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Abstract

Mendelian randomization (MR) is a popular instrumental variable (IV) approach, in which one or

several genetic markers serve as IVs that can be leveraged to recover under certain conditions, valid

inferences about a given exposure-outcome causal association subject to unmeasured confounding.

A key IV identification condition known as the exclusion restriction states that the IV has no

direct effect on the outcome that is not mediated by the exposure in view. In MR studies, such

an assumption requires an unrealistic level of knowledge and understanding of the mechanism

by which the genetic markers causally affect the outcome, particularly when a large number of

genetic variants are considered as IVs. As a result, possible violation of the exclusion restriction

can seldom be ruled out in such MR studies, and if present, such violation can invalidate IV-

based inferences even if unbeknownst to the analyst, confounding is either negligible or absent.

To address this concern, we introduce a new class of IV estimators which are robust to violation

of the exclusion restriction under a large collection of data generating mechanisms consistent

with parametric models commonly assumed in the MR literature. Our approach which we have

named ”MR G-Estimation under No Interaction with Unmeasured Selection” (MR GENIUS) may

in fact be viewed as a modification to Robins’ G-estimation approach that is robust to both

additive unmeasured confounding and violation of the exclusion restriction assumption. We also

establish that estimation with MR GENIUS may also be viewed as a robust generalization of the

well-known Lewbel estimator for a triangular system of structural equations with endogeneity.

Specifically, we show that unlike Lewbel estimation, MR GENIUS is under fairly weak conditions

also robust to unmeasured confounding of the effects of the genetic IVs on both the exposure and
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the outcome, another possible violation of a key IV Identification condition. Furthermore, while

Lewbel estimation involves specification of linear models both for the outcome and the exposure,

MR GENIUS generally does not require specification of a structural model for the direct effect of

invalid IVs on the outcome, therefore allowing the latter model to be unrestricted. Finally, unlike

Lewbel estimation, MR GENIUS is shown to equally apply for binary, discrete or continuous

exposure and outcome variables and can be used under prospective sampling, or retrospective

sampling such as in a case-control study, as well as for right censored time-to-event outcomes

under an additive hazards model.

KEY WORDS: Instrumental variable, exclusion restriction, additive model, g-estimation, con-

founding, robustness.
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1 Introduction

Mendelian randomization (MR) is an instrumental variable approach with growing popularity in

epidemiology studies. In MR, one aims to establish a causal association between a given exposure

and an outcome of interest in the presence of possible unmeasured confounding, by leveraging one

or more genetic markers defining the IV (Davey Smith and Ebrahim, 2003, 2004, Lawlor et al,

2008). In order to be valid IVs, the genetic markers must satisfy the following key conditions:

(a) They must be associated with the exposure.

(b) They must be independent of any unmeasured confounder of the exposure-outcome relation-

ship.

(c) There must be no direct effect of a genetic marker on the outcome that is not fully mediated

by the exposure in view.

The last assumption (c) known as the exclusion restriction is rarely credible in the context

of MR as it requires complete understanding of the biological mechanism by which each marker

influences the outcome. Such a priori knowledge may be unrealistic in practice due to the possible

existence of unknown pleitropic effects of the markers (Little and Khoury, 2003; Davey Smith

and Ebrahim 2003, 2004, Lawlor et al 2008). Violation of assumption (b) can also occur due

to linkage disequilibrium or population stratification (Lawlor et al, 2008). Possible violation or

near violation of assumption (a) known as the weak instrumental variable problem also poses an

important challenge in MR as individual genetic effects on phenotypes can be fairly weak.

There has been tremendous interest in the development of formal statistical methods to detect

and account for violation of IV assumptions (a)-(c), primarily in a multiple-IV setting in which

standard linear models for outcome and exposure are assumed. The literature addressing violation

of assumption (a) is arguably the most developed and extends to possible nonlinear models under

a generalized methods of moments framework; some recent papers on this topic include Staiger

and Stock (1997), Stock and Wright (2000), Stock and Yogo (2002), Chao and Swanson (2005).

Methodology to address violations of (b) or (c) is far less developed, and constitutes the central
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focus of this paper. Three strands of work stand out in recent literature concerning violation of

either of these assumptions. In the first strand, Kang et al (2016) developed a penalized regression

approach that can under certain conditions recover valid inferences about the causal effect of

interest provided fewer than fifty percent of genetic markers are invalid IVs; also see Windmeijer

et al (2016) for improvements on the penalized approach of Kang et al (2016), including a proposal

for standard error estimation which was not provided in Kang et al (2016). In an alternative

approach, Han (2008) established that the median of multiple estimators of the effect of exposure

obtained using one instrument at the time is a consistent estimator also assuming fewer than fifty

percent of IVs are invalid and that IVs cannot have direct effects on the outcome unless the IVs

are uncorrelated. Bowden et al (2016) explore closely related weighted median methodology. In

a second strand of work, Guo et al (2017) proposed two stage hard thresholding (TSHT) with

voting, which is able to recover a consistent causal effect estimator under linear models for the

outcome and exposure, and a certain plurality condition which can be considerably weaker than

the fifty percent rule (also known as majority rule). The plurality condition is defined in terms

of regression parameters encoding the association of each invalid IV with the outcome and that

encoding the association of the corresponding IV with the exposure. The condition effectively

requires that the number of valid IVs is greater than the largest number of invalid IVs with equal

ratio of the above regression coefficients. Furthermore, they provide a simple construction for 95%

confidence intervals to obtain inferences about the exposure effect which are guaranteed to have

correct coverage under the plurality condition. Importantly, in these first two strands of work, a

candidate IV may be invalid either because it violates the exclusion restriction, or because it shares

an unmeasured common cause with the outcome, i.e. either (b) or (c) fails. Both the penalized

approach and the median estimator may be inconsistent if 50% or more candidate IVs turnout

to be invalid, while TSHT may be inconsistent if the plurality rule fails. For instance, it is clear

that neither approach can recover valid inferences if all IVs violate either assumption (b) or (c).

In order to remedy this difficulty, in a third strand of work, Kolesár et al (2011) considered the

possibility of identifying the exposure causal effect when all IVs violate the exclusion restriction (c),

provided the effects of the IVs on the exposure are asymptotically orthogonal to their direct effects
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on the outcome as the number of IVs tends to infinity. A closely related meta-analytic version of

their approach known as MR-Egger has recently emerged in the epidemiology literature (Bowden

et al, 2015); they referred to the orthogonality condition as the instrument strength independent

of direct effect (InSIDE) assumption. As pointed out by Kang et al (2016), the orthogonality

condition on which these approaches rely may be hard to justify in MR settings as it potentially

restricts unknown pleitropic effects of the genetic markers often with little to no biological basis.

A notable feature of aforementioned methods is that they are primarely tailored to a multiple-IV

setting, in fact methods such as MR-Egger are consistent only under an asymptotic theory in

which the number of IVs goes to infinity, together with sample size. It is also important to note

that because confidence intervals for the causal effect of the exposure obtained by Windmeijer

et al (2015) and Guo et al (2017) rely on a consistent model selection procedure, such confidence

intervals fail to be uniformly valid over the entire model space (Guo et al, 2017, Leeb and Pötscher,

2008).

Because in practice, it is not possible to ensure that fewer than fifty percent of candidate

IVs are invalid or that the plurality condition holds, nor is it practically possible to enforce the

orthogonality condition of Kolesár et al (2011), an important goal of MR research aims to develop

alternative methods of estimation and inference that are fully robust to possible violation of IV

assumptions without relying on majority, plurality or orthogonality conditions. In this paper, a

class of estimators fulfilling this desideratum is proposed, which unlike the aforementioned robust

methods equally applies whether one has observed a single or many candidate IVs.

In Section 2, we introduce notation used throughout. We also provide a formal definition of

the IV model for which we describe previously proposed sufficient conditions in the canonical case

of binary exposure and IV, for nonparametric identification of the exposure average causal effect

in terms of the so-called Wald estimand (Wang and Tchetgen Tchetgen, 2017). In Section 3, we

present our first result which provides an alternative identification formula for the average causal

effect in the IV context, which unlike the Wald estimand, is robust to violation of the exclusion

restriction (c) under a large collection of possible data generating mechanisms that assume both

(i) no additive interaction between the exposure, an unmeasured confounder and the candidate IV
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in a mean model for the outcome; and (ii) no additive interaction between the candidate IV and an

unmeasured confounder in a mean model for the exposure. Conditions similar to assumptions (i)

and (ii) are fairly common in MR and other IV literature. For instance, Kolesár et al (2011), Kang

et al (2016) and Bowden et al (2015) rely on analogous assumptions. In Section 3, we establish that

the proposed approach readily accounts for continuous exposure. We establish that our approach

which we call ”MR G-Estimation under No Interaction with Unmeasured Selection” (MR GENIUS)

may in fact be viewed as a modification to Robins’ G-estimation approach (Robins, 1997) which

we have made robust to both additive unmeasured confounding and violation of the exclusion

restriction assumption. Identification with MR GENIUS relies primarily on an assumption that

the conditional variance of the exposure given the candidate IVs is heteroscedastic with respect

to the candidate IVs, an assumption which generally holds for binary or discrete exposure except

at certain exceptional data generating mechanisms. In case of continuous exposure and outcome,

this assumption is closely related to Lewbel’s recent proposal to leverage heteroscedasticity for

identification and estimation in endogenous regression models (Lewbel, 2012). In this case, MR

GENIUS and Lewbel estimation are quite similar, although unlike estimation with the Lewbel

approach, estimation with MR GENIUS avoids specification of a model for the direct effect of

invalid IVs with the outcome, therefore allowing the latter to remain unrestricted. In Section 4,

we describe conditions under which MR GENIUS is also robust to unmeasured confounding of the

effects of the genetic IVs on both the exposure and the outcome, a violation of assumption (b)

which is also not appropriately accounted for by Lewbel regression which assumes that candidate

IVs are independent of unmeasured confounders. As we further establish in Section 5, MR GENIUS

can easily incorporate multiple IVs in a generalized methods of moments (GMM) approach. An

important feature of multiple IV MR GENIUS is that the correlation structure for the IVs can

essentially remain unrestricted without necessarily affecting identification, this is in contrast with

Bowden et al (2015) who require uncorrelated IVs and Kang et al (2016) who likewise require IV

correlation structure to be somewhat restricted (Windmeijer et al, 2015). Section 5 also extends the

proposed approach to target a multiplicative average causal effect, and establishes that in the case

of binary outcome, the approach is equally valid under either prospective or retrospective sampling
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designs. Therefore, MR GENIUS can also be viewed as further generalizing Lewbel’s estimator

to these important settings. In Section 5, we also briefly extend MR GENIUS to the context

of a right censored time-to-event endpoint under a structural additive hazards model, therefore

further robustifying the recent semiparametric IV estimator of Martinussen et al (2017) against

possible violation of the exclusion restriction assumption. In Section 6, we evaluate the proposed

methods and compare them to a number of previous MR methods in extensive simulation studies.

In Section 7 we illustrate the methods in an MR analysis of the effect of diabetes on memory in

the Health and Retirement Study. Section 8 offers some concluding remarks.

2 Notation and definitions

Suppose that one has observed n i.i.d. realizations of a vector (A,G, Y ) where A is an exposure,

G the candidate IV and Y is the outcome. Let U denote an unmeasured confounder (possibly

multivariate) of the effect of A on Y. G is said to be a valid instrumental variable provided it

fulfills the following three conditions:

Assumption 1. IV relevance: G 6 ⊥⊥A|U ;

Assumption 2. IV independence: G⊥⊥U ;

Assumption 3. Exclusion restriction: G⊥⊥Y |A,U.

The first condition ensures that the IV is a correlate of the exposure even after conditioning on

U. The second condition states that the IV is independent of all unmeasured confounders of the

exposure-outcome association, while the third condition formalizes the assumption of no direct

effect of G on Y not mediated by A (assuming Assumption 2 holds). The causal diagram in

Figure 1 encodes these three assumptions and therefore provides a graphical representation of

the IV model. It is well known that while a valid IV satisfying assumptions 1-3, i.e. the causal

diagram in Figure 1, suffices to obtain a valid statistical test of the sharp null hypothesis of no

individual causal effect, the population average causal effect is itself not point identified with a

valid IV without an additional assumption. Consider the following condition:
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Assumption 4.

