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Abstract.— The goal of Phylogenetic Comparative Methods (PCMs) is to study the15

distribution of quantitative traits among related species. The observed traits are often seen16

as the result of a Brownian Motion (BM) running along a phylogenetic tree. Reticulation17

events such as hybridization, gene flow or horizontal gene transfer, can substantially affect18

a species’ traits, but are not modeled by a tree. Phylogenetic networks have been designed19

to represent reticulate evolution. As they become available for downstream analyses, new20

models of trait evolution are needed, applicable to networks. One natural extension of the21

BM is to use a weighted average model for the trait of a hybrid, at a reticulation point. We22

develop here an efficient recursive algorithm to compute the phylogenetic variance matrix23

of a trait on a network, in only one preorder traversal of the network. We then extend the24

standard PCM tools to this new framework, including phylogenetic regression with25

covariates (or phylogenetic ANOVA), ancestral trait reconstruction, and Pagel’s λ test of26

phylogenetic signal. The trait of a hybrid is sometimes outside of the range of its two27

parents’. Hybrid vigor and hybrid depression is indeed a rather common phenomenon28

observed in present-day hybrids. Transgressive evolution can be modeled as a shift in the29

trait value following a reticulation point. We develop a general framework to handle such30

shifts, and take advantage of the phylogenetic regression view of the problem to design31

statistical tests for ancestral transgressive evolution in the evolutionary history of a group32

of species. We study the power of these tests in several scenarios, and show that recent33

events have indeed the strongest impact on the trait distribution of present-day taxa. We34

apply those methods to a dataset of Xiphophorus fishes, to confirm and complete previous35

analysis in this group. All the methods developed here are available in the user-friendly36

julia package PhyloNetworks.37

(Keywords: Phylogenetic Networks, Phylogenetic Comparative Methods, Transgressive38

Evolution, Heterosis, PhyloNetworks)39
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40

The evolutionary history of species is known to shape the present-day distribution41

of observed characters (Felsenstein 1985). Phylogenetic Comparative Methods (PCMs)42

have been developed to account for correlations induced by a shared history in the analysis43

of a quantitative dataset (Pennell and Harmon 2013). They usually rely on two main44

ingredients: a time-calibrated phylogenetic tree, and a dynamical model of trait evolution,45

that should be chosen to capture the features of the trait evolution over time. Much work46

has been made on the second ingredient, with more and more sophisticated models of trait47

evolution, with numerous variations around the original Brownian Motion (BM), see for48

instance Felsenstein (1985); Hansen and Martins (1996); Hansen (1997); Blomberg et al.49

(2003); Butler and King (2004); Beaulieu et al. (2012); Landis et al. (2013); Blomberg50

(2016), to cite only but a few.51

In contrast, the first assumption has not been questioned until now (Jhwueng and52

O’Meara 2017). However, phylogenetic trees are not always adapted to capture53

relationships between species, and phylogenetic networks are sometimes needed.54

Phylogenetic networks differ from trees by added reticulation points, where two distinct55

branches come together to create a new species. Such reticulations can represent various56

biological mechanisms, like hybridization, gene flow or horizontal gene transfer, that are57

known to be common in some groups of organisms (Mallet 2005, 2007). Ignoring those58

events can lead to misleading tree inference (Kubatko 2009; Soĺıs-Lemus et al. 2016; Long59

and Kubatko 2017). Thanks to recent methodological developments, the statistical60
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inference of reliable phylogenetic networks has become possible (Maddison 1997; Degnan61

and Salter 2005; Kubatko 2009; Yu et al. 2012, 2014; Yu and Nakhleh 2015; Soĺıs-Lemus62

and Ané 2016). Although these state-of-the-art methods are still limited by their63

computational burden, we believe that the use of these networks will increase in the future.64

The goal of this work is to propose an adaptation of standard PCMs to a group of species65

with reticulate evolution, related by a network instead of a tree.66

We describe an extension of the BM model of trait evolution to a network. The67

main modeling choice is about the fate of hybrid species. How should these species inherit68

their trait from their two parents? In this work, we first choose a weighted-average merging69

rule: the trait of a hybrid is a mixture of its two parents’, weighted by their relative genetic70

contributions. This rule can be seen as a reasonable null model. But in some cases, the71

trait of a hybrid is observed to be outside of the range of its two parents. This phenomenon72

can be modeled by a shift in the trait value occurring right after the reticulation point: the73

hybrid trait value being the weighted average of the two parents, plus an extra term74

specific to the hybridization event at hand. Such a shift can model several biological75

mechanisms, such as transgressive segregation (Rieseberg et al. 1999) or heterosis (Fiévet76

et al. 2010; Chen 2013), with hybrid vigor (when the hybrid species is particularly fit to its77

environment) or depression (when the hybrid is ill-fit). In the following, we will refer to78

this class of phenomena using the generic term transgressive evolution. Here, this term79

only refers to the hybrid trait being different from the weighted average of its parents. This80

model allows for an explicit mathematical derivation of the trait distribution at the tips of81

the network and extends to networks the use of standard PCM tools such as phylogenetic82

regression (Grafen 1989, 1992), ancestral state reconstruction (Felsenstein 1985; Schluter83

et al. 1997) or tests of phylogenetic signal (Pagel 1999).84

In the following, we first describe this BM model of trait evolution and show how it85

fits into the standard PCM framework. We then show how to add shifts in the trait values86

