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Brain Machine Interfaces (BMls) hold promise to restore impaired motor function and, because they
decode neural signals to infer behavior, can serve as powerful tools to understand the neural
mechanisms of motor control. Yet complex behaviors, such as vocal communication, exceed
state-of-the-art decoding technologies which are currently restricted to comparatively simple motor
actions. Here we present a BMI for birdsong, that decodes a complex, learned vocal behavior directly
from neural activity.

State of the art BMIs succeed at decoding behavioral intention from brain activity by mapping features
of neuronal ensemble activity onto a motor space 2. Yet the these motor spaces are confined by
current technologies to rather simple actions. To prototype a decoder of complex, natural
communication signals from neural activity, we capitalize on two aspects of birdsong, a powerful
animal model for vocal learning that shares many features with humans speech *. First, birdsong is
temporally structured (like human speech); this temporal patterning can be built into a decoder using a
recurrent neural network °. Second, the biomechanics of birdsong production are well understood,; this
enables us to employ a biophysical model of the vocal organ that captures most of the complexity of
the song and reduces it to a lower dimensional parameter space ®’. By combining these techniques,
we decode realistic synthetic birdsong directly from neural activity.

Our decoder interfaces with the sensory-motor nucleus HVC (used as proper name), where neurons
generate high-level motor commands that shape the production of learned song. Adult zebra finches
(Taeniopygia guttata) sing renditions of a stereotyped motif (a sequence of 3-10 syllables), whose
temporal and/or motor structure is thought to be encoded in the activities of two major types of HVC
neurons (Fig. 1a) ¥'3. We implanted 16/32 site Si-probes in male, adult zebra finches and recorded
simultaneously their song and neural activity in HVC; then we used these data to train a
long-short-term memory network (LSTM °) to translate neural activity directly onto song. The goal of
the network is to predict the spectral components of the song at a time bin t, given the values of

neural activity features over M previous time bins 7(z, t_i»-tiyy) (Fig. 1d-f). The neural activity is
fed as a matrix comprising mean firing rates in each time bin, of each putative single/multi-unit
automatically sorted from the recordings ' (32/64 clusters); the spectral components of the song are
represented by the power across 64 log-spaced frequency bands. For each session (day), we separate
the 70-110 renditions of a motif the bird sang. We then train the LSTM network to find the
neural-to-song spectrum mappings, and decode the corresponding spectral components from a test
set of neural activity to finally recover waveforms of synthetically generated song motifs. We employed
several methods to avoid overfitting. First, the order in which each pair of neural feature window/target
was presented to the network was randomized, so that the predictions of the spectral components at
each time point are independent; second, we used standard techniques such as L2 weight
regularization, dropout and early stopping (see Methods). We also employed two different procedures
to produce the training/validation and test sets. For motif-wise training/decoding, we split the data into
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non-overlapping sets of song motifs (reserving 10% for testing), and trained/decoded on these sets .
Alternatively, for piece-wise training/decoding we trained the network leaving a fraction of each motif
out of the training set, so that the network was tested on an entirely novel song segment); we repeated
this procedure using non-overlapping test segments to obtain complete decoded motifs (see
Methods).

The synthetic neurally decoded songs sound similar to the intended bird's own song (BOS)
(Supplementary files A1, A2; Fig 2a, b; other birds in Fig. S1). We quantitated this similarity by
computing the spectrogram root-mean-square-error (SRMSE) between each decoded motif and its
corresponding BOS. For reference, we compute the sRMSE between all pairs of motifs sung by the
bird in the session. As a control we show the SRMSE between each motif (BOS and synthetic) and a
set of motifs from 47 conspecific birds (CON). By this measure, the decoded songs are remarkably like
the highly stereotyped bird's own song: the sRMSE of the decoded songs are within the range of
intrinsic BOS variability, and mirror the dissimilarity between BOS and CON (Fig 2d).

