values was then scaled by fit parameters returned from
a linear regression between NN predictions and experimental
measurements for this set sequences. The median equilibrium
dissociation constants for all flanking library sequences were
100 and 63 nM for Pho4 and Cbf1, respectively, in agreement
with prior work (31). Strikingly, sequence variation in the
flanking region around the consensus motif of Pho4 and Cbf1
can modulate Kd values by over two orders of magnitude,
ranging between 11–1036 nM and 1–866 nM, respectively. In
some cases, the magnitude of these e�ects exceeds that of
mutations within the CACGTG core consensus (Fig. 3B,
S7), demonstrating the importance of flanking sequences to
specificity.

Mononucleotide models reveal that Pho4 and Cbf1 flanking
preferences extend far beyond the known consensus se-
quence. To understand the biophysical features that con-
tribute to the predictive performance of the NN model, we
generated PWMs (70), which estimate the mean energetic
contribution of each nucleotide at each position, from the full
set of scaled NN-predicted ��G values (Fig. 3C). While
the assumption of additivity fails to explain all specificity,
these models often o�er a close approximation (11, 43) and
PWMs are easily visualized and interpreted. These mononu-
cleotide model results confirm that positions proximal to the
E-box core motif exhibit the largest mean e�ect on binding
a�nity, in agreement with PWMs generated by orthogonal
techniques (66–68) (Fig. 3C ). However, these results indicate
that nucleotides up to 4 and 5 positions from the consen-
sus contribute to specificity for Pho4 and Cbf1, respectively,
significantly farther than previously reported.

To quantitatively assess the degree to which mononucleotide
features dictate binding behavior, we determined the pro-
portion of NN-derived per-sequence ��G variance that is
explained by a simple PWM (Fig. 3D). If mononucleotide
models capture all determinants of observed specificity, PWM
predictions would explain all the variance in NN-derived ��G
values. Conversely, discrepancies may indicate the presence of
higher-order epistatic interactions not captured by the PWM.
PWMs were capable of explaining a majority of the variance
in NN predictions (r2 = 0.92 and r2 = 0.70 for Pho4 and Cbf1,
respectively)(Tab. S4), consistent with the sentiment in the
field that PWMs provide good approximations of sequence
specificity (9, 11). Intriguingly, PWMs explain a significantly
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Fig. 3. Modeling and interpretation of binding specificity based on mononucleotide
features. (A) Data analysis flowchart shows neural network modeling from raw data,
followed by interpretation based on linear combinations of sequence features. (B)
Comparison of Pho4 and Cbf1 flanking sequence ��G measurements with those
derived from core mutations (31). (C) DNA base letters represent measured Pho4 and
Cbf1 mean mononucleotide ��G measurements as a function of flanking sequence
position, compared to previously derived sequence logos from the ScerTF database
(66–69). Gray triangles and gray boxes represent position of the consensus E-box
motif CACGTG. (D) For Pho4 and Cbf1, density scatter plots show the correlation
between NN model estimates and mononucleotide additive model predictions based
on those estimates.

smaller proportion of observed Cbf1 measurement variance,
suggesting that Cbf1 recognition may rely on higher-order
determinants of specificity.

To evaluate assay reproducibility, we generated individual
PWMs from each of the four Pho4 technical replicates and
three Cbf1 technical replicates [Fig. S8]. Linear model co-
e�cients for mononucleotides at each position were strongly
correlated between replicates of a single TF (Pho4 r2 = 0.95–
0.97 and Cbf1 r2 = 0.79–0.87) and uncorrelated between TFs
(Tab. S5, Fig. S9); a meGFP negative control protein exhib-
ited no sequence specificity (Fig. S10). Using the fraction of
unexplained variance (1-r2) as a precision metric, the expected
error range in NN-derived mean mononucleotide ��G values
for Pho4 is 0.02–0.04 kcal/mol and that of Cbf1 is 0.09–0.16
kcal/mol. This analysis highlights the robustness of binding
specificity models derived from the assay and data presented
here.

Dinucleotide models reveal that flanking nucleotides exhibit
significant epistasis for Cbf1. The remaining unexplained vari-
ance observed between NN-derived values and PWM-predicted
values (�8% and �30% for Pho4 and Cbf1, respectively) could
indicate the presence of higher-order epistatic interactions
governing specificity, or could simply represent experimental
noise (40) (Tab. S4). To probe for higher-order interactions,
we fit two di�erent dinucleotide models to the NN-derived
scaled ��G values: a nearest-neighbor model that explic-
itly considers contributions from adjacent dinucleotides and
a more complex model that considers contributions from all
dinucleotide combinations, including non-adjacent pairs (45).