(4a) There is no additive A− (U,G) interaction in model for E (Y |A,G,U)

E (Y |A = a,G, U)− E (Y |A = 0, G, U) = βaa (1)

and no additive G− (U) interaction in model for E (Y |A,G,U)

E (Y |A = 0, G = g, U)− E (Y |A = 0, G = 0, U) = βg (g) (2)

for an unknown function βg (·) that satisfies βg (0) = 0

(4b) There is no additive G− U interaction in model for E (A|G,U)

E (A|G = g, U)− E (A|G = 0, U) = αg (g) (3)

for an unknown function αg (·) that satisfies αg (0) = 0.

Clearly the condition does not require G to be a valid IV. Equation (1) implies that the average

causal effect of A on Y conditional on U and G does not depend on U and G on the additive scale,

i.e. the additive causal effect of A on Y is not modified by either U or G. Likewise, equation

(2) additionally states that the additive average effect of G on Y is not modified by U. These

restrictions imply the following additive models:

E (Y |A,G,U) = βaA+ βg (G) + Uy,

E (A|G,U) = αg (G) + Ua,

where Uy = βu (U) and Ua = αu(U) for functions βu (·) and αu(·) only restricted by natural

features of the model, e.g. such that the outcome and exposure means are bounded between

zero and one in the binary case. If G is a valid IV, then E (Y |A,G,U) = E (Y |A,U) does not

depend on G by the exclusion restriction implying that G neither interacts with U nor with A

in the model for E (Y |A,G,U) , so that assumption 4.a. reduces to the assumption of no U − A
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interaction in the model for E (Y |A,G,U) . In case of a valid binary IV and binary exposure,

Wang and Tchetgen Tchetgen (2017) recently established that the average causal effect βa is

nonparametrically identified by the so-called Wald estimand

βa = δ ≡ E(Y |G = 1)− E(Y |G = 0)

E(A|G = 1)− E(A|G = 0)
, (4)

if either of 4.a. or 4.b holds but not necessarily both conditions hold. Note that the models for

E(Y |A,G,U) and E(A|G,U) considered by Bowden et al (2015) satisfy assumptions 4.a. and 4.b.

with βg (·) and αg (·) linear functions, while Kang et al (2016) specified models implied by these

two restrictions. Below, unless stated otherwise, assume A and G are both binary.

Figure 1: Directed acyclic graph depicting a valid instrument G which satisfies assumptions 1-3.

3 Identification under violation of exclusion restriction

Next, suppose that as encoded in the diagram given in Figure 2, the exclusion restriction assump-

tion 3 does not necessarily hold, then the Wald estimand δ 6= βa will generally fail to equal the

average causal effect of A on Y, even if assumptions 1, 2, and 4 hold. The following result provides

an alternative identifying formula which may be used instead of the Wald estimand to identify the

causal effect under these conditions.
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Lemma 1 Suppose that Assumptions 1, 2 and 4 hold, then βa = µ, where

µ =
E [{G− E(G)} {A− E(A|G)}Y ]

E [{G− E(G)} {A− E(A|G)}A]

=
E [{G− E(G)} {A− E(A|G)}Y ]

var(G) {var(A|G = 1)− var(A|G = 0)}

provided that

var (A|G = 1)− var (A|G = 0) 6= 0 (5)

Proof. Below we make use of the fact that under our assumptions E {A− E(A|G)|G,U} =

αu(U)− E(αu(U)). Consider

E [{G− E(G)} {A− E(A|G)}Y ]

= E [{G− E(G)} {A− E(A|G)}E (Y |A,G,U)]

= E [{G− E(G)} {A− E(A|G)} {βaA+ βgG+ βu (U)}]

= E [{G− E(G)} {A− E(A|G)}A] βa

+ βgE

{G− E(G)}GE [{A− E(A|G)} |G]︸ ︷︷ ︸
=0


+ E {G− E(G)}︸ ︷︷ ︸

=0

cov {αu(U), βu (U)}

Therefore,

E [{G− E(G)} {A− E(A|G)}Y ]

E [{G− E(G)} {A− E(A|G)}A]

= βa

provided that E [{G− E(G)} {A− E(A|G)}A] 6= 0, which holds under (5) .

Lemma 1 provides an explicit identifying expression for the average causal effect βa of A on Y

in the presence of additive confounding, which leverages a candidate IV G that may or may not

satisfy the exclusion restriction. In order for µ to be well defined, we require a slight strengthening

of the IV relevance assumption 1,i.e. that var(A|G) must depend on G. It is key to note that
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this assumption is empirically testable, and will typically hold for binary A, except at certain

exceptional laws. To illustrate, let π(g) = Pr(A = 1|G = g) and suppose that assumptions 1, 2 and

4 hold, however π (1) = 1−π (0) , in which case (5) fails because var(A|G = g) = π(g) (1− π(g)) =

π(1) (1− π(1)) = π(0) (1− π(0)) does not depend on g and therefore the identifying expression

given in the Lemma does not apply despite the candidate IV satisfying IV relevance assumption 1,

i.e. π (1) 6= π (0). Below, we extend Lemma 1 to allow for possible violation of both assumptions

2 and 3.

The lemma motivates the following MR estimator, which is guaranteed to be consistent under

assumptions 2, 4 and equation (5) irrespective of whether or not assumption 3 also holds:

β̂a =
Pn
[
{G− Pn(G)}

{
A− Ê(A|G)

}
Y
]

Pn
[
{G− Pn(G)}

{
A− Ê(A|G)

}
A
] , (6)

where Pn = n−1
∑n

i=1[·]i and Ê(A|G = g) = Pn [Ai1 (Gi = g)] /Pn [1 (Gi = g)] . This estimator is

the simplest instance of MR GENIUS estimation. The asymptotic distribution of the estimator is

described in Appendix A2.

Figure 2: Directed acyclic graph depicting the situation in which exclusion restriction (assumption
3) does not necessarily hold. The dashed line indicates possible direct effect of G on outcome Y .

Continuous exposure

Suppose now that A is continuous, then, it is straightforward to verify that Lemma 1 continues to

hold as its proof does not depend on A being binary. Note that for continuous A, Assumption (1)

resticts the effect of A on Y to be linear and condition (5) implies that the conditional density of
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εA = A−E(A|G) must be heteroscedastic, i.e. var(A|G) = E(ε2A|G) depends on G. As mentioned

in the introduction, Lewbel (2012) obtains a closely related identification result to Lemma 1 under

a triangular system of linear structural equation models; see Theorem 1 on Page 70 of Lewbel

(2012). In addition to establishing the result for binary A in Lemma 1 without specification of

a triangular system of linear equations, below we generalize this identification result in several

important directions particularly relevant to MR studies.

We note that while var(A|G) will generally depend on G for binary or discrete A (except

perhaps at exceptional data generating mechanisms such as the one described in the previous

Section), this may not always be the case for continuous A. However in this case, the assumption

can be motivated under an underlying model for A with latent heterogeneity in the effect of G on

A. Specifically, suppose that

A = α∗g (G, εg) + Ua + ε∗a

E (ε∗a) = 0

where εg and ε∗a are unobserved random disturbances independent of (G,U); the disturbance εg

may be viewed as unobserved genetic or environmental factors independent of G, that may however

interact with G to induce additive effect heterogeneity of G-A associations, e.g. α∗g(G, εg) = α∗gG+

εgG. Then, one can verify that the model in the above display implies that A = αg (G)+εa where

αg (G) = E
(
α∗g (G, εg) |G

)
+E (Ua) and var (εa|G) = var

({
Ua − E (Ua) + ε∗a + α∗g (G, εg)− E

(
α∗g (G, εg) |G

)}
|G
)

which clearly depends on G, provided α∗g(g, εg)−α∗g(0, εg) depends on εg for a value of g, therefore

implying condition (5) . A model for exposure which incorporates latent heterogeneity in the ef-

fects of G is quite natural in the MR context because such a model is widely considered a leading

contestant to explain the mystery of missing heritability (Manolio et al, 2009).

4 Identification under violation of IV Independence

In this Section, we aim to relax the IV independence Assumption 2., by allowing for dependence

between U and G as displayed in Figure 3. Therefore, we will consider replacing Assumption 2
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with the following weaker condition:

Assumption 2*. Homoscedastic confounding: cov (Uy, Ua|G) = ρ does not depend on G.

To illustrate Assumption 2* it is instructive to consider the following submodels of (1) and

(2): Uy = β0 + βuU and Ua = α0 + αaU, such that E(Y |A,U,G) and E(A|G,U) are both linear

in U ; then Assumption 2* implies var(U |G) = ρ/ (βuαa), i.e. the unmeasured confounder U has

homoscedastic variance. Under Assumption 2*, E(U |G) is left unrestricted therefore assumption

2 may not hold. We have the following result:

Lemma 2 Suppose that Assumptions 1, 2*,4 hold, then βa = µ provided that condition (5) holds.

Proof. Proceeding as in the proof of Lemma 1,

E [{G− E(G)} {A− E(A|G)}Y ]

= E [{G− E(G)} {A− E(A|G)}A] βa

+ E [{G− E(G)} {αu(U)− E (αu(U)|G)} βu (U)]

= E [{G− E(G)} {A− E(A|G)}A] βa

+ E [{G− E(G)} cov (αu(U), βu (U) |G)]

= E [{G− E(G)} {A− E(A|G)}A] βa

+ E {G− E(G)} ρ

= E [{G− E(G)} {A− E(A|G)}A] βa,

proving the result.

Lemma 2 implies that under Assumptions 1, 2*, 4 and condition (5) , β̂a continues to be

consistent even if U 6 ⊥⊥G.

As previously mentioned, MR GENIUS may be viewed as a special case of G-estimation

(Robins, 1997). In fact, under assumption 4.a.1 and the additional assumption of no unobserved

confounding given G, i.e. if either U⊥⊥A|G or U⊥⊥Y |A,G, the G-estimator β̃a which solves an
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estimating equation of the form:

0 = Pn
[
h(G)

{
A− Ê(A|G)

}{
Y − β̃aA

}]
,

is consistent and asymptotically normal for any user-specified function h (·) (up to regularity

conditions).

It is straightforward to verify that the MR GENIUS estimator (6) solves the estimating equa-

tion:

0 = Pn
[
{G− Pn(G)}

{
A− Ê(A|G)

}{
Y − β̂aA

}]
, (7)

therefore formally establishing an equivalence between MR GENIUS and g-estimation for the

choice h(G) = G − E(G). Remarkably, as we have established above, this specific choice of h

renders g-estimation robust to unmeasured confounding under certain no-additive interactions

conditions with unmeasured factors used in selecting exposure levels, therefore motivating the

choice of acronym for the proposed approach.

Figure 3: Directed acyclic graph depicting the situation in which IV independence (assumption
2) and exclusion restriction (assumption 3) do not necessarily hold. The dashed lines indicate
possible direct effects of U on G, and of G on Y .
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5 Generalizations

5.1 Multiplicative exposure model

A multiplicative exposure model may also be used for count or binary exposure under the following

assumption:

(4.b*) There is no multiplicative G− U interaction in model for E (A|G,U)

log
E (A|G = g, U)

E (A|G = 0, U)
= αg (g) (8)

for an unknown function αg (·) that satisfies αg (0) = 0.

MR GENIUS can be adapted to this setting according to the following result. Let

log
E (A|G = g)

E (A|G = 0)
= $g (g) , (9)

and Ua = E (A|G = 0, U) .

Lemma 3 Suppose that Assumptions 1, 2, 4.a and 4.b* hold, then

βa =
E [{G− E(G)} {A exp(−$g (G))− E(A exp (−$g (G)))}Y ]

E [{G− E(G)} {A exp(−$g (G))− E(A exp (−$g (G)))}A]

provided that var (A|g) /var (A|g = 0) 6= exp ($g (g)) for at least one value of g.