We can simplify the decoding problem by factoring in the biomechanical apparatus that stands
between the motor commands and the vocal output. The syrinx comprises two sets of labial folds that
oscillate and modulate the airflow to produce sound ' (Fig. 1b). The dynamics of these labia can be
modeled after the motion equations of a nonlinear oscillator, in which the features of the sounds
produced are determined by only two parameters ®'®'", which represent the physiological motor
instructions driving the syrinx (the respiratory and syringeal muscular activities) . This model can
produce synthetic vocalizations in hard real time ?, and vocalizations generated by it are realistic, in the
sense that their playback to the asleep/anesthetized animal elicits auditory responses in HVC neurons
that match the high selectivity observed in response to BOS °. This model allows us to reduce the
dimensionality of the decoder's target space: for each vocalization recorded, we find the parameters
that produce, upon integration of the differential equations of the model, the closest match in pitch,
spectral richness and amplitude (Fig. 1c, S5, S6). Thus we represent each song segment as a time
series in a 3d parameter space. We then train the network to generate the parameter values that
correspond to a set of spiking activities (following the same mechanics as before) (Fig. 1d-f), and
finally feed these parameters to the biophysical model and integrate it to produce sound.

This biophysical model-based decoder yields vocalizations that sound similar to the natural ones
(Supplementary files A1, A3). The sRMSE between BOS/decoded songs is significantly smaller than
the control (BOS/CON), even though the network does not target similarity in the spectral components
but in the parameters driving the model (Fig. 2e; Fig. S6 for performance on decoding the parameters).

The decoders we present here can lead to applications in real-time BMIs. The computations involved
in decoding parameters (spectral/biophysical) and synthesizing song thereafter are prone to real time
(inverting spectrograms/integrating the biophysical model). We can also enhance the efficiency of the
neural feature representation by skipping the computational burden of spike sorting: instead, we
train/test the decoders using suprathreshold sharp events (unsorted spikes) (Fig. S4, S5). We are also
able to decode the spectral features up to 30 ms into the future, thus allocating time for computations
between the readout of the activity and the synthesis of the intended song (Fig. S3). Moreover, the
simplification achieved by the biophysical model allows us to implement the decoder using a
lightweight feed-forward neural network (FFNN) (Fig. S6).

We have demonstrated a BMI for a complex communication signal, using an animal model for human
speech and dopaminergic motor learning “'®. Our decoder unlocks access to new models and
experiments directed at understanding how neuronal activity is transformed into natural actions.
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Furthermore, it provides a biomechanic nexus between intention and complex motor output, enabling
the question of how the peripheral effectors of motor behavior shape the neural coding of motor
intention '°. Because the BMI interfaces with a premotor area that is analog to the human vocal motor
cortex * and the computation blocks involved are implementable in real-time, our approach also
provides a valuable proving ground for biomedical speech-prosthetic devices.
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Figure 1: A neural network based decoder to synthesize birdsong from premotor neural activity. (a)
Neural activity is collected from awake-singing animals. Sorted, extracellularly recorded
single/multi-units show different degrees of singing-related sparseness, robustness and spiking
precision (4 example clusters, top traces: normalized mean firing rate over 70 aligned to renditions of
the bird's motif, spectrogram). (b) Downstream from HVC, the posterior motor pathway nuclei (nXII,
RAmM/PAm) control the muscles driving sound production 2°. Syringeal and respiratory muscles act
coordinately to modulate the flow of air through sets of labia and produce sound . The complex labial
motion is captured by the equations of a nonlinear oscillator '; parameters that define acoustic
properties of the sounds are surrogates of the activities of syringeal and respiratory muscles °. (c) To
reproduce a particular vocalization (top) from the biophysical model, we fit the parameters (middle
{a(t), B(), e®)}) such that upon integration, the synthetic song (bottom) matches the pitch and spectral
richness (see Methods). (d) The input of the decoder neural network is an array with the values of a set
of neural features (spike counts of sorted units/multi-units) over a window of M previous time steps. (e)
The hidden layers of the decoder network are composed of densely connected LSTM cells. (f) When
training/decoding directly the spectral features of the song, the output of the network is a vector of
powers across a range of frequency bands at a given time; the decoded spectral slices are then
inverted to produce synthetic song (top). When training/decoding through the biophysical model, the
output of the network at a given time is a 3-dimensional vector of parameters (as illustrated in c); the
equations of the model are then integrated with these values to produce synthetic song (bottom).
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Figure2: Song decoded from premotor neural activity is similar to the recorded bird's own song. (a)
Spectrogram and waveform of one rendition of a bird's motif (z007). (b) Motif generated by decoding
spectral components from neural activity and inverting the spectrogram. (¢) Motif generated by
decoding biophysical model parameters from neural activity and integrating the model. (d)
Performance of the LSTM decoder trained on spectral components (session z007-09-09). Each
boxplot summarizes all pairwise spectrogram-RMSE comparisons of: each decoded motif and its
corresponding target when training the network with entire motifs (Mot-wise/BOS), each decoded
motif and its target when training the network with pieces of motif (Pc-wise/BOS) and a reference
provided by different renditions of the bird's own song (BOS/BOS); also, for control, same measures
for renditions of the bird's motif and motifs of conspecific birds (BOS/CON), decoded motifs and
conspecific motifs (Mot-wise/CON and Pc-wise/CON). (e) Same as in (d) for the LSTM decoder
through the biophysical model (session z007-09-10), with the addition of sRMSE comparisons
between each motif decoded from neural activity and its corresponding synthetic motif obtained by
integrating the model with the target parameters (Mot-wise/FIT and Pc-wise/FIT)). Sounds represented
in panels (a, b, c) correspond to supplementary audio files (A1, A2, A3). (p<le-10; two-sided
Mann-Whitney test).
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Methods:

