Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The GENIUS Approach to Robust Mendelian Randomization Inference

Eric J. Tchetgen Tchetgen, BaoLuo Sun, Stefan Walter
doi: https://doi.org/10.1101/193953
Eric J. Tchetgen Tchetgen
*Department of Biostatistics, Harvard University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
BaoLuo Sun
†Computational and Systems Biology, Genome Institute of Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefan Walter
**Department of Epidemiology and Biostatistics, University of California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Mendelian randomization (MR) is a popular instrumental variable (IV) approach, in which one or several genetic markers serve as IVs that can be leveraged to recover under certain conditions, valid inferences about a given exposure-outcome causal association subject to unmeasured confounding. A key IV identification condition known as the exclusion restriction states that the IV has no direct effect on the outcome that is not mediated by the exposure in view. In MR studies, such an assumption requires an unrealistic level of knowledge and understanding of the mechanism by which the genetic markers causally affect the outcome, particularly when a large number of genetic variants are considered as IVs. As a result, possible violation of the exclusion restriction can seldom be ruled out in such MR studies, and if present, such violation can invalidate IVbased inferences even if unbeknownst to the analyst, confounding is either negligible or absent. To address this concern, we introduce a new class of IV estimators which are robust to violation of the exclusion restriction under a large collection of data generating mechanisms consistent with parametric models commonly assumed in the MR literature. Our approach which we have named “MR G-Estimation under No Interaction with Unmeasured Selection” (MR GENIUS) may in fact be viewed as a modification to Robins’ G-estimation approach that is robust to both additive unmeasured confounding and violation of the exclusion restriction assumption. We also establish that estimation with MR GENIUS may also be viewed as a robust generalization of the well-known Lewbel estimator for a triangular system of structural equations with endogeneity. Specifically, we show that unlike Lewbel estimation, MR GENIUS is under fairly weak conditions also robust to unmeasured confounding of the effects of the genetic IVs on both the exposure and the outcome, another possible violation of a key IV Identification condition. Furthermore, while Lewbel estimation involves specification of linear models both for the outcome and the exposure, MR GENIUS generally does not require specification of a structural model for the direct effect of invalid IVs on the outcome, therefore allowing the latter model to be unrestricted. Finally, unlike Lewbel estimation, MR GENIUS is shown to equally apply for binary, discrete or continuous exposure and outcome variables and can be used under prospective sampling, or retrospective sampling such as in a case-control study, as well as for right censored time-to-event outcomes under an additive hazards model.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted October 08, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The GENIUS Approach to Robust Mendelian Randomization Inference
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The GENIUS Approach to Robust Mendelian Randomization Inference
Eric J. Tchetgen Tchetgen, BaoLuo Sun, Stefan Walter
bioRxiv 193953; doi: https://doi.org/10.1101/193953
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
The GENIUS Approach to Robust Mendelian Randomization Inference
Eric J. Tchetgen Tchetgen, BaoLuo Sun, Stefan Walter
bioRxiv 193953; doi: https://doi.org/10.1101/193953

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3514)
  • Biochemistry (7371)
  • Bioengineering (5347)
  • Bioinformatics (20329)
  • Biophysics (10048)
  • Cancer Biology (7781)
  • Cell Biology (11353)
  • Clinical Trials (138)
  • Developmental Biology (6454)
  • Ecology (9985)
  • Epidemiology (2065)
  • Evolutionary Biology (13361)
  • Genetics (9377)
  • Genomics (12616)
  • Immunology (7729)
  • Microbiology (19119)
  • Molecular Biology (7478)
  • Neuroscience (41163)
  • Paleontology (301)
  • Pathology (1235)
  • Pharmacology and Toxicology (2142)
  • Physiology (3183)
  • Plant Biology (6885)
  • Scientific Communication and Education (1276)
  • Synthetic Biology (1900)
  • Systems Biology (5329)
  • Zoology (1091)