Direct comparisons between nearest-neighbor dinucleotide
model-predicted values and NN-derived binding energies
showed increased correlation for both Pho4 and Cbf1, with
associated r2 values of 0.98 and 0.94 (Tab. S4, Fig. 3A, 3B).
These improvements, corresponding to �5% and 24% increases
in explanatory power over respective mononucleotide models,
are consistent with the potential for physically interacting
nucleotides to a�ect binding energies through local structural
distortions. Considering all possible dinucleotide features ac-
counts for nearly all of the remaining variance in NN-derived
binding energies (improvements of approximately 1% and 5%
for Pho4 and Cbf1, respectively). These findings highlight
the di�erential degree to which epistasis defines binding even
amongst structurally related TFs, which ultimately determines
the predictive power and accuracy of widely-used PWMs.

To visualize and interpret binding energy contributions of
dinucleotides alone, we calculated the mean residual ��G
from the linear regression against PWM-predicted ��G values
for all possible dinucleotides both within and across flanking
sequences (Fig. 4C ). Nucleotide interactions that exhibit mea-
sured ��Gs lower than expected based on considering the
linear combination of individual mononucleotides are posi-
tively epistatic; conversely, interactions that exhibit negative
epistasis increase measured ��Gs more than expected. The
largest magnitude epistasis is observed for dinucleotides im-
mediately upstream or downstream of the E-box (N4/N5 or
N6/N7 pairs), with absolute energetic di�erences among com-
binations spanning �0.5 kcal/mol (approximately 1 RT), and
epistatic interactions primarily occur within flanks rather than
between them. Both inter- and intra-flank dinucleotides exhib-
ited palindromic arrangements near the core motif, consistent
with the expectation of binding site symmetry in homodimeric
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Fig. 4. NN model interpretation using dinucleotide features. (A) For Pho4 and Cbf1, density scatter plots show the correlation between NN model estimates and dinucleotide
(nearest neighbor = only adjacent pairs) additive model predictions based on those estimates. (B) Variance in Pho4 and Cbf1 NN model estimates, captured by squared
Pearson’s r2 compared to linear models predictions, attributed to sequence feature groups. (C) Cbf1 heatmap of mean energetic contribution for all dinucleotide configurations
(left) and that of mean residual energetic contributions when mononucleotide effects are removed (right). Color scale: blue = high affinity, red = low affinity. (D) Cbf1 LASSO
regression penalization traces arranged by type of model feature. Lines represent magnitude of individual sequence feature coefficients as a function of penalty coefficient ⁄.
Labels show flanking sequence feature. Color scale: blue = four most persistent negative energetic contributions, red = four most persistent positive energetic contributions.
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TFs like Pho4 and Cbf1 (61, 71). For Cbf1, TT and TG
dinucleotides upstream of the motif (and the corresponding
downstream panlindromes) exhibit large magnitude positive
and negative epistasis, respectively. Although the overall mag-
nitude of epistasis is significantly smaller for Pho4, a GG
dinucleotide downstream of CACGTG shows strong synergis-
tic e�ects. Interestingly, the Pho4 crystal structure reveals
direct contacts between the Arg2 and His5 residues and this
same GG dinucleotide, providing a potential structural basis
for this observation (61).

Incorporating weight constraints into dinucleotide mod-
els confirms that Cbf1 interactions are significantly more
epistatic. Models that incorporate additional free parameters
should always increase explanatory power. While mononu-
cleotide models attempt to describe all 1,048,576 observed
measurements using only 40 free parameters (4 nucleotides per
position across 10 positions), the nearest-neighbor dinucleotide
model adds another 128 free parameters (16 pairs across 8
positions), and the all dinucleotides model includes 720 free pa-
rameters representing the contribution from all combinations
of nucleotide identities [42=16] and positional pairs [

!10
2
"
=45].