Subjects.

All procedures were approved by the Institutional Animal Care and Use Committee of the University of
California (protocol number S15027). Electrophysiology data was collected from n=3 adult (>120 dph)
male zebra finches. Birds were individually housed for the entire duration of the experiment and kept
on a 14-h light-dark cycle. The birds were not used in any other experiments.

Neural and audio recordings.

We used 4-shank, 16/32 site Si-Probes (Neuronexus), PEDOT-coated in house. We mounted the
probes on an in-house designed, printable microdrive and implanted them targeting nucleus HVC.
Audio was registered with a microphone (Earthworks M30) connected to a preamplifier (ART Tube MP).
Extracellular voltages and pre-amplified audio were amplified and digitized at 30KHz using an intan
RHD2000 acquisition system, open ephys and custom software.

Song detection.

A template matching filter written in python was used to find putative instances of the motif, and then
curated manually to rule out false positives.

Spike sorting.
Spikes were detected and sorted using Kilosort; details of the procedure can be found in ™. The

number of clusters was set to 32 or 64 (twice the number of channels of the probe), and we did not
perform a post-hoc instance of manual curation, splitting or merging after the initial automatic splitting.

Supra-threshold event detection

We wrote scripts in python to detect spiking events in each channel. First, the RMS of each channel
was estimated using a running window, over a period of time that ranged from minutes to an hour.
Then, events that deviated in absolute value more than a number of RMS (2.5-5.5) were detected
using the package peakutils (min_distance=0.5ms).

Dataset preparation.

Neural activity features.

With all 64 clusters spike-sorted, we extracted spike counts within each motif and collapsed them into
4.3ms (128 samples at 30,000 samples/second) time bins. The same time bins were also used for
target preparation (both spectral features and biophysical features).

Spectral features.

When training the networks with spectral features, the target at each time step was a vector containing
a spectrogram slice (in log power scale). We first generated 1024-band spectrograms (2048 FFT steps)
with each motif waveform. Then we mapped these spectrograms onto mel-filtered spectrograms. The
mel scale is a perceptual pitch scale that is equidistant judged by listeners 2. The conversion between
mel scale and frequency we used was first introduced in 2 :

m = 2595 x log,,(1 +£/700)
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Where f is frequency expressed in Hertz. Such scale effectively approximates the auditory system as
studies have shown that listeners require an increasingly large interval in normal frequency domain in
order to achieve the same pitch difference. In our study, a 64-filter mel scale filter bank was applied to
convert the 1024-band spectrograms into 64-band mel-filtered spectrograms, each slice of which was
used as target of the model. The mel-filtered spectrograms could be easily reversed back to
frequency-based spectrograms and subsequently waveforms in time domain.

Biophysical model of the vocal organ.

Model.

A model of the zebra finch vocal organ has been previously introduced and explained in detail &"°,
This model considers mainly a sound source and a vocal tract that further shapes the acoustics of the
vocalizations.