Proof. The proof follows upon noting that under our assumptions,

exp ($g (G))E(A exp (−$g (G)))

= E (A|G)

= exp (αg (G))E (Ua) ,
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and

E (A|G,U)− exp ($g (G))E(A exp (−$g (G)))

= [Ua − E (Ua)] exp (αg (G)) .

Therefore

E [{G− E(G)} {A exp(−$g (G))− E(A exp (−$g (G)))}Y ]

= E [{G− E(G)} {A exp(−$g (G))− E(A exp (−$g (G)))} βaA]

+ E [{G− E(G)} {A exp(−$g (G))− E(A exp (−$g (G)))} βu (U)]

+ E [{G− E(G)} {A exp(−$g (G))− E(A exp (−$g (G)))} βg(G)]

= βaE [{G− E(G)} {A exp(−$g (G))− E(A exp (−$g (G)))}A]

+ E [{G− E(G)} [Ua − E (Ua)] βu (U)]︸ ︷︷ ︸
=0

+ E [{G− E(G)} {Ua − E (Ua)} βg(G)]︸ ︷︷ ︸
=0

= βaE [{G− E(G)} {A− E (A|G)}A exp(−$g (G))]

= βaE [{G− E(G)} var(A|G) exp(−$g (G))] ,

where we used the fact that under Assumption 2., $g (g) = αg (g) , therefore proving identification

provided that var(A|G) exp(−$g (G)) is a function ofG,which holds as long as var (A|g) /var (A|g = 0) 6=

exp ($g (g)) .

A consistent estimator of βa is therefore obtained as in the previous Section, by substituting

in consistent estimators of unknown parameters and sample averages for expectations. To ground

ideas, suppose that $g (g) = $gg for vector $g, then a consistent estimator $̂g of $g is given by

the solution to the estimating equation:

Pn [A exp (−$̂gG) (G− PnG)] = 0
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Note that if A is a rare binary exposure then var (A|g) /var (A|g = 0) ≈ exp ($g (g)) for all g,

therefore violating the identification condition. In such instance, we recommend using the additive

model described in the previous Section. For count data, the result rules out using a Poisson

model for exposure, however other models that accommodate over-dispersion such as the negative

binomial distribution may be used. Finally, it is straightforward to verify that the Lemma continues

to hold if assumption 2 is dropped to allow for unmeasured confounding of the effects of G provided

that the conditional covariance between the residual (Ua/E(Ua|G) − 1) and Uy given G does not

depend on G. Note that in this latter case E (A|G = g) = exp ($g (g)) = exp (αg (g))E (Ua|G = g).

5.2 Incorporating Covariates

One may wish in an MR analysis to adjust for covariates, either to account for observed confounding

of the exposure effect on the outcome, or to account for confounding of the effects of the genetic

markers primarily by ancestry (known as population stratification) or simply to improve efficiency.

In order to account for covariates C, we propose to solve:

0 = Pn
[
h(C)

{
G− Ê(G|C)

}{
A− Ê(A|G,C)

}{
Y − β̂aA

}
,
]

(10)

for user-specified choice of h, where Ê(G|C) and Ê(A|G,C) are consistent estimators of E(A|G,C)

and Ê(G|C) obtained say by fitting appropriate generalized linear models. For example, as G is

binary, one may specify logitPr(G = 1|C) = ω0 + ω′C to obtain Ê(G|C) by standard likelihood

estimation of a logistic regression, and likewise when A is binary, one may obtain Ê(A|G,C) by

fitting a similar logistic regression, and when A is continuous, an analogous linear regression could

be used instead. Identification results established in previous Sections continue to apply by further

conditioning on C in Assumptions 1,2,2*,3,4, as well as on the left hand-side of equation (5) . Note

that effect modification can be incorporated upon conditioning on C in equation (1) , by modeling

the conditional causal effect of A on Y given U and C as a function of C, for example

E (Y |A = a,G,C = c, U)− E (Y |A = 0, G, C = c, U) = βaa+ β′acac, (11)
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in which case βac captures effect modification by C. In contrast, effect modification by C in equation

(2) can remain unrestricted, i.e.

E (Y |A = 0, G = g, C = c, U)− E (Y |A = 0, G = 0, C = c, U) = βg|c (g, c) ,

where βg|c (0, c) = 0 for all c but is otherwise unrestricted. Estimation of (βa, βac) requires modifying

equation (10) as followed :

0 = Pn
[
h(C)

{
G− Ê(G|C)

}{
A− Ê(A|G,C)

}{
Y − β̂aA− β̂′acAC

}]
,

where h(C) is of the same dimension as (A,C ′)′, e.g. h(C) = (1, C ′)′.

5.3 Incorporating Multiple IVs

MR designs with multiple candidate genetic IVs may be used to strengthen identification and

improve efficiency. Multiple candidate IVs can be incorporated by adopting a standard generalized

method of moments approach. Specifically, suppose that G is a vector of genetic variants, then,

assuming for simplicity that there is no effect modification of A by C in the outcome model, i.e.

β′ac = 0, we propose to obtain β̂a by solving:

β̂a = arg min
βa

Pn
[
Û ′ (βa)

]
WPn

[
Û (βa)

]
(12)

where

Û (βa) =
{
h (G,C)− Ê(h (G,C) |C)

}{
A− Ê(A|G,C)

}
{Y − βaA}

for a user-specified function h (G,C) of dimension K ≥ 1, and W is user-specified weight matrix.

In practice, it may be convenient to set h (G,C) = G and W = IKxK the K dimensional identity

matrix. Let βa denote the corresponding estimator. A more efficient estimator β̂a can then be

obtained by solving (12) with weight Wopt = Pn
[
Û
(
βa
)
Û
(
βa
)′]−

where T− denotes the general-

ized inverse of matrix T . Identification of GMM is guaranteed (at least locally) provided that the

second derivative wrt βa of the GMM objective function Pn
[
Û ′ (βa)

]
WPn

[
Û (βa)

]
is nonsingular
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at the truth, which is a generalization of condition (5). The asymptotic distribution of β̂a which

solves (12) is described in Appendix A3.

5.4 Multiplicative causal effects

In this Section, we consider making inferences about the multiplicative causal effect of exposure

A, under the model

E (Y |A = a,G, U)

E (Y |A = 0, G, U)
= exp (βaa) , (13)

where for simplicity, we assume no baseline covariates, binary A and scalar G. Therefore, If Y is bi-

nary, βaa encodes the conditional log risk ratio log {Pr (Y = 1|A = a,G, U) /Pr (Y = 1|A = 0, G, U)}

which is assumed to be independent of U and G,i.e. there is no multiplicative interaction between

A and (G,U) . In order to state our identification result with an invalid IV, consider the following

assumption.

Assumption 5. Equations (2) , (3) , and (13) hold.

Lemma 4 Suppose that Assumptions 1,2∗,5 hold, then βa is the unique solution to equation:

0 = E [{G− E(G)} {A− E(A|G)}Y exp {−βaA}] , (14)

provided that condition (5) holds.

Proof. The results follows upon noting that E [Y exp {−βaA} |A,G,U ] = E [Y |A = 0, G, U ] . The

proof then proceeds as in Lemma 1.

According to the Lemma, a consistent estimator of βa can be obtained by solving an empirical

version of equation (14) in a similar manner as in previous Sections. The unbiasedness property

given by equation (14) continues to hold for continuous A under the conditions given in the Lemma,

and generalizations to allow for covariates and multiple IVs can easily be deduced from previous

Sections.

Interestingly, equation (14) continues to hold under case-control sampling wrt the outcome Y ,

however note that E(G) and E(A|G) must be evaluated wrt the underlying distribution for the
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target population which will in general not match the corresponding distributions in the case-

control sample. To use the result in practice, one would either need to obtain these quantities

from an external source or one could alternatively approximate them with the corresponding

data distribution in the controls (i.e. units with Y = 0) provided the outcome is sufficiently

rare. In the event sampling fractions for cases and controls are available, one could in principle

implement inverse-probability of sampling weights to consistently estimate E(G) and E(A|G).

Unbiasedness under case-control sampling follows from noting that f (A,G,U |Y = 1) ∝ Pr(Y =

1|A,G,U)f (A,G,U) , and therefore

E [{G− E(G)} {A− E(A|G)} exp {−βaA} |Y = 1]

∝ E [{G− E(G)} {A− E(A|G)} exp {−βaA}E(Y |A,G,U)]

= E [{G− E(G)} {A− E(A|G)} exp {−βaA}Y ] ,

= 0

where the last equality follows from Lemma 3.

5.5 More efficient MR GENIUS

Similar to standard g-estimation, MR GENIUS can be made more efficient by incorporating infor-

mation about the association between G and Y. This can be achieved by the following steps:

1. Obtain the MR GENIUS estimator β̂a either on the additive or multiplicative scale.

2. Define a treatment-free outcome Ŷ0

(
β̂a

)
= Y− β̂aA under (1) and Ŷ0

(
β̂a

)
= Y exp

{
−β̂aA

}
under (13) .

3. Regress Ŷ0

(
β̂a

)
on G using a generalized linear model with appropriate link function, and

define µ̂ (G) a person’s corresponding fitted (predicted) value.

4. Define β̂opta as the solution to

0 = Pn
[
{G− Pn(G)}

{
A− Ê(A|G)

}{
Ŷ0

(
β̂opta

)
− µ̂ (G)

}]
20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2017. ; https://doi.org/10.1101/193953doi: bioRxiv preprint 

https://doi.org/10.1101/193953
http://creativecommons.org/licenses/by-nc-nd/4.0/


with Ŷ0

(
β̂opta

)
= Y− β̂opta A under (1) and Ŷ0

(
β̂opta

)
= Y exp

{
−β̂opta A

}
under (13) .

If all regression models are correctly specified (including the glm for E(Y0 (βa) |G) required

in Step 3 of the above procedure), a standard argument of semiparametric theory implies that

the asymptotic variance of β̂opta is guaranteed to be no larger than that of β̂a (Robins, 1997).

Interestingly, MR GENIUS and its more efficient version coincide (up to asymptotic equivalence)

whenever nonparametric methods are used to estimate all nuisance parameters, i..e. to estimate

E(G), E(A|G) and µ (G) = E(Y − βaA|G). For instance, in the case of binary G, such that

regression models E(A|G) and µ (G) = E(Y − βaA|G) are saturated, the two estimators are

exactly equal and yield identical inferences. Both approaches also coincide if all IVs are valid,

however the above modification will tend to be more efficient with increasing number of invalid

IVs. Note that µ(G) does not necessarily have a causal interpretation as the effect of G on Y

may be confounded by U . Also note that misspecification of a model for µ(G) does not affect

consistency and asymptotic normality of the MR GENIUS estimator of βa provided that as we

have assumed throughout, the model for E(A|G) is correct.

In the case of multiplicative outcome model, it is straightforward to extend the robustness

properties of the efficient MR GENIUS estimator described above under an assumption of no

multiplicative interaction (rather than no additive interaction) between G and U. This would

simply entail replacing
{
Ŷ0

(
β̂opta

)
− µ̂ (G)

}
in step 4 with

{
Ŷ0

(
β̂opta

)
µ̂
(

0; β̂opta

)
/µ̂
(
G; β̂opta

)}
,

where µ̂
(
G; β̂opta

)
is the regression of Y exp

{
−β̂opta A

}
on G under an appropriate GLM and solving

the estimating equation in Step 4 for β̂opta . One can show using the same method of proof used

throughout, that the resulting estimator is consistent for the causal effect of interest under violation

of both assumptions 2 and 3, under an assumption analogous to Assumption 2*. Note however

that µ̂ (g) /µ̂ (0) would now need to be consistent for E(Y |A = 0, G = g)/E(Y |A = 0, G = 0). It is

likewise possible to modify the above procedure to accommodate a multiplicative exposure model

by substituting in {A exp(−$̂g (G))− Pn(A exp (−$̂g (G)))} for
{
A− Ê(A|G)

}
in Step 4.
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5.6 Odds ratio exposure model

In this Section, we briefly consider how MR GENUIS might be applied in a setting where assump-

tion 2 is replaced by the following weaker conditional independence assumption:

Assumption 2†. IV conditional independence: G⊥⊥U |A;

A key implication of this assumption is that the causal effect of G on Y, is now identified

conditional on A, because the assumption implies no unmeasured confounding of the effects of G

on Y. Note however that G and U are not marginally independent. Suppose also that instead of

assumption 4.b, one wishes to encode the IV-exposure association on the odds ratio scale, under

the following homogeneity assumption:

(4b†) There is no odds ratio G− U interaction in model for E (A|G,U)

logit Pr (A = 1|G = g, U)− logit Pr (A = 1|G = 0, U) = χg (g) (15)

for an unknown function χg (·) that satisfies χg (0) = 0.