In most cases, dinucleotide coe�cients are near zero (Fig. 4C ),
meaning that they contribute little explanatory power. To
systematically identify a minimal set of important features
that define sequence specificity in an unbiased fashion, we
used least absolute shrinkage and selection operator (LASSO)
regression to develop parsimonious linear models with weight
constraints (72). Briefly, non-zero coe�cients in the model are
penalized, leading to inclusion of only the most explanatory
variables with respect to reduction in squared error (Fig. S11).
The regression explores a range of penalization stringencies to
distinguish important sequence features based on di�erential
coe�cient minimization rates.

We applied LASSO regression to systematically select
a parsimonious set of sequence features with optimal ex-
planatory power among all possible dinucleotide features.
From the selected Cbf1 features, four nearest neighbor din-
ucleotides exhibited relatively large initial coe�cient mag-
nitudes and persisted as model variables throughout most
of the penalization regime. These four sequence features
group into two pairs of palindromic dinucleotides spanning
the core motif: (NNNAT_NNNNN, NNNNN_ATNNN) and
(NNNGT_NNNNN, NNNNN_ACNNN) (Fig. 4D). Strikingly,
this set of dinucleotide features exhibits model coe�cients that
are up to 3-fold greater in magnitude than that of the most
significant mononucleotide feature (Fig. 4D, S12), highlighting
the importance of dinucleotides to Cbf1 binding specificity
in particular. Among the selected dinucleotide features for
both Pho4 and Cbf1, nearest neighbor pairs exhibited the
largest coe�cient magnitudes (Fig. S12). Short-range nu-
cleotide interactions contribute most to higher-order substrate
specificity, consistent with the feature preferences of yeast TFs
determined by ChIP-chip (45).

Orthogonal in vitro biochemical measurements confirm re-
sults obtained via high-throughput sequencing. To confirm
that NN model predictions provide accurate per-sequence esti-
mates of true binding energies, we quantitatively compared
titration-based ��G values with unprocessed measurements
and NN predictions. Using traditional fluorometric MITOMI,
we determined the ��Gs for Pho4 and Cbf1 binding to single-

site variants of the ACAGA_TCGAG flanking sequence (Tab.
S3, Fig. S6A, S6B). In addition, we correlated NN predic-
tions with a set of previously reported ��G measurements of
CACGTG flanking site mutations (17, 31). Consistent with
the Monte Carlo simulations, ��G values calculated directly
from raw sequencing data showed essentially no correlation
to direct measurements, with r2 values ranging between 0.07–
0.16 and 0–0.24 for Pho4 and Cbf1, respectively (Fig. S13).
NN-predicted values showed remarkable agreement, with r2

values ranging between 0.76–0.94 and 0.61–0.69 for Pho4 and
Cbf1. In all cases, predictions agreed with observations within
�1 kcal/mol. Taken together, these results establish that the
Pho4 and Cbf1 NN models presented here yield a complete
and accurate measurements of binding energies for >1 million
TF-DNA interactions with similar resolution to ’gold-standard’
biochemical measurements.

High-resolution in vitro affinity measurements can be used to
identify biophysical mechanisms underlying in vivo behavior.
The role of transcriptional activators in vivo is not simply to
bind DNA, but rather to bind specific genomic loci and regulate
transcription of downstream target genes. The high resolution
of these comprehensive binding energy measurements makes
it possible to quantitatively estimate the degree to which
measured binding a�nities explain di�erences in measured TF
occupancies, rates of downstream transcription, and ultimate
levels of induction.

First, we compared NN-modeled �G values with measured
rates of transcription and fold change induction for engineered
promoters containing CACGTG Pho4 consensus sites with
di�erent flanking sequences driving the expression of fluores-
cent reporter genes (16, 17). As reported previously, rates of
transcription and induction scaled with measured �G values
that spans �1.5 kcal/mol (Fig. S14). Next, we compared
NN-derived binding energies with reported levels of TF occu-
pancy in vivo at CACGTG consensus sites in the S. cerevisiae

genome for both Pho4 and Cbf1 (62). Large magnitude TF
enrichment induced by phosphate starvation was observed at
loci with measured Kd values of around 100 nM or lower (Fig.
5A). While TF enrichment roughly correlated with binding
energy, very high a�nity sequence showed strikingly low en-
richment. The observed nonlinearities may indicate the degree
to which other regulatory mechanisms, such as cooperation
and competition among TFs or changes in DNA accessibility
due to nucleosome positioning, contribute to reported TF en-
richment (62). Alternatively, these nonlinearities may reveal
the need for higher resolution in vivo measurements to test the
degree to which binding energies alone dictate occupancies.