The source (syrinx), is comprised of two sets of tissues or labia that can oscillate induced by the
sub-syringeal pressure and modulate the airflow to produce sound ™. The motion of the labia is
represented as a surface wave propagating in the direction of the airflow, that can be described in
terms of the lateral displacement of the midpoint of the tissue . Its mathematical form is the motion
equation of a nonlinear oscillator in which two parameters that determine the acoustic features of the
solutions are controlled by the bird: the sub-syringeal air sac pressure and the stiffness of the
restitution (through the activity of syringeal muscles). In order to integrate the model in real time, a set
of equations was found that is computationally less expensive yet capable of displaying topologically
equivalent sets of solutions as the parameters are varied ° :

de __
? =Y
{ @ = Yo+ br+ e — e’ — yay — yaly,

where z represents the departure of the midpoint position of the oscillating labia, y is a time scaling
factor, and the parameters « and g are functions of the air sac pressure and the activity of the ventral
syringeal muscle, respectively.
The upper vocal tract further shapes the sound produced by the source, determining spectral
properties such as the timbre. We used a model for the vocal tract that includes a tube, accounting for
the trachea, and a Helmholtz resonator, accounting for the oropharyngeal-esophageal cavity (OEC) %°.

The pressure at the input of the tract is £i(t) = a x z(t) —z(t — 7) | where @ X z(t) is the contribution
to the fluctuations by the modulated airflow, r is the reflection coefficient at the opposing end of the

tube of length L and 7 = 2L/c_ with ¢ the sound velocity. We can obtain the pressure fluctuations (the
sound) at the output of the system by solving the electrical analog to this acoustic circuit ©.

Parameter fitting.

To fit the parameter series that will lead to reconstruction of the song, we perform a procedure similar
to that previously described °°. Time scale parameter y is set to a value of 23,500; « is set to -0.15
during vocalization and 0.15 otherwise, and p is set in order to minimize the distance in the (pitch,
spectral content) space between the synthesized and the recorded song segments 8; the envelope (e(t)
in the main text) is obtained by rectifying and smoothing the recorded waveform; the parameters of the
OEC were fixed, in the same values as in °. To extract the pitch of the song, we follow a modification of
the automatic procedure presented in 2, and add a layer of manual curation. When integrating the
model, we apply the extracted envelope (e(t)) as an extra multiplicative factor when computing @ < (t)
, since it recovers the amplitude fluctuations that were discarded when reducing the model to its
normal form and driving it with the bi-valued parameter «.
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Neural network training.

Neural network based decoders were coded in python, using Tensorflow and in some cases Keras.
They were run on PCs equipped with NVidia GPUs (Tesla k40, Titan Z, and Titan X Pascal).

LSTM network architecture.

The network has 2 layers of LSTM cells, with 30 units in the first layer and 20 in the second. The
output layer has as many linear units as the target space (64 for the spectrogram bands, 3 for the
biophysical model parameters). Both LSTM layers utilized 20% dropout and 0.001 L2 regularization
during training to prevent overfitting .

Feed-forward Network architecture.

The architecture is essentially the same as that of the LSTM network, but it replaces the LSTM layers
with three dense layers of relu units ?°. The first of these layers halves the dimension of the input
vector; then each layer halves the dimension of the previous one. All layers utilized 20% dropout and
0.001 L2 regularization during training to prevent overfitting .

Training procedure.

We utilized a gradient-based optimizer (Adam/rmsprop ?’) and mean square error (MSE) as a loss
function for LSTM/FFNN. Two training conditions were experimented, referred to as motif-wise and
piece-wise training.

Motif-wise training: we used 10% of all the motifs for testing and the remaining motifs for training. We
made 10 passes using non-overlapping motifs as testing set to have as many decoded examples as
number of motifs in the session. In each pass, all of the neural-activity/decoder-target pairs (one per
bin) were fed in random order to the network, both when training and decoding.

Piece-wise training: we held out a fraction of each motif when training (roughly 3.3%); trained on the
complement and generated the song corresponding to the masked fraction; we repeated this
procedure tiling the whole motif, and generated entire motifs using segments of data that were novel
to the decoder. In both training conditions, 10% of the training set was reserved as validation set for
early stopping, where the training session would terminate if validation loss failed to decrease within
5/10 training epochs.