We then have the following identification result for the multiplicative causal effect βa of model

(13) .

Lemma 5 Under Assumptions 1.2
†
,4.b† and equations (2) and (13) , we have that βa = θ, where

θ is the unique solution to equation:

0 = E [{G− E(G|A = 0)} {A− E(A|G = 0)}Y exp {− (ϕg (G) + θ)A}]

where

ϕg (g) = logit Pr (A = 1|G = g)− logitPr (A = 1|G = 0) ,

provided that γag(g) 6= 0 for some value of g, with:

γag(g) =E (Y |A = 1, G = g, u)− E (Y |A = 1, G = 0, u)

− E (Y |A = 0, G = g, u) + E (Y |A = 0, G = 0, u) 6= 0.
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Assumption 2† in fact implies that ϕg(.) = χg(.) (Ma et al 2006). The Lemma establishes that

under Assumptions 1, 2
†
,4.b† and equations (2) and (13) , the multiplicative causal effect of A is

identified, provided that γag(g) 6= 0. In the proof of the Lemma given in Appendix A1, we establish

that under our assumptions γag(g) = (exp (βa)− 1) βg (g) , and therefore the causal effect is not

identified by the Lemma if all IVs satisfy the exclusion restriction assumption, such that βg (g) = 0

for all g. Note that the latter assumption is empirically testable because the direct effect of G on

Y is unconfounded. If βg(g) 6= 0 for some g, a valid test for the causal null hypothesis can be

performed by testing whether the estimating equation given in the Lemma holds at θ = 0. An

estimator of βa based on the Lemma is easily deduced from previous Sections.

5.7 MR GENUIS for censored failure time under a multiplicative sur-

vival model

Censored time-to-event endpoints are common in MR studies and IV methods to address such

data are increasingly of interest; recent contributions to this literature include Nie et al (2011),

Tchetgen Tchetgen et al (2015), Li et al (2015) and Martinussen et al (2017). While these methods

have been shown to produce a consistent causal effect estimator encoded either on the scale of

survival probabilities, or as a hazards ratio or hazards difference, leveraging a valid IV which

satisfies assumptions (1)-(3), they are not robust to violation of any of these assumptions. In

this Section, we briefly extend MR GENIUS to survival analysis under an additive hazards model.

Thus, suppose now that Y is a time-to-event outcome which satisfies the following additive hazards

model

h(y|A,U,G) = β0 (y) + βa (y)A+ βg(y)G+ βu (y, U) (16)

where h(y|A,U,G) is the hazard function of Y evaluated at y, conditional on A,U and G, and

the functions (β0 (·) , βa (·) , βg(·), βu (·, ·)) are unrestricted. The model states that conditional on

U , the effect of A on Y encoded on the additive hazards scale is linear in A for each y, although,

the effect size βa (y) may vary with y. The model is quite flexible in the unobserved confounder

association with the outcome βu (·, ·), which is allowed to remain unrestricted at each time point
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y and across time points. This is the model considered by Tchetgen Tchetgen et al (2015) who

further assumed that βg(y) = 0 for all y by the exclusion restriction assumption 3. Here we do not

make this assumption. As usually the case in survival analysis, Y is subject to right-censoring due

to drop-out, and therefore instead of observing Y for all subjects, one observes Y ∗ = min(Y,X)

and ∆ = I(min(Y,X) = Y ), where X is an independent censoring time (i.e. independent of

Y,A,G, U). Let R(y) = I(Y ∗ ≥ y) denote the at-risk process and N(y) = I(Y ∗ ≤ y,∆ = 1)

the counting process associated with failure time. As discussed in Martinussen et al (2017), the

additive hazards model (16) is particularly attractive because it implies a multiplicative survival

model for the joint causal effect of A and G on Y :

Pr (Y > y|A = a,G = g, U)

Pr (Y > y|A = 0, G = 0, U)
= exp {−Ba (y) a−Bg (y) g}

where Ba (y) =
∫ y
0
βa(v)dv,Bg (y) =

∫ y
0
βg(v)dv. Our objective is therefore to identify and estimate

Ba (y) . We have the following result which extends the result of Martinussen et al (2017) in order

to accommodate possible violation of the exclusion restriction assumption:

Lemma 6 Under assumptions 1,2,4.b and equation (16) , we have that for each y

0 = E {W (y,Ba (y) ,Bg (y))} , (17)

where

W (y,Ba (y) ,Bg (y)) = (dN(y)− dBa (y)A− dBg (y)G) exp {Ba (y)A+ Bg (y)G}R(y)h(G,A),

h(G,A) =

 (G− E(G))

(G− E(G)) (A− E(A|G))

 ,

Proof. We note that by assumption

E (dN(y)− dBa (y)A− dBg (y)G|R(y) = 1, A,G, U) = dB0 (y) + dBu (y, U) ,
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and

E(exp {Ba (y)A+ Bg (y)G}R(y)|A,G,U)

= exp {−B0 (y)−Bu (y, U)} .

Therefore

E {W (y,Ba (y) ,Bg (y))}

= E

(dB0 (y) + dBu (y, U)) exp {−B0 (y)−Bu (y, U)}

 (G− E(G))

(G− E(G)) (A− E(A|G))




= E


 0

(dB0 (y) + dBu (y, U)) exp {−B0 (y)−Bu (y, U)} (U − E(U)) (G− E(G))




= 0.

As in Martinussen et al (2017), the unbiasedness of equation W (y,Ba (y) ,Bg (y)) suggests a

way of estimating the increments (dBa (y) , dBg (y)) by solving an empirical version of equation

(17) for each y with population expectations replaced by sample analogs, giving the following

recursive estimator

(
B̂a (y) , B̂g (y)

)
=

∫ y

0

Pn
[
ĥ(A,G)′ exp

{
B̂a

(
s−
)
A+ B̂g

(
s−
)
G
}
dN(s)

]
M̂−1 (s) ,

where B̂a (s−) is the value of B̂a right prior to s, and likewise for B̂g (s−), and

ĥ(A,G) =


(
G− Ê(G)

)
(
G− Ê(G)

)(
A− Ê(A|G)

)


M̂ (s) = Pn


 A

G

 ĥ(A,G)′R(s) exp
{

B̂a

(
s−
)
A+ B̂g

(
s−
)
G
} .
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Because of its recursive structure, this estimator can be solved forward in time starting with

(dBa (0) , dBg (0)) = (0, 0). The resulting estimator is a counting process integral, therefore only

changing values at observed event time. The estimator is only defined provided M̂ (y) is invertible at

each such jump time, which is essentially a necessary condition for identification. The large sample

behavior of the resulting estimator follows from results derived in Martinussen et al (2017) and is

therefore omitted. Note that the result relies on assumption 2 therefore ruling out confounding of

the effect of the IV on the outcome.

6 Simulation Study

6.1 Single IV

We investigate the finite-sample properties of MR GENIUS proposed above and compare them with

existing estimators under a variety of settings. For a single binary IV G, we generate independent

and identically distributed (Gi, Ui, Ai, Yi), i = 1, 2, ..., n as follows:

Gi ∼ Bernoulli(p = 0.5),

Yi ∼ N(αGi + βAi + Ui, 1
2),

where for binary exposure A,

εi ∼ truncated N(a = 0.2, b = 0.5, µ = 0.35, σ2 = 12),

Ui = φbGi + εi,

Ai ∼ Bernoulli

(
pi =

exp (γbGi)

1 + exp (γbGi)
+ Ui − E(Ui|Gi)

)
,

where εi is appropriately bounded to ensure that p falls in the unit interval, and for continuous A,

Ui = φcGi +N(0, 12),

Ai ∼ N
(
γcGi + Ui, |λ0 + λ1Gi|2

)
.
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The data generating mechanism satisfies assumptions 2* and 4. We set γb = −0.5 or −1 (binary

A), and γc = −1, λ0 = 1, λ1 = 1 or 5 (continuous A) which satisfy both Assumption 1 and

condition (5). Assumptions 2 and 3 are violated when we set φb = −0.2, φc = −2 and α = −0.5

respectively. The causal parameter is set equal to β = 0.5 throughout this simulation. The IV

strength is tuned by varying the values of γb and λ1, for binary and continuous A respectively.

MR GENIUS is implemented using (6), with Ê(A|G) estimated with linear or logistic regression

when A is continuous or binary, respectively. In this single-IV setting, we also implement the two-

stage least squares (TSLS) estimator, which is the most common approach used in practice. The

simulation results based on 1000 replicates at sample sizes n = 500 and n = 1000 are summarized

in Tables 1 and 2, for continuous and binary exposure respectively. When Assumptions 2 and 3

both hold, TSLS and MR GENIUS have small bias regardless of sample size. Coverage of the

Wald-type 95% confidence interval (CI) for the causal parameter is also close to nominal level.

Efficiency of the estimators increases with IV strength. When the IV is invalid, TSLS is biased

and its 95% CI undercovers, while in accordance with theory MR GENIUS continues to have small

bias and correct coverage.

Multiple IVs

Here we generate i.i.d. Li = (Gi, Ui, Ai, Yi), i = 1, 2, ..., n, with pG = 10 IVs from:

Gij ∼ Bernoulli(p = 0.5), j = 1, 2, ..., pG

Yi ∼ N(αTGi + βAi + Ui, 1
2),

where Gi = (Gi1, Gi2, ..., GipG)T . For binary exposure,

εi ∼ truncated N(a = 0.2, b = 0.5, µ = 0.35, σ2 = 12),

Ui = φb
TGi + εi,

Ai ∼ Bernoulli

(
pi =

exp (γb
TGi)

1 + exp (γbTGi)
+ [Ui − E(U |Gi)]

)
,
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where εi is appropriately bounded to ensure that pi falls in the unit interval, and for continuous

exposure,

Ui = φc
TGi +N(0, 12),

Ai ∼ N
(
γc
TGi + Ui, |λ0 + λT1Gi|2

)
.

For binary exposure, IV strength is set to −0.15 for each entry of γb, while in the continuous

exposure case each entry of γc and λ1 is set identically to −2 and 0.5 respectively. We first

generate an ideal scenario in which all 10 IVs are valid and satisfy Assumptions 1-3, next we

consider scenarios where the first three, six or all of the IVs are invalid. With three invalid IVs,

αT = −0.5 · (1, 1, 1, 0, ..., 0) and φTc = −0.25 · (1, 1, 1, 0, ..., 0), φTb = −0.05 · (1, 1, 1, 0, ..., 0) when

Assumption 3 or 2 is violated, respectively; with six invalid IVs, αT = −0.25(1, 1, 2, 2, 4, 4, 0, ..., 0)

and φTc = −0.25 · (0.5, 0.5, 1, 1, 2, 2, 0, ..., 0), φTb = −0.01 · (1, 1, 3, 3, 5, 5, 0, ..., 0) accordingly. When

all IVs are invalid, αT = −0.5 · (1, 1, ..., 1) and φTc = −0.25 · (1, 1, ..., 1), φTb = −0.02 · (1, 1, ..., 1).

The setting with three invalid IVs investigates the condition in which fewer than 50% of the IVs

are invalid (Kang et al, 2016; Windmeijer et al, 2016); in the setting with six invalid IVs this

condition is violated, but the set of valid IVs form the largest group according to the plurality rule

(Guo et al, 2017).

MR GENIUS is implemented as the solution to (12) with optimal weight; the more efficient

version of MR GENIUS as described in section 5.4 is also implemented. MR-Egger regression

estimation, TSLS (which assumes all IVs are valid) and sisVIVE are implemented using the R

packages MendelianRandomization, AER and sisVIVE (Yavorska and Burgess, 2017; Kleiber and

Zeileis, 2008; Kang, 2017) respectively, under default settings. The adaptive Lasso and TSHT

estimation methods are implemented as described in Windmeijer et al (2016) and Guo et al (2017)

respectively. We also implement post-adaptive Lasso which uses adaptive Lasso for the purpose of

selecting valid IVs but not in the process of estimating the causal effect. We also implement the

oracle TSLS which assumes the set of valid IVs to be known a priori.