To better understand the relationship between binding en-
ergies and in vivo occupancies, we visualized the complete
binding energy landscapes for both Pho4 and Cbf1 as a func-
tion of sequence space (Fig. 5B, S15). The single highest
a�nity sequence for each TF was placed at the center of a
series of concentric rings, each of which includes all sequences
at a given Hamming distance from the highest a�nity se-
quence. Within each ring, points representing each sequence
are arranged in alphabetical order, with the color of each point
reporting the measured ��G for that sequence. As expected,
the energetic landscape forms a somewhat rugged funnel, with
binding energies increasing monotonically on average with
mutational distance from the highest-a�nity site (Fig. S16).
Next, we projected flanking site occupancies from ChIP-seq
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experiments (62) onto these binding a�nity landscapes to
yield a composite functional-energetic landscape (Fig. 5B).
For both Pho4 and Cbf1 the majority of enriched genomic
loci are greater than four mutational steps away from the the
global minimum, corresponding to mean increases in binding
energy of approximately 0.8 and 1.5 kcal/mol, respectively
(Fig. S17). These quantitative comparisons between measured
a�nities and in vivo occupancies establish that even relatively
small di�erences in ��G are associated with di�erential TF
enrichment.

Discussion

TFs play a central role in regulating levels of gene expression
throughout development and allowing organisms to adapt to
changing environmental conditions. The ability to quanti-
tatively predict levels of TF occupancy in vivo from DNA
sequence would therefore be transformative for our under-
standing of cellular function. Given that the probability of TF
occupancy at a given locus includes an exponential dependence
on the corresponding TF-DNA binding energy (73), accurate
occupancy predictions require the ability to resolve even small
(�1-2 kcal/mol) changes in binding energies at high resolution.
Towards this goal, we developed a novel assay designed to
provide comprehensive and quantitative measurements of near-
neutral changes in binding energies caused by mutations in
the flanking sequences surrounding TF consensus target sites.
By training a neural network (NN) on estimates of binding
energies for millions of sequences, we obtained a model that
incorporates all higher-order complex interactions required for
accurate binding energy estimates for each sequence.

We find that a wide variety of mutations in flank-
ing nucleotides outside of “core motifs” (as defined by
consensus PWMs) can change binding energies by an
amount equal to or greater than mutations within the
core consensus. For example, the di�erence in binding en-
ergy between a TCCCCCACGTGCCCCA sequence and a
AATTTCACGTGAAAAG sequence is �2.6 kcal/mol, equiv-
alent to mutating the central consensus site from CACGTG
to CGTGTG. However, current representations of TFBSs
would predict a change in binding energy for only the core
mutation. This discrepancy has several implications for our
understanding of transcriptional regulation in vivo. First,
flanking sequence e�ects may explain mysteries regarding
chromatin immunoprecipitation (ChIP) data in which some
genomic loci are occupied despite an apparent lack of a con-
sensus site while other accessible regions containing consensus
sites remain unoccupied. Second, many current e�orts to
infer the presence of bound TFs first analyze DNAse-seq or
ATAC-seq data to identify regions of accessible DNA, and
then scan these regions for putative bound TFs by searching
for sequence similarities to known TFBSs. Failing to consider
the e�ects of flanking sequences could return a significant
number of both false positives (in which a consensus site with
unfavorable flanking nucleotides is considered to be bound)
and false negatives (in which a mutated consensus site has
strongly favorable flanks but is considered unoccupied).

In practice, measuring complete binding energy landscapes
remains rare, with most assay development focused towards
discovery of the highest-a�nity sequences. The quantitative
and complete binding energy landscapes presented here provide
a unique opportunity to explore the mechanisms that drive