Song waveform generation.

Spectrogram inversion.

We used the LSEE-STFTM algorithm to invert spectrograms back to audio waves #. The algorithm
iteratively estimates a signal from the short-time Fourier transform magnitude (STFTM), through
minimizing the mean square error between the short-time Fourier transform (STFT) and the estimated
STFT, and subsequently performs STFT on the estimated signal, the magnitude of which will be
passed on to the next iteration.

Within each iteration, a signal was approximated using the equation below:

©

E w2(mS—n)

m=—c
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where x(n) denotes the estimated signal; w(n) denotes the analysis window used in STFT. The
variable S is a positive integer, representing the sampling rate of the STFT. Here, »,,(mS, n) is the

target signal corresponding to Y ..(mS, n)  which denotes the target STFTM, in our case spectrogram
powers. To calculate in each iteration, we used a sinusoidal window 2:

2w,(n)
Vaa2 b
where L represents the length of the window. Here, w,() is a rectangular window with an amplitude

wg(n) = [a+ bcos(Z%” + Q)]

of \/S_/L within o <, < 1. and zero anywhere outside. A modified Hamming window can be obtained by

setting a= 54, p=— 46, $< L. After obtaining an x(n) value within each iteration, the STFT of x(n)

was calculated, which was used in place of Y., (1S, n)in the next iteration. The squared error between
the target STFTM and the estimated STFTM is proven to decrease in each iteration of the algorithm.

Biophysical model integration.

Once the model parameters are predicted by the decoder, they are re-sampled and fed to an ordinary
differential equation integrator. Resampling to 30 Khz is performed (with cubic interpolation). A fourth
order runge-kutta ODE integrator (custom coded) integrates the equations of the model with a (900
Khz)" time step.

Performance Evaluation

Root Mean Square Error (RMSE)

We evaluated performance of our models using RMSE between each pair of original and predicted
spectrogram magnitudes..

Spectrogram Normalization

To account for amplitude variations between motifs from different birds, we normalized spectrograms
for each bird so that the collection of original spectrograms for each bird had a maximum power of 1
and minimum power of O:

D

Pmax"Ppin

ﬁi =
Where p, is the power of a point on either an original spectrogram or a predicted spectrogram before

A~

normalization, while p; is the normalized power of the corresponding point. p,, denotes the

maximum power of the entire set of original spectrograms, while p,,;, represents the minimum power
of the entire set of original spectrograms. With such normalization, we were able to account for
variations among motifs from different birds while keeping the variations within motifs from the same
bird.
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Pair-wise performance comparisons

We performed spectrogram-RMSE comparisons within and between different sets of birds (displayed
in Fig 2d,e, boxplots for instance). BOS/BOS: comparisons provide a baseline of the variability of the
bird's own motifs during the session: spectrogram-RMSE across each pair of renditions of a motif.
Mot-wise/BOS: spectrogram-RMSE values across each pair of natural motif and the corresponding
motif decoded from neural activity, when training/decoding the network Motif-wise. Pc-wise/BOS:
spectrogram-RMSE values across each pair of natural motif and its corresponding one decoded from
neural activity, when training/decoding the network Piece-wise.

To provide an additional reference for song variability, we also computed spectrogram-RMSE
comparisons in a set of 47 motifs from conspecific birds (other zebra finches; about half of them from
our colony and half from other colonies). This produced the sets: BOS/CON: spectrogram-RMSE
across each BOS rendition and all of the conspecific (CON) motifs. Mot-wise/CON:
spectrogram-RMSE values across each motif decoded from neural activity and all the CON motifs,
when training/decoding the network Motif-wise. BOS/CON: spectrogram-RMSE across each BOS
rendition and all of the conspecific (CON) motifs. Pc-wise/CON: spectrogram-RMSE values across
each motif decoded from neural activity and all the CON motifs, when training/decoding the network
Piece-wise.

Data availability
The datasets are available from the corresponding authors upon request.