Simulation results based on 1000 replications for sample sizes of n = 500, 2000 and 10, 000 with

continuous exposure are presented in Tables 3 and 4. When there are zero or three invalid IVs
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(majority rule holds), the sisVIVE, adaptive, post-adaptive Lasso and TSHT estimators exhibit

small bias which becomes negligible at sample size of n = 10, 000. Empirical coverage of CIs is

close to nominal level once n ≥ 2000 for adaptive/post-adaptive Lasso and TSHT. Adaptive Lasso

and TSHT on average correctly identifies invalid IVs, while sisVIVE on average selects four IVs

as invalid when there are three in truth (see Table 7 for results on IV selection). The naive TSLS

estimator performs well in terms of bias and coverage only when all IVs are valid; as expected,

it is biased and its 95% CI severely undercovers in all other settings with at least one invalid IV.

Post-adaptive Lasso is generally less biased in finite sample than adaptive Lasso. Post-adaptive

Lasso and oracle TSLS perform similarly in terms of bias and efficiency once n ≥ 2000 (when

the majority rule holds), in agreement with theory since they are asymptotically equivalent under

these settings. MR GENIUS also has small bias at all sample sizes and its bias becomes negligible

at n = 10000, with adequate 95% CI empirical coverage at n ≥ 500. MR GENIUS is generally less

efficient than the other estimators when the majority rule holds, except for MR-Egger. MR-Egger

exhibits some bias, but its 95% CI coverage is adequate when there are no invalid IVs, with slight

undercoverage when there are three invalid IVs. Since MR-Egger assumes a two-sample analysis

whereby association coefficients relating IVs and exposure/outcome are uncorrelated, the observed

bias may be a reflection of the single sample simulation setting.

When six IVs are invalid and the majority rule is violated, sisVIVE and adaptive/post-adaptive

Lasso are significantly biased, with no improvement as sample size increases. There is also increas-

ing undercoverage of 95% CI as sample size increases for post-adaptive Lasso. On average, sisVIVE

and adaptive Lasso select eight IVs as invalid when only six are actually invalid, and fails to select

any IV as invalid when all are. TSHT is also biased and its 95% CI undercovers when all IVs are

invalid (with none of the IVs selected as invalid on average in this case); however when six IVs are

invalid, the plurality rule holds and its bias diminishes at n = 10, 000. Adequate 95% CI coverage

is also achieved at n = 10, 000, with the right number of IVs selected as invalid on average. The

efficiency of estimators generally decreases with increasing number of invalid IVs, except when all

the IVs are invalid. The bias of MR GENIUS improves with increasing sample size when six or

all IVs are invalid; adequate 95% CI coverage is achieved at n ≥ 2000 with six invalid IVs, and
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at n = 10, 000 with all IVs invalid. Efficiency comparisons MR GENIUS is again generally less

efficient than TSHT when six IVs are invalid, however it outperforms MR-Egger even when the

InSIDE assumption holds (Bowden et al, 2015). However, MR-Egger is generally more biased,

with severe 95% CI undercoverage, when the invalid IVs violate both Assumptions 2 and 3, which

corresponds to a violation of the InSIDE assumption. The efficient MR GENIUS is generally less

biased and more efficient compared to MR GENIUS, especially when more IVs are invalid. The

estimated asymptotic relative efficiency of efficient MR GENIUS to MR GENIUS is approximately

0.5 with 10 invalid IVs (which violate both assumptions 2 and 3); the 95% CIs based on efficient

MR GENIUS also attain correct coverage across all the scenarios at n ≥ 2000.

Simulation results with a binary exposure are summarized in Tables 5 and 6; the conclusions

are mostly qualitatively similar to those in the continuous exposure setting. However, when there

are six invalid IVs, TSHT is biased and its 95% CI undercovers, with no improvement as sample

size increases. While the exposure is generated under a logit model (upon marginalizing over U),

TSHT assumes a linear model which is misspecified in this simulation study. In addition, because

the exposure is binary, most if not all IVs are weakly associated with A on the additive scale.

Weak IVs may not be selected as valid IVs in the first thresholding step of TSHT (the number of

IVs selected as relevant is nine on average at n = 10, 000); even if they are included, their inclusion

may lead to incorrect inference in the subsequent estimation step (the number of IVs selected as

relevant but invalid is close to three on average, when six are valid at n = 10, 000). MR-Egger

appears to be less biased compared to the continuous exposure setting; this may be due to smaller

values of φb used for binary exposure setting, so that violation of the InSIDE assumption is less

severe.

7 Data Application

The prevalence of type 2 diabetes mellitus is increasing across all age groups in the United States

possibly as a consequence of the obesity epidemic. Many epidemiological studies have suggested

that individuals with type 2 diabetes mellitus (T2D) are at higher risk of various memory im-

pairments which are highly associated with dementia and Alzheimer’s Disease. However, such
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Table 1: Monte Carlo results of MR GENIUS and TSLS estimation of β0 = 0.5 with continuous
exposure and single IV at two different strengths (λ1 = 1, 5). The first and second rows’ results
for each estimator correspond to sample sizes n = 500, 1000 respectively.

|λ1| = 1 |λ1| = 5
TTT† TTF TFF TTT TTF TFF

Median absolute value of bias

MR GENIUS 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

TSLS 0.00 0.50 0.83 0.00 0.51 0.84
0.00 0.50 0.83 0.00 0.50 0.83

Median estimated SD

MR GENIUS 0.08 0.08 0.08 0.02 0.02 0.02
0.06 0.06 0.06 0.01 0.01 0.01

TSLS 0.13 0.12 0.05 0.14 0.22 0.11
0.09 0.09 0.03 0.09 0.15 0.08

Monte Carlo SD‡

MR GENIUS 0.08 0.08 0.08 0.02 0.02 0.02
0.06 0.06 0.06 0.01 0.01 0.01

TSLS 0.12 0.13 0.05 0.13 0.25 0.11
0.09 0.09 0.04 0.09 0.15 0.08

95% Wald-type CI coverage

MR GENIUS 95.3 95.3 95.3 94.8 94.8 94.8
94.8 94.8 94.8 95.2 95.2 95.2

TSLS 95.3 2.7 0.0 99.0 36.9 0.0
95.9 0.1 0.0 97.7 5.8 0.0

†: TTT: IV assumptions (1), (2) and (3) hold; TTF: IV assumption (3) (exclusion restriction) does not hold; TFF:

both IV assumptions (2) and (3) (IV independence) do not hold.
‡: Robust normal-consistent estimate obtained from dividing the interquartile range of causal effect estimates by

1.349.
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Table 2: Monte Carlo results of MR GENIUS and TSLS estimation of β0 = 0.5 with binary
exposure and single IV at two different strengths (γb = −0.5,−1). The first and second rows’
results for each estimator correspond to sample sizes n = 500, 1000 respectively.

|γb| = 0.5 |γb| = 1
TTT† TTF TFF TTT TTF TFF

Median absolute value of bias

MR GENIUS 0.01 0.01 0.01 0.03 0.03 0.01
0.01 0.01 0.00 0.01 0.01 0.00

TSLS 0.00 4.05 2.16 0.00 2.17 1.61
0.02 4.07 2.18 0.01 2.18 1.61

Median estimated SD

MR GENIUS 0.54 0.54 0.33 0.36 0.36 0.34
0.37 0.37 0.23 0.25 0.25 0.24

TSLS 0.77 1.39 0.38 0.40 0.53 0.25
0.53 0.97 0.27 0.28 0.37 0.18

Monte Carlo SD‡

MR GENIUS 0.54 0.54 0.32 0.35 0.35 0.34
0.39 0.39 0.22 0.25 0.25 0.24

TSLS 0.79 1.37 0.37 0.41 0.52 0.27
0.55 1.06 0.28 0.29 0.37 0.18

95% Wald-type CI coverage

MR GENIUS 98.7 98.7 96.0 95.2 95.2 95.8
96.9 96.9 96.4 95.9 95.9 94.9

TSLS 98.6 9.7 0.0 95.2 0.0 0.0
96.4 0.3 0.0 94.6 0.0 0.0

†: TTT: IV assumptions (1), (2) and (3) hold; TTF: IV assumption (3) (exclusion restriction) does not hold; TFF:

both IV assumptions (2) and (3) (IV independence) do not hold.
‡: Robust normal-consistent estimate obtained from dividing the interquartile range of causal effect estimates by

1.349.
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Table 3: Median absolute value of bias and Monte Carlo standard error in estimation of β0 = 0.5 with continuous

exposure and pG = 10 IVs. All entries are original values multiplied by 100. The three rows of results for each

estimator correspond to sample sizes of n = 500, n = 2000 and n = 10, 000 respectively.

TTF† TFF

#invalid IV 0 3 6 10 3 6 10

Median absolute value of bias

MR GENIUS 0.9 1.5 2.5 3.4 2.0 3.8 5.1
0.1 0.2 0.6 0.8 0.3 0.9 1.2
0.1 0.1 0.2 0.3 0.1 0.2 0.3

Efficient MR GENIUS 1.0 1.2 1.4 1.6 1.3 1.7 2.0
0.1 0.2 0.2 0.3 0.2 0.3 0.3
0.1 0.1 0.1 0.1 0.1 0.1 0.2

TSLS 0.2 7.6 17.3 24.6 11.7 25.8 32.9
0.1 7.5 17.4 24.9 11.7 26.1 33.2
0.0 7.5 17.5 25.0 11.7 26.1 33.3

Oracle TSLS 0.2 0.4 0.2 0.4
- 0.1 0.1 - 0.1 0.1 -

0.0 0.0 0.0 0.0
sisVIVE 0.2 6.0 13.0 24.6 6.4 19.6 32.9

0.1 2.9 12.5 24.9 3.2 19.0 33.2
0.0 1.2 12.5 25.0 1.4 18.2 33.3

ALasso 0.2 5.2 11.6 24.6 5.0 15.8 32.8
0.1 2.2 10.4 24.9 2.4 16.3 33.2
0.0 0.9 12.2 25.0 1.0 17.6 33.3

post-ALasso 0.3 2.2 9.8 24.5 0.5 15.1 32.8
0.1 0.2 11.5 24.9 0.1 17.5 33.2
0.0 0.0 12.5 25.0 0.0 17.7 33.3

TSHT 0.2 5.7 9.8 24.6 1.9 14.1 32.8
0.1 0.1 6.7 24.9 0.1 4.6 33.2
0.0 0.0 0.0 25.0 0.0 0.0 33.3

MR-Egger 4.9 7.9 10.3 14.2 34.0 71.8 18.9
4.5 8.5 14.1 13.9 85.9 151.9 18.3
4.8 4.8 11.1 14.2 196.8 252.3 18.9

Monte Carlo SD‡

MR GENIUS 4.4 4.4 4.7 4.6 4.7 5.1 5.0
2.3 2.4 2.5 2.6 2.5 3.0 3.1
1.0 1.1 1.2 1.2 1.1 1.3 1.4

Efficient MR GENIUS 4.6 4.8 4.8 4.8 4.7 4.8 4.8
2.3 2.3 2.4 2.4 2.3 2.4 2.3
1.0 1.0 1.0 1.0 1.0 1.0 1.0

TSLS 1.9 2.0 2.2 2.2 2.1 2.4 2.2
1.0 1.1 1.2 1.1 1.1 1.2 1.1
0.5 0.5 0.5 0.5 0.5 0.6 0.5

Oracle TSLS 2.4 3.1 2.4 3.1
- 1.2 1.6 - 1.2 1.6 -

0.5 0.7 0.5 0.7
sisVIVE 1.9 2.3 2.8 2.2 2.3 3.9 2.2

1.0 1.3 2.3 1.1 1.3 2.4 1.1
0.5 0.6 1.0 0.5 0.6 1.0 0.5

ALasso 1.9 2.5 3.2 2.2 2.3 4.8 2.2
1.0 1.2 3.7 1.1 1.2 3.5 1.1
0.5 0.6 0.9 0.5 0.6 1.0 0.5

post-ALasso 2.0 4.0 4.7 2.2 2.6 6.9 2.2
1.0 1.3 4.5 1.1 1.2 2.5 1.1
0.5 0.5 1.0 0.5 0.5 0.9 0.5

TSHT 1.9 3.0 3.1 2.2 4.8 4.1 2.2
1.0 1.2 3.0 1.1 1.2 3.6 1.1
0.5 0.5 0.8 0.5 0.5 0.7 0.5

MR-Egger 11.0 25.3 38.2 11.5 28.8 36.1 11.5
9.9 45.5 74.5 10.1 34.4 35.9 10.9

11.0 97.3 158.4 11.0 36.2 32.2 10.7

†: For the invalid IVs, TTF: IV assumption (3) (exclusion restriction) does not hold; TFF: both IV assumptions (2)

and (3) (IV independence) do not hold.
‡: Robust normal-consistent estimate obtained from dividing the interquartile range of causal effect estimates by

1.349.
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Table 4: Ratio of estimated to Monte Carlo standard error and empirical 95% Wald-type CI coverage in estimation

of β0 = 0.5 with continuous exposure and pG = 10 IVs. The three rows of results for each estimator correspond to

sample sizes of n = 500, n = 2000 and n = 10, 000 respectively. Only point estimation is implemented for sisVIVE

and adaptive Lasso, hence their results are not available.