Fig. 5. Large-scale Pho4 and Cbf1 binding energies and in vivo activity. (A) Pho4
and Cbf1 equilibrium binding constants (Kd, in nM) compared to in vivo enrichment
determined by ChIP-seq (62). (B) Functional-energetic landscapes of differential
relative ChIP enrichment at dynamically regulated loci, relative to the measured
highest affinity sequence in Hamming distance space. Point size: large = high
enrichment, small = low enrichment. Color scale: blue = high affinity, red = low affinity.
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evolution of transcriptional regulatory networks. It has been
hypothesized that high a�nity, but sub-maximal, TF bind-
ing sites may be evolutionarily favorable due to the potential
for greater dynamic transcriptional control (74). Consistent
with this hypothesis, we find that the most highly occupied
sites in vivo are mutationally distant from the highest a�nity
flanking sequences. These large mutational distances could
indicate an evolutionary bu�er employed by an organism to
avoid sequence proximity to a sub-optimal binding extreme.
In addition, elevated levels of epistasis are thought to produce
more rugged energetic landscapes compared to those created
by additive binding interactions (75). Given that epistatic
dinucleotide interactions play a larger role in determining Cbf1
binding specificity, we speculate that Cbf1 binding sites can tra-
verse fewer non-deleterious evolutionary pathways than Pho4,
ultimately rendering Pho4 binding sites more evolutionarily
plastic than those of Cbf1.

Systematic comparisons between per-sequence estimates of
binding energies output by a NN and those output by a series
of linear models revealed the mechanistic features that drive
specificity and quantified their contributions to observed bind-
ing energies. These results have relevance to recent debates
surrounding the relative utility of DNA sequence-based models
(PWMs) and DNA shape-based models representing TF speci-
ficity. Both models parameterize DNA binding preferences by
a set of four values at each position: PWMs represent speci-
ficities based on preferences for each of the DNA bases (A, C,
G, and T) (35), while shape-based models express preferences
in terms of minor groove width, propeller twist, helical twist,
and roll (50–54). While these models significantly enhance the
ability to extract mechanistic determinants of specificity from
sparse data, higher-order information is lost in the process.
Here, we demonstrate that models based on nearest-neighbor
dinucleotide preferences are su�cient to fully explain observed
binding behavior, consistent with biophysical observations
that local DNA structure is largely determined by base stack-
ing interactions and inter-base pair hydrogen bonds in the
major groove between adjacent base pairs (54, 76, 77). Such
nearest-neighbor dinucleotide models require only a modest
increase in the number of required free parameters relative to
mononucleotide models. While the NN’s capacity to incorpo-
rate higher-order complexity ultimately proved unnecessary
for accurately modeling Pho4 and Cbf1 binding specificities,
high-resolution predictions output by the NN were essential
to quantify the degree to which simpler models could explain
observed behavior. The high resolution of these measurements
further allows direct quantification of the degree to which
thermodynamic models based on the binding energies can and
cannot predict behavior in vivo.

The simulation-guided assay design and experimental assay
presented here should allow a much broader diversity of labs
to make comprehensive and high-resolution measurements of
binding energy landscapes. While the assay is deployed here
for a specific use case (high-resolution measurements of near-
neutral e�ects over a small energy range), these simulations
can guide choice of sequencing depths to resolve absolute bind-
ing energies across a variety of applications and platforms
(9, 11, 28, 78, 79), including target site discovery e�orts. The
experimental assay itself further o�ers the resolution of tra-
ditional MITOMI or HiTS-FLIP fluorescence-based assays
while requiring significantly less equipment and infrastructure.

Traditional MITOMI fluorescence assays require both a DNA
microarray printer to deposit DNA on slide surfaces and either
a high-cost fluorescence scanner or fully automated microscope
capable of quantitative fluorescence imaging of a slide with a
microfluidic device attached; HiTS-FLIP assays require access
to a customized Illumina GAIIx sequencing platform. The use
of a sequencing-based readout eliminates these requirements,
allowing any laboratory with access to educational or com-
mercial deep sequencing services to measure energies at this
scale and resolution. Moreover, the valving required on the
microfluidic device itself is significantly simpler than for tradi-
tional MITOMI assays, reducing the pneumatics infrastructure
required to operate devices.

Finally, this assay provides unique opportunities in future
work to probe additional control mechanisms that influence TF
binding in vivo. Introduction of synthesized DNA libraries con-
taining modified bases involved in epigenetic regulation (e.g.