Materials and code availability

Code, printable hardware and electronic designs developed during this work are available in the
following github repositories:

https://github.com/singingfinch/bernardo

https://github.com/zekearneodo/swissknife
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Supplementary Figures
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310 Figure S1: Synthetic motifs from three birds generated by LSTM trained on spectral components. (a)
Example spectrograms of each bird’s motif (BOS) and the corresponding motif decoded from neural
activity (birds z007, z017, z020; one session each). Songs were synthesized by motif-wise
training/decoding (denoted SYN). (b) Performance evaluation, each box plot constructed as described
previously for Fig. 1.
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Figure S2: Synthetic motifs decoded from decreasing number of lookback bins (training/decoding
through spectral components; motif-wise). (a) Performance evaluation of synthetic motifs decoded from
decresing numbers of lookback bins (LBs) in the window of neural activity fed to the decoder. RMSEs
between decoded motifs and their corresponding BOS motifs are compared to RMSEs among the bird’s
own songs (BOS/BOS) as well as RMSEs between conspecific motifs and the bird’s own songs
(CON/BOS). (b) Example spectrograms of the bird’s own motif and the corresponding synthetic motifs
decoded from decreasing numbers of lookback bins.
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Figure S3: Decoding with a latency between the window of neural features and the target spectral
325  components. (a) Performance of motifs decoded with different numbers of latency bins (Lats) (time bins
between the right end of the neural featurs window and the target spectral slice). RMSEs between
synthetic motifs with different number of latency bins and corresponding BOS motifs, as well as
between conspecific motifs and the bird’s own songs (CON/BOS). (b) Example spectrograms of
synthetic motifs decoded with different number of latency bins (up to 8 bins or 34.4ms of latency).
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Figure S4: Training the LSTM decoder using spectral features and unsorted spikes (thresholded
extracellular activities). (a) Performance comparison between synthetic songs decoded from sorted
spike counts (BOS-Spike-sorted) and thresholded activity (BOS/Thresholded). (b) Example
spectrograms.
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Figure S5: Synthetic song decoded from
thresholded extracellular activity
(unsorted spikes) and fit detail. (a)
Decoded motif. (b) Decoded parameters
of the biophysical model, together with
their target (fitted off-line to approximate
the  BOS). () Synthetic  motif
corresponding produced by the
parameters in (c) (target). (d) Evaluation
of performance (motif-wise
training/decoding). (p<1e-10; two-sided
Mann-Whitney test).
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Figure S6: Synthetic song decoded from sorted
spikes using a feed-forward architecture and fit
detail. (a) Decoded motif. (b) Decoded parameters
of the biophysical model, together with their target
(fitted off-line to approximate the BOS). (c¢) Synthetic
motif corresponding produced by the parameters in
(c) (target). (d) Corresponding BOS. (e) Evaluation
of performance (same as caption of Fig. 2 in the
main text). (f) Mean correlation between target and
decoded parameters (Neur/Fit) for each motif.
Training/decoding condition denoted by MW
(motif-wise) or PW (piece-wise); for reference we
also computed the correlation between target and
shuffled decoded parameters for each training
condition (Neur/Fit-Shuff.). (p<1e-10; two-sided
Mann-Whitney test)
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Figure S7: Performance of the LSTM decoder trained on spectral components in terms of correlation
coefficient. Correlation coefficients of: conspecific motifs and the bird's own motif (CON/BOS);
conspecific motifs and synthetic motifs decoded by motif-wise training (CON/Motif-wise); conspecific
motifs and synthetic motifs decoded by piece-wise training (CON/Piece-wise); all pairs of the bird's
own motif (BOS/BOS); synthetic motifs and the corresponding natural motifs from both motif-wise
training (BOS/Motif-wise) and piece-wise training (BOS/Piece-wise).
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Supplementary Files List:
Audio A1: Example rendition of a motif of bird z007.

Audio A2: Example decoded motif of bird z007, training/testing the decoder using spectral features as
target (motif-wise training).

Audio A3: Example decoded motif of bird z007, training/testing the decoder through the biophysical
model (motif-wise training).

Audio A4: Inverted spectrogram of a training example (mel-spaced spectrogram of the motif),
corresponding to audio A3.

Audio A5: Example motif of bird z007 synthesized by fitting the parameters of the biophysical model
and numerically integrating it (fitted parameters being the actual target of the network when decoding;
corresponding to audio file A2).
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