TTF† TFF

#invalid IV 0 3 6 10 3 6 10

Median estimated standard error / Monte Carlo SD

MR GENIUS 1.1 1.1 1.1 1.1 1.1 1.1 1.1
1.0 1.0 1.1 1.1 1.0 1.0 1.1
1.0 1.0 1.0 1.0 1.1 1.1 1.1

Efficient MR GENIUS 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0

TSLS 1.0 1.0 1.0 1.0 1.0 0.9 1.0
1.0 0.9 0.9 1.0 0.9 0.9 1.0
1.0 1.0 0.9 1.0 1.0 0.9 1.0

Oracle TSLS 1.0 1.0 1.0 1.0
- 1.0 1.0 - 1.0 1.0 -

1.0 1.0 1.0 1.0
post-ALasso 1.0 0.6 0.5 1.0 0.9 0.4 1.0

1.0 0.9 0.4 1.0 1.0 0.9 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0

TSHT 1.0 0.7 0.7 1.0 0.5 0.6 1.0
1.0 1.0 0.6 1.0 1.0 0.5 1.0
1.0 1.0 0.9 1.0 1.0 1.0 1.0

MR-Egger 2.0 1.0 0.9 2.2 1.0 1.1 2.4
2.2 0.9 0.9 2.5 1.3 1.3 2.5
2.0 0.9 0.9 2.3 1.3 1.1 2.5

Empirical 95% Wald-type CI coverage

MR GENIUS 96.1 94.5 92.2 88.5 93.9 90.1 82.6
96.4 96.2 94.6 93.2 95.9 93.6 91.2
95.2 95.6 95.2 95.0 95.4 94.4 94.4

Efficient MR GENIUS 94.4 93.8 92.6 91.9 92.8 92.2 90.7
96.0 95.8 95.6 95.5 95.7 95.3 95.0
95.1 95.1 95.2 95.2 95.2 95.1 95.0

TSLS 94.4 4.5 0.0 0.0 0.0 0.0 0.0
95.3 0.0 0.0 0.0 0.0 0.0 0.0
94.1 0.0 0.0 0.0 0.0 0.0 0.0

Oracle TSLS 94.6 94.6 94.6 94.6
- 94.9 94.6 - 94.9 94.6 -

95.0 95.8 95.0 95.8
post-ALasso 94.2 65.9 13.4 0.0 89.9 4.8 0.0

95.3 93.9 1.1 0.0 94.8 0.0 0.0
93.9 94.8 0.0 0.0 94.8 0.0 0.0

TSHT 94.6 28.9 4.3 0.0 63.2 3.2 0.0
95.4 94.4 15.4 0.0 94.8 49.2 0.0
94.4 95.2 95.2 0.0 95.2 94.8 0.0

MR-Egger 100.0 94.9 88.4 99.9 73.2 53.7 99.7
100.0 91.8 90.4 99.8 49.5 15.8 99.7
100.0 91.2 92.1 99.8 4.3 0.0 99.8

†: For the invalid IVs, TTF: IV assumption (3) (exclusion restriction) does not hold; TFF: both IV assumptions (2)

and (3) (IV independence) do not hold.
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Table 5: Median absolute value of bias and Monte Carlo standard error in estimation of β0 = 0.5 with binary

exposure and pG = 10 IVs. All entries are original values multiplied by 100. The three rows of results for each

estimator correspond to sample sizes of n = 500, n = 2000 and n = 10, 000 respectively.

TTF† TFF

#invalid IV 0 3 6 10 3 6 10

Median absolute value of bias

MR GENIUS 0.7 14.6 28.2 35.8 16.3 29.6 36.6
0.4 6.3 12.4 15.1 7.0 13.3 16.4
0.4 0.9 2.7 3.3 1.0 2.8 3.7

Efficient MR GENIUS 2.3 1.6 1.0 0.1 1.2 0.9 0.2
1.0 0.9 0.0 0.8 0.8 0.2 0.9
0.3 0.4 0.5 0.7 0.4 0.6 0.7

TSLS 1.0 177.9 433.4 616.8 197.0 455.3 642.0
0.1 328.3 788.9 1, 112.9 361 828.2 1, 156.9
0.6 431.6 1, 006.4 1, 436.1 474.1 1, 057.7 1, 493.4

Oracle TSLS 3.7 0.6 3.7 0.6
- 0.4 1.2 - 0.4 1.2 -

0.4 0.7 0.4 0.7
sisVIVE 1.0 82.9 302.1 616.2 81.9 311.0 642.0

0.2 75.5 568.6 1, 111.1 74.5 590.2 1, 156.7
0.6 46.9 716.3 1, 435.6 46.8 747.8 1, 492.7

ALasso 0.9 56.0 217.1 616.2 54.8 221.0 641.8
0.1 45.7 468.4 1, 112.2 44.7 482.7 1, 156.7
0.7 29.2 585.1 1, 434.5 29.1 611.0 1, 492.0

post-ALasso 0.8 13.1 180.0 615.8 11.8 181.7 641.3
1.0 0.8 395.0 1, 111.1 0.4 408.8 1, 156.0
0.7 0.2 558.7 1, 432.7 0.2 579.8 1, 490.7

TSHT 1.6 97.0 322.2 514.1 97.6 340.3 531.3
2.4 15.1 270.0 874.3 14.8 273.2 909.9
0.4 0.2 408.3 1, 401.2 0.2 424.8 1, 456.9

MR-Egger 8.8 165.1 339.3 447.4 182.5 356.8 463.8
2.4 133.6 333.8 171.7 148.0 353.4 175.6
0.4 10.8 45.2 17.9 15.1 47.7 17.7

Monte Carlo SD‡

MR GENIUS 69.3 76.1 91.4 88.5 76.9 93.4 89.7
48.2 54.5 65.9 69.1 55.3 66.6 71.0
26.3 28.7 35.0 35.9 29.5 35.5 36.4

Efficient MR GENIUS 67.9 68.4 67.8 67.4 68.4 67.7 67.1
48.4 48.2 48.2 48.7 48.2 48.3 48.8
26.1 26.1 26.3 26.1 26.1 26.3 26.1

TSLS 52.9 141.8 240.0 186.0 151.7 253.0 192.9
36.0 131.0 204.0 185.1 143.9 212.8 191.3
18.1 75.8 129.8 119.1 82.9 136.3 123.3

Oracle TSLS 65.0 89.0 65.0 89.0
- 46.8 60.7 - 46.8 60.7 -

22.3 29.2 22.3 29.2
sisVIVE 52.8 101.9 231.9 187.2 101.9 244.9 195.3

36.0 59.7 266.6 187.6 59.7 277.1 192.5
18.1 24.5 172.2 121.7 24.6 182.4 126.2

ALasso 52.8 70.6 210.1 186.1 65.3 219.7 193.5
36.0 38.9 261.4 184.5 38.1 285.4 191.6
18.0 22.0 170.0 121.4 21.9 186.4 125.9

post-ALasso 52.3 75.6 206.5 185.5 70.0 214.2 191.7
35.3 47.8 240.4 187.5 47.9 259.6 193.2
18.0 22.3 186.2 123.4 22.3 204.7 128.7

TSHT 64.2 221.6 391.0 193.2 239.5 414.7 201.7
48.4 69.6 463.9 125.2 68.5 498.4 128.8
18.1 22.5 222.5 115.8 22.5 236.4 119.8

MR-Egger 101.2 330.2 559.7 409.1 363.6 590.7 427.1
78.4 508.6 898.7 590.6 558.5 947.6 614.5
73.8 1, 055.8 1, 608.0 94.8 1, 161.4 1, 693.6 95.6

†: For the invalid IVs, TTF: IV assumption (3) (exclusion restriction) does not hold; TFF: both IV assumptions (2)

and (3) (IV independence) do not hold.
‡: Robust normal-consistent estimate obtained from dividing the interquartile range of causal effect estimates by

1.349.
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Table 6: Ratio of estimated to Monte Carlo standard error and empirical 95% Wald-type CI coverage in estimation

of β0 = 0.5 with binary exposure and pG = 10 IVs. The three rows of results for each estimator correspond to

sample sizes of n = 500, n = 2000 and n = 10, 000 respectively. Only point estimation is implemented for sisVIVE

and adaptive Lasso, hence their results are not available.

TTF† TFF

#invalid IV 0 3 6 10 3 6 10

Median estimated standard error / Monte Carlo SD

MR GENIUS 1.2 1.2 1.2 1.2 1.2 1.2 1.2
1.1 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0

Efficient MR GENIUS 1.2 1.2 1.2 1.2 1.2 1.2 1.2
1.1 1.1 1.1 1.1 1.1 1.1 1.1
1.0 1.0 1.0 1.0 1.0 1.0 1.0

TSLS 1.1 0.5 0.5 0.9 0.5 0.5 0.9
1.0 0.5 0.7 1.0 0.5 0.7 1.0
1.1 0.6 0.7 1.1 0.5 0.7 1.1

Oracle TSLS 1.1 1.1 1.1 1.1
- 1.0 1.0 - 1.0 1.0 -

1.0 1.0 1.0 1.0
post-ALasso 1.1 1.0 0.5 0.9 1.0 0.5 0.9

1.1 1.0 0.4 1.0 1.0 0.4 1.0
1.1 1.0 0.4 1.0 1.0 0.4 1.0

TSHT 1.1 0.4 0.3 1.0 0.4 0.3 1.0
1.0 0.8 0.2 1.6 0.8 0.2 1.6
1.1 1.0 0.2 1.1 1.0 0.2 1.1

MR-Egger 1.1 1.0 1.0 1.1 1.0 1.0 1.1
1.1 0.9 0.9 0.3 0.9 0.9 0.3
1.1 0.9 0.9 1.1 0.9 0.9 1.1

Empirical 95% Wald-type CI coverage

MR GENIUS 99.5 99.6 98.9 97.5 99.5 98.9 97.6
97.5 97.6 96.6 96.9 97.7 96.6 97.1
95.9 95.9 95.4 94.3 95.5 95.6 94.5

Efficient MR GENIUS 99.8 99.8 99.8 99.9 99.8 99.8 99.9
97.5 97.4 97.6 97.7 97.4 97.6 97.7
96.2 96.2 96.2 96.2 96.2 96.2 96.2

TSLS 97.2 36.3 12.1 3.4 33.0 11.8 3.4
95.5 2.7 0.2 0.0 2.5 0.2 0.0
95.5 0.0 0.0 0.0 0.0 0.0 0.0

Oracle TSLS 98.4 99.4 98.4 99.4
- 97.1 98.1 - 97.1 98.1 -

94.8 95.4 94.8 95.4
post-ALasso 97.6 93.0 57.7 3.3 94.3 57.7 3.3

95.9 96.8 21.1 0.0 96.9 21.3 0.0
95.4 94.7 0.5 0.0 94.7 0.1 0.0

TSHT 98.9 57.6 36.9 4.1 57.9 36.4 3.4
97.4 83.6 38.7 0.1 84.2 39.1 0.0
94.9 95.0 5.7 0.0 95.0 5.6 0.0

MR-Egger 97.2 88.7 86.4 85.1 88.3 86.5 85.0
96.4 90.1 86.6 84.2 90.0 86.7 84.2
96.3 92.2 91.7 96.7 92.1 91.5 96.6

†: For the invalid IVs, TTF: IV assumption (3) (exclusion restriction) does not hold; TFF: both IV assumptions (2)

and (3) (IV independence) do not hold.
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Table 7: Average number of IVs selected as invalid by adaptive Lasso and sisVIVE, and average number of

IVs selected as relevant (Ŝ) and relevant but invalid (Î) by TSHT. The three rows of results for each estimator

correspond to sample sizes of n = 500, n = 2000 and n = 10, 000 respectively.