5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine,
5-carboxylcytosine) could allow systematic investigation of
how these modifications a�ect TF specificities. The assay
should further be compatible with DNA libraries assembled
into nucleosomal arrays in vitro, facilitating direct and quan-
titative investigation of how competition between TFs and
nucleosomes dictates occupancies, the degree to which particu-
lar TFs act as “pioneer factors”, and how site-specific histone
modifications (e.g. methylation, acetylation, phosphorylation,
ubiquitinylation) (80–82) influence this competition. It may
also be possible to measure relative binding energies of TF
interactions with extracted DNA or chromatin derived from
cells under defined stimulation (e.g. drug response, disease)
(83). Taken together, these areas of study highlight the com-
plex interplay of chromatin landscape and TF binding, aspects
of which may be characterized in the future using a variant
of the assay and analysis pipeline presented in this work. In
addition, the simulations presented here provide guidelines
for the development of sequencing-based assays designed to
measure binding energies for a wide variety of macromolecular
interactions, including both protein-RNA and protein-protein
interactions.

Materials and Methods

Binding energy calculations. Using the model proposed by Djordje-
vic, et al. (56) that was refined by Stormo and colleagues (10, 39),
we consider the binding of DNA sequences S

i

among many S

j

com-
petitor substrates at equilibrium with a transcription factor. The
probability of being bound to the transcription factor as a function
of sequence identity, represented by P (bound | S

n

), is given by:

P (bound | S

n

) = e

≠�Gn

e

≠µ + e

≠�Gn

Where �G

n

is the binding free energy and µ is the chemical
potential, equal to the natural log of the transcription factor con-
centration. Both terms are in units of RT.

Sequencing of TF-bound substrates yields P (S
i

| bound), which
is the inclusion probability of S

i

among the bound substrate distri-
bution. From the partition probability of substrates between bound
and unbound, P (S

i

| bound), application of Bayes’ theorem and the
law of total probability yields:

P (S
i

| bound) = P (bound | S

i

)P (S
i

)q
j

P (bound | S

j

)P (S
j

)
Where P (S

n

) describes the probability of a given species within
the input substrate distribution. The combination of these two
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equations returns P (S

i

| bound) as a function of binding energies
and input probabilities.

Next, we make the following assumptions:
• The transcription factor concentration is substantially lower

than the total DNA concentration.
• As the TF concentration is minimized, µ approaches negative

infinity. In e�ect, this causes the denominator in equation 1
to be dominated by the e

≠µ term, which we can approximate
with a constant C ƒ e

≠µ + e

≠�G.
• The sum of P (S

j

) in a large population is � equal to one.
Applying these assumptions to equation 2, it becomes possible

to isolate �G

i

as a function of P (S

i

| bound) and P (S

i

). This
equality is given in equation 3, in units of RT:

�G

i

= ≠ln

1
P (S

i

| bound)
P (S

i

)

2
+ �G

j

Where �G

j

equals the total binding energy excluding contribu-
tion from S

i

. Setting this value to zero yields the relative binding
a�nity of S

i

, represented by ��G

i

in units of RT, which is given
in equation 4:

��G

i

= ≠ln

1
P (S

i

| bound)
P (S

i

)

2

Neural network binding models. The input for the neural network
was defined as a flattened 40-element vector derived from a 4x10 one-
hot encoded matrix. Within the initial matrix, each row represents
a nucleotide species (A, C, G, or T) and each column represents
a position within the ten nucleotide sequence flanking the E-box
motif. The output of the neural network was defined as a scalar
corresponding to the predicted ��G value for the species of in-
terest. The network consisted of three hidden layers of size 500,
500, and 250 units, respectively. All weights were initialized with
Xavier initialization (84) and all layers used batch normalization
(85) and ReLU activation. The entire available sequence space was
randomly divided into training (60%), validation (10%), and test
(30%) datasets. The networks were trained on the training portion
of the data using stochastic gradient descent until the validation
set root mean squared error failed to decrease for three consecutive
epochs. At this point, the learning rate (initialized at 10≠3) was
decreased in 10-fold increments, and training continued until error
failed to improve for a further two epochs when training was halted
to prevent overfitting (Fig. SXX).

Linear binding models. Energetic models of TF substrate specificity
use linear combinations of sequence features to explain variation
in binding energy (70). All linear binding models presented in this
work were training on the binding predictions Our mononucleotide
model includes sequence features consisting of DNA bases present
at each flanking position. We parameterized the nearest neighbor
dinucleotide models using all mononucleotide features plus all possi-
ble combinations of adjacent nucleotide pairs. The full dinucleotide
model builds upon the nearest neighbor model with the addition
of all non-adjacent (gapped) dinucleotide combinations. All linear
binding models were trained using the same 60% of the sequence
space as for the neural network models. Reported accuracies are
calculated with respect to the held-out 40% of the sequence space.
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