TTF† TFF

#invalid IV 0 3 6 10 3 6 10

Continuous exposure

ALasso 0.0 2.3 3.9 0.0 3.1 5.3 0.0
0.0 3.1 6.9 0.0 3.0 7.7 0.0
0.0 3.0 8.0 0.0 3.0 8.1 0.0

sisVIVE 0.0 2.6 5.6 0.0 4.1 7.1 0.0
0.0 3.9 8.0 0.0 4.2 8.2 0.0
0.0 4.0 8.1 0.0 4.2 8.2 0.0

TSHT (Î) 0.0 0.8 2.1 0.0 2.4 3.1 0.0
0.0 3.0 6.8 0.0 3.0 6.9 0.0
0.0 3.0 6.3 0.0 3.0 6.3 0.0

TSHT (Ŝ) 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0

Binary exposure

ALasso 0.1 3.3 4.3 0.2 3.3 4.4 0.2
0.0 3.1 4.5 0.1 3.1 4.5 0.1
0.0 3.0 5.3 0.1 3.0 5.4 0.1

sisVIVE 0.0 3.6 4.6 0.2 3.7 4.6 0.2
0.0 4.2 5.4 0.3 4.2 5.4 0.3
0.0 4.2 7.7 0.3 4.1 7.7 0.2

TSHT (V̂ ) 0.0 0.4 0.3 0.0 0.4 0.3 0.0
0.0 0.7 0.7 0.0 0.7 0.7 0.0
0.0 2.7 2.8 0.0 2.7 2.8 0.0

TSHT (Ŝ) 5.1 5.1 5.1 5.1 5.1 5.1 5.1
3.2 3.2 3.2 3.2 3.2 3.2 3.2
9.1 9.1 9.1 9.1 9.1 9.1 9.1

†: For the invalid IVs, TTF: IV assumption (3) (exclusion restriction) does not hold; TFF: both IV assumptions (2)

and (3) (IV independence) do not hold.
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observational studies are well known to be vulnerable to confounding bias. Therefore, obtaining

an unbiased estimate of the association between diabetes status and cognitive functioning is key

to predicting the future health burden in the population and to evaluating the effectiveness of

possible public health interventions.

In order to illustrate the proposed MR approach, we used data from the Health and Retirement

Study, a cohort initiated in 1992 with repeated assessments every 2 years. We used externally

validated genetic predictors of type 2 diabetes as IVs to estimate effects on memory functioning

among HRS participants. The Health and Retirement Study is a well-documented nationally

representative sample of persons aged 50 years or older and their spouses (Juster and Suzman,1995).

Genotype data were collected on a subset of respondents in 2006 and 2008. Genotyping was

completed on the Illumina Omni-2.5 chip platform and imputed using the 1000G phase 1 reference

panel and filed with the Database for Genotypes and Phenotypes (dbGaP, study accession number:

phs000428.v1.p1) in April 2012. Exact information on the process performed for quality control

is available via Health and Retirement Study and dbGaP21 (Mailman, 2007). From the 12,123

participants for whom genotype data was available, we restricted the sample to 7,738 non-hispanic

white persons with valid self-reported diabetes status at baseline and memory assessment score

two years later. Self-reported diabetes in the Health and Retirement Study has been shown to

have 87% sensitivity and 97% specificity for Hemoglobin A1c defined diabetes among non-Hispanic

white HRS participants (White et al, 2014). Memory was assessed by immediate and delayed recall

of a 10-word list plus the proxy assessments for severely impaired individuals. The validity and

reliability of these measures have been documented elsewhere (Ofstedal et al. 2005; Wu et al.

2012).

Standard MR relies on the assumption that all 39 SNPs affect a person’s memory score at follow-

up only through baseline diabetes status which is unlikely, even if all 39 SNPs only affect memory

through diabetes. This is because there is likely to be a nonnegligible direct effect from one of the

SNPs to diabetes incidence among persons who are diabetes-free at baseline. This would constitute

a violation of the exclusion restriction and therefore would invalidate a standard MR analysis for

assessing effects of baseline diabetes on memory score at follow-up. Nonetheless, although possibly
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positively biased under the alternative hypothesis, the two-stage regression estimator could still be

interpreted as a valid test of the null hypothesis of no association between diabetes disease (whether

baseline or time-updated) and memory score. It may also be true that unknown pleiotropic effects

of at least one of the SNPs exists through a pathway not involving diabetes, which would constitute

an even more serious violation, as it would also invalidate our MR analysis as a valid test of a

causal association between diabetes and memory functioning. In light of these possible limitations

a more robust MR analysis is naturally of interest.

We used GENIUS to estimate the relationship between diabetes status (coded 1 for diabetic and

0 otherwise) and memory score. As genetic instruments, we used 39 independent single nucleotide

polymorphisms previously established to be significantly associated with diabetes (Morris et al

2012).

We first performed an observational analysis, which entailed fitting a linear model with memory

score as outcome, diabetes status as exposure, adjusting for age at cognitive assessment and

sex. Next, we implemented an MR analysis of the effects of diabetes status on cognitive score

incorporating all 39 SNPs as candidate IV using TSLS, sisVIVE, adaptive LASSO, TSHT, MR

Egger, and the proposed GENIUS approaches.

Participants were, on average, 68.1 years old (standard deviation [SD]=10.1 years old) at base-

line and 1282 of them self-reported that they had diabetes (16.7%). The 39 SNPs jointly included

in a first-stage logistic regression model to predict diabetes status explained 3.5% (Nagelkerke R2)

of the variation in diabetes in the study sample, and were strongly associated as a set with the

endogenous variable (Likelihood ratio test Chi-square statistic = 162 with 39 degrees of freedom,

which corresponds to a significance value <0.001). This provides fairly compelling evidence that

the IVs are not only jointly relevant but also satisfy the first stage heteroscedasticity condition

required by MR GENIUS.

Table 8 shows results from both observational and IV analyses. In the observational analy-

sis, being diabetic was associated with an average decrease of 0.04 points (s.e.=0.02) in memory

score. MR GENIUS suggests a notably larger diabetes-associated decrease in average memory

score equal to 0.18 points (s.e.=0.14). The efficient MR GENIUS produced a similar decrease of
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Table 8: Estimation of βt2d-ms, the association between type 2 diabetes and memory score.

β̂t2d-ms SE 95% CI # of instruments
selected as invalid

Observational analysis

−0.04 0.02 (−0.08, 0.001) -
IV analyses

MR GENIUS −0.18 0.14 (−0.45, 0.08) -
Efficient MR GENIUS −0.16 0.14 (−0.43, 0.11) -

MR-Egger 0.25 0.35 (−0.43, 0.93) -
sisVIVE 0.48 - - 0

TSLS 0.48 0.22 ( 0.05, 0.90) -
Adaptive Lasso 0.48 - - 0

Post-adaptive Lasso 0.48 0.22 ( 0.05, 0.90) 0

TSHT 0.45 0.28 (−0.10, 1.00)
0 (out of 6

selected as relevant)

0.16 points (s.e.=0.14). MR-Egger produced an estimate suggesting a protective effect of diabetes

(beta=0.25, s.e.=0.35) and so did TSLS (beta=0.48, s.e.=0.22), sisVIVE (beta=0.48) and adap-

tive lasso (beta=0.48, s.e.=0.22) which gave the same point estimate, while TSHT (beta=0.45,

s.e.=0.28) gave a slightly smaller but still protective estimate. TSLS, sisVIVE and adaptive lasso

inferences coincide exactly in this application because all 39 candidate SNPs ended up being se-

lected as ”valid” by sisVIVE and adaptive lasso. In contrast, TSHT selected six candidate IVs

only as both valid and relevant which were therefore used to estimate the causal effect. In conclu-

sion, both the observational analysis and MR GENIUS found some evidence of a harmful effect of

diabetes on memory score, which supports the prevailing hypothesis in the diabetes literature. In

contrast, all other (robust and non-robust) MR methods suggest a protective effect of diabetes on

memory, a hypothesis with little if any scientific basis in the diabetes literature.

8 Concluding Remarks

As MR gains popularity as a promising strategy to address confounding bias in observational stud-

ies, there clearly also is a growing need for robust MR methodology that relax the standard IV
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assumptions. Although a variety of methods have recently been proposed, we have argued that MR

GENIUS stands out as an effective approach with clear advantages over other existing methods.

First, the approach bypasses the overly stringent orthogonality condition of MR-Egger. Further-

more, whereas existing methods are technically only consistent either as the number of candidate

IVs goes to infinity (MR Egger), or as a majority (adaptive lasso) or a plurality (TSTH) of IVs

are valid, MR GENIUS is guaranteed to be consistent without even one valid IV. Furthermore,

as we have shown, MR GENIUS equally applies with continuous or binary outcome, continous or

binary exposure and IV, multiple IVs, auxiliary pre-IV covariates and under both prospective and

retrospective sampling designs. Finally, whereas adaptive lasso and TSTH require one or more

model selection steps therefore compromising inferences that are uniform over the entire model of

interest, MR GENIUS does not involve model selection, therefore bypassing this difficulty.

MR GENIUS also stands out from other methods because it does not require modeling the

effects of invalid IVs on Y for consistent estimation of the effect of exposure, therefore allow-

ing main effects and interactions among components of G to remain unrestricted in the out-

come model. In the event of an interaction between A and G, such that equation (1) does

not hold, it is straightforward to show that MR GENUIS estimates a certain weighted aver-

age of the causal effect. For instance, in the case of binary A, µ = E (β (G)w (G)) where

β (G) = E (Y |A = 1, G) − E (Y |A = 0, G) is the causal effect within levels of G and w(G) =

(G− E(G)) var(A|G)×E{(G− E(G)) var(A|G)}−1; or equivalently µ = β (0) + (β (1)− β (0))×

var(A|G = 1)var(G)× E{(G− E(G)) var(A|G)}−1. Therefore, MR GENUIS is guaranteed to be

consistent under the null hypothesis of no conditional effect of exposure within levels of G provided

there is no interaction between U and G in the outcome model. An R package which implements

MR GENIUS is available at github.com/bluosun/MR-GENIUS.

In closing, we acknowledge certain limitations of MR GENIUS. First, the approach may be

vulnerable to weak IV bias which may occur if var(A|G) is weakly dependent on G, a possibility

that was largely ruled out in this paper. MR GENIUS is also currently not designed to handle high

dimensional IVs (where the number of IVs may exceed sample size). We plan to further develop

MR GENIUS to address all of these remaining challenges in future work.
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Appendix

A1. Proof of Lemma 5

Proof. We first note that for any additive function t(A,G) = t1(A) + t2(G),

E (t(A,G) {G− E(G|A = 0)} {A− E(A|G = 0)} exp {−ϕg (G)A}) = 0

because

E (t(A,G) {G− E(G|A = 0)} {A− E(A|G = 0)} exp {−ϕg (G)A})

=
∑
a,g

f(a, g)t(a, g) {g − E(G|A = 0)} {a− E(A|G = 0)} exp {−ϕg (g) a}

∝
∑
a,g

{f(a|g = 0)f(g|a = 0) exp {ϕg (g) a} t(a, g)

×{g − E(G|A = 0)} {a− E(A|G = 0)} exp {−ϕg (g) a}}

=
∑
a,g

f(a|g = 0)f(g|a = 0)t(a, g) {g − E(G|A = 0)} {a− E(A|G = 0)}

= 0

where we used the fact that

f(a, g) ∝ (a|g = 0)f(g|a = 0) exp {ϕg (g) a} ,

see for example Tchetgen Tchetgen et al (2009). It is straightforward to verify that the

θ = − ln

(
1− E [{G− E(G|A = 0)} {A− E(A|G = 0)}Y exp {−ϕg (G)A}]

E [{G− E(G|A = 0)} {A− E(A|G = 0)}AY exp {−ϕg (G)A}]

)
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Next,

E [{G− E(G|A = 0)} {A− E(A|G = 0)}Y exp {−ϕg (G)A}]Like

= E [{G− E(G|A = 0)} {A− E(A|G = 0)} exp (βaA)E (Y |A = 0, G, U) exp {−ϕg (G)A}]

= E [{G− E(G|A = 0)} {A− E(A|G = 0)} (exp (βa)− 1)AE (Y |A = 0, G, U) exp {−ϕg (G)A}]

+ E [{G− E(G|A = 0)} {A− E(A|G = 0)}E (Y |A = 0, G, U) exp {−ϕg (G)A}]

= (exp (βa)− 1)E [{G− E(G|A = 0)} {A− E(A|G = 0)}AE (Y |A = 0, G, U) exp {−ϕg (G)A}]

+ E [{G− E(G|A = 0)} {A− E(A|G = 0)} (E (Y |A = 0, G, U)− E (Y |A = 0, G = 0, U))

× exp {−ϕg (G)A}]

+ E [{G− E(G|A = 0)} {A− E(A|G = 0)} (E (Y |A = 0, G = 0, U)) exp {−ϕg (G)A}]

= (exp (βa)− 1)E [{G− E(G|A = 0)} {A− E(A|G = 0)}AE (Y |A = 0, G, U) exp {−ϕg (G)A}]

+ E [{G− E(G|A = 0)} {A− E(A|G = 0)} βg (G) exp {−ϕg (G)A}]︸ ︷︷ ︸
=0

+ E [{G− E(G|A = 0)} {A− E(A|G = 0)}E [E (Y |A = 0, G = 0, U) |A] exp {−ϕg (G)A}]︸ ︷︷ ︸
=0

Likewise

E [{G− E(G|A = 0)} {A− E(A|G = 0)}AY exp {−ϕg (G)A}]

= E [{G− E(G|A = 0)} {A− E(A|G = 0)} exp (βa)E(Y |A = 0, G, U)A exp {−ϕg (G)A}]

Therefore

E [{G− E(G|A = 0)} {A− E(A|G = 0)}Y exp {−ϕg (G)A}]
E [{G− E(G|A = 0)} {A− E(A|G = 0)}AY exp {−ϕg (G)A}]

=
(exp (βa)− 1)E [{G− E(G|A = 0)} {A− E(A|G = 0)}AE (Y |A = 0, G, U) exp {−ϕg (G)A}]

exp (βa)E [{G− E(G|A = 0)} {A− E(A|G = 0)}E(Y |A = 0, G, U)A exp {−ϕg (G)A}]

=
(exp (βa)− 1)

exp (βa)
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θ = − ln

(
1− (exp (βa)− 1)

exp (βa)

)
= − ln exp (−βa)

= βa

provided that

E [{G− E(G|A = 0)} {A− E(A|G = 0)}E(Y |A = 0, G, U)A exp {−ϕg (G)A}]

= E [{G− E(G|A = 0)} {A− E(A|G = 0)} βg (G)A exp {−ϕg (G)A}]

6= 0

which holds by assumption because γag(g) = (exp (βa)− 1) βg (G) .

A2. Variance estimation with single IV

The estimating equation in (6) involves the estimated nuisance parameters µ̂ = Pn(G) and ψ̂ of the

model E(A|G;ψ). To account for the effect of nuisance parameter estimation on the subsequent

estimation of βa, the empirical moment conditions are stacked to form

mθ(θ) = Pn


G− µ

(1, G)′ [A− E(A|G;ψ)]

(G− µ) [A− E(A|G;ψ)] (Y − βaA)

 , where θ = (µ, ψ, βa).

The estimation procedure satisfies the joint conditions mθ

(
θ̂
)

= 0. Without loss of generality,

we specify [A− E(A|G;ψ0)] as a main effects model with intercept. Assume standard regularity

conditions and expand θ̂ around the true parameter value θ0 yields

√
n
(
θ̂ − θ0

)
= −

[
∂mθ (θ)

∂θ

∣∣∣∣
θ∗

]−√
nmθ (θ0) , (18)
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where θ∗ is intermediate in value between θ̂ and θ0. It follows that

√
nmθ (θ0) =

√
nPn


G− µ0

(1, G)′ [A− E(A|G;ψ0)]

(G− µ0) [A− E(A|G;ψ0)] (Y − βa0A)


=
√
nPn {m̃(θ0)}

d→ N(0, E [m̃(θ0)m̃(θ0)
′]),

while for the ”bread” matrix

∂mθ (θ)

∂θ

∣∣∣∣
θ∗

= B∗(θ∗) =

Pn



−1 01×2 0

02×1 −

{
(1, G)′ ∂

∂ψ
E(A|G;ψ)

∣∣∣∣
ψ∗

}
02×1{

∂Û
∂µ

∣∣∣∣
µ∗
, ∂Û
∂ψ

∣∣∣∣
ψ∗
, ∂Û
∂βa

∣∣∣∣
β∗a

}


,

where

∂

∂ψ
E(A|G;ψ) =


(1, G), for continuous A

exp (1,G)ψ
1+exp (1,G)ψ

(
1− exp (1,G)ψ

1+exp (1,G′)ψ

)
(1, G), for binary A (logit model),

and

∂Û

∂µ
= −(A− E(A|G;ψ))(Y − βaA)

∂Û

∂ψ
= −(G− µ)(Y − βaA)

∂

∂ψ
E(A|G;ψ)

∂Û

∂βa
= −(G− µ)(A− E(A|G;ψ))A.
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Assume that the matrix B(θ0) is non-singular, where the entries in B(θ0) are the expected values

of the sample averages in B∗(θ∗), evaluated at θ0. Then B∗(θ∗)
p→ B(θ0), and

√
n
(
θ̂ − θ0

)
d→

N
(
0, B(θ0)

−E [m̃(θ0)m̃(θ0)
′]B(θ0)

−′) . (19)

Replacing the expected values in (19) with sample averages evaluated at θ̂ yields a consistent

estimator of the asymptotic covariance matrix. For inference about βa, one may report its Wald-

type 95% confidence interval constructed with the corresponding component of the estimated

covariance matrix for θ̂.

A3. Variance estimation with multiple IVs

Let β̂a be the solution to (12) with optimal weight Ŵopt = Pn
[
Û (βa) Û (βa)

′
]−

where T− de-

notes the generalized inverse of matrix T . The empirical moment conditions Û (βa) in (12) in-

volves the first stage estimates µ̂ = PnG as well as ψ̂ of the model E(A|G;ψ), which effects need

to be accounted for in the subsequent estimation of βa. Without loss of generality, we specify

[A− E(A|G;ψ0)] as a main effects model with intercept. If there are k IVs, let

mµ(µ) = Pn(G− µ)

mψ(ψ) = Pn(1, G′)′[A− E(A|G;ψ)]

be the k and (k+ 1) empirical moment conditions of obtaining
(
µ̂, ψ̂

)
respectively. For iterated or

continuously updated GMM procedures in which βa is estimated simultaneously with the optimal

weight, the first order condition of (12) is

mβa(βa) =

{
Pn

[
∂Û (βa)

∂βa

]}′
Ŵopt(βa)Pn

[
Û (βa)

]
+ op

(
n−1/2

)
.
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The two-stage procedure solution satisfies the joint moment conditions

mθ

(
θ̂
)

=
(
mµ (µ̂) ,mψ

(
ψ̂
)
,mβa

(
β̂a

))′
= 0, θ̂ =

(
µ̂, ψ̂, β̂a

)
. (20)

Assume standard regularity conditions and expand θ̂ around the true parameter value θ0 yields

√
n
(
θ̂ − θ0

)
= −

[
∂mθ (θ)

∂θ

∣∣∣∣
θ∗

]−√
nmθ (θ0) , (21)

where θ∗ is intermediate in value between θ̂ and θ0. Consider

√
nmθ (θ0) =I(2k+1)×(2k+1) 0(2k+1)×k

01×(2k+1)

{
Pn

[
∂Û(βa)
∂βa

∣∣∣∣
βa0

]}′
Ŵopt(βa0)

√nPn


G− µ0

(1, G′)′ [A− E(A|G;ψ0)]

U(βa0)

+ op(1).

Let

Λ = E

(
∂U (βa)

∂βa

∣∣∣∣
βa0

)
, Ω = E

[
U (βa0)U (βa0)

′] ,
so that {

Pn

[
∂Û (βa)

∂βa

∣∣∣∣
βa0

]}′
p→ Λ′, Ŵopt(βa0)

p→ Ω−.

Then

√
nPn


G− µ0

(1, G′)′ [A− E(A|G;ψ0)]

U(βa0)

 =
√
nPn {m̃(θ0)}

d→ N(0, E [m̃(θ0)m̃(θ0)
′]),
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and by Slutsky’s theorem

√
nmθ (θ0)

d→

I(2k+1)×(2k+1) 0(2k+1)×k

01×(2k+1) Λ′Ω−

N(0, E [m̃(θ0)m̃(θ0)
′])

= M(θ0)N(0, E [m̃(θ0)m̃(θ0)
′]).

Next consider the ”bread” matrix

∂mθ (θ)

∂θ

∣∣∣∣
θ∗

= B∗(θ∗) =

−Ik×k 0k×(k+1) 0k×1

0(k+1)×k −Pn

{
(1, G′)′ ∂

∂ψ
E(A|G;ψ)

∣∣∣∣
ψ∗

}
0(k+1)×1{

Pn

[
∂Û(βa)
∂βa

∣∣∣∣
β∗a

]}′
Ŵopt(β

∗
a)Pn

{
∂Û
∂µ

∣∣∣∣
µ∗
, ∂Û
∂ψ

∣∣∣∣
ψ∗
, ∂Û
∂βa

∣∣∣∣
β∗a

}
+ op(1)


,

where

∂

∂ψ
E(A|G;ψ) =


(1, G′), for continuous A

exp (1,G′)ψ
1+exp (1,G′)ψ

(
1− exp (1,G′)ψ

1+exp (1,G′)ψ

)
(1, G′), for binary A (logit model),

and

∂Û

∂µ
= −Ik×k(A− E(A|G;ψ))(Y − βaA)

∂Û

∂ψ
= −(G− µ)(Y − βaA)

∂

∂ψ
E(A|G;ψ)

∂Û

∂βa
= −(G− µ)(A− E(A|G;ψ))A.

Assume that the matrix B(θ0) is non-singular, where the entries in B(θ0) are the expected values
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of the sample averages in B∗(θ∗), evaluated at θ0. Then B∗(θ∗)
p→ B(θ0), and

√
n
(
θ̂ − θ0

)
d→

N
(
0, B(θ0)

−M(θ0)E [m̃(θ0)m̃(θ0)
′]M(θ0)

′B(θ0)
−′) (22)

In practice, replacing the expected values in (22) with sample averages evaluated at θ̂ yields a

consistent estimator of the asymptotic covariance matrix. In addition, centering the IV moment

conditions Û(βa) when estimating the covariance matrix E [m̃(θ0)m̃(θ0)
′] may improve finite sam-

ple inference. For inference about βa, one may report its Wald-type 95% confidence interval con-

structed with the corresponding component of the estimated covariance matrix for θ̂. The above

variance estimation framework can accommodate baseline covariates C by stacking the moment

conditions for Ê(G|C) and Ê(A|G,C) instead, as described in estimating equation (10)
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