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/194050doi: bioRxiv preprint 

https://doi.org/10.1101/194050
http://creativecommons.org/licenses/by-nc-nd/4.0/


to model transgressive evolution. We propose a statistical test for transgressive evolution.87

These methods are validated with a simulation study, and with the theoretical study of the88

power of the tests in a range of scenarios. Finally, we revisit the analysis of a Xiphophorus89

dataset about sword index and female preference made by Cui et al. (2013), in the light of90

our new network methods.91

Model92

In our model for trait evolution on a phylogenetic network, the novel aspect is the93

merging rule at reticulation events, compared to standard PCMs on trees. Our model is94

very similar to that defined in Jhwueng and O’Meara (2017), but we adopt a different95

statistical view point, based on the phylogenetic linear regression representation.96

Trait Evolution on Networks97

Phylogenetic Network.— In this work, we assume that we have access to a rooted, calibrated98

and weighted phylogenetic network that describes the relationships between a set of99

observed species (Huson et al. 2010). In such a network, reticulations, or hybrids, are nodes100

that have two parent nodes. They receive a given proportion of their genetic material from101

each parent. This proportion is controlled by a weight γe that represents the inheritance102

probability associated with each branch e of the network. A branch that is tree-like, i.e.103

that ends at a non-hybrid node, has a weight γe = 1. We further assume that the length `e104

of a branch e represents evolutionary time. In the example in Figure 1a, the two hybrid105

edges have length zero, but this need not to be the case, see Jhwueng and O’Meara (2017);106

Degnan (2017).107

Brownian Motion.— Since the seminal article of Felsenstein (1985), the Brownian Motion108

(BM) has been intensively used to model trait evolution on phylogenetic trees. It is well109
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Figure 1: Realization of a BM (with µ = 0 and σ2 = 0.04) on a calibrated network. The
color of each branch (left) matches the color of the corresponding process (right). Only
tip values are observed (here at time t = 0). For simplicity, the two hybrid branches were
chosen to have a length of 0, but this need not be the case. Inheritance probabilities at the
hybridization event are γ6a and γ6b, with γ6a + γ6b = 1.

adapted to model several biological processes, from random genetic drift, to rapid110

adaptation to a fluctuating environment (see e.g. Felsenstein 2004, Chap. 24). In order to111

adapt this process to a network instead of a tree, we define a weighted average merging rule112

at hybrids, as defined below. This rule expresses the idea that a hybrid inherits its trait113

from both its parents, with a relative weight determined by the proportion of genetic114

material received from each: if it inherits 90% of its genes from parent A, then 90% of its115

trait value should be determined by the trait of A. Because the BM usually models the116

evolution of a polygenic character, that is the additive result of the expression of numerous117

genes, this rule is a natural null hypothesis.118

Definition 1 (BM on a Network). Consider a rooted phylogenetic network with branch119

lengths and inheritance probabilities. Let Xv be the random variable describing the trait120

value of node (or vertex) v.121

� At the root node ρ, we assume that Xρ = µ is fixed.122
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� For a tree node v with parent node a, we assume that Xv is normally distributed123

with mean Xa + ∆e and with variance σ2`e, with σ2 the variance rate of the BM, and124

`e the length of the parent edge e from a to v. ∆e is a (fixed) shift value associated125

with branch e, possibly equal to 0.126

� For a hybrid node v with parent nodes a and b, we assume that Xv is normally127

distributed with mean γeaXa + γebXb, where ea and eb are the hybrid edges from a128

(and b) to v. If these edges have length 0, meaning that a, b and their hybrid v are129

contemporary, then Xv is assumed to have variance 0, conditional on the parent130

traits Xa and Xb. In general, the conditional variance of Xv is γeaσ
2`ea + γebσ

2`eb .131

For the sake of identifiability, shifts are not allowed on hybrid branches (see Section132

on Transgressive Evolution for further details).133

An example of such a process (without shift) is presented Figure 1b. This process is134

the same as in Jhwueng and O’Meara (2017), except that the shifts are treated differently.135

See Section on Transgressive Evolution and Discussion for more information on the links136

and differences between the two models. For the sake of generality, shifts are allowed on137

any tree edge. We will see in the next section how they are used to model transgressive138

evolution. In the rest of this section, we take all shifts to be zero, and only consider the139

un-shifted BM (∆e = 0 for all edges e).140

Note that the state at the root, µ, could also be drawn from a Gaussian141

distribution, instead of being fixed. This would not change the derivations below, and142

would simply add a constant value to all terms in the variance matrix.143

Variance Matrix144

From a Tree to a Network.— The distribution of trait values at all nodes, X, can be fully145

characterized as a multivariate Gaussian with mean µ1m+n and variance matrix σ2V,146
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where 1m+n is the vector of ones, n is the number of tips and m the number of internal147

nodes. The variance matrix V, which depends on the topology of the network, encodes the148

correlations induced by the phylogenetic relationships between taxa. When the network149

reduces to a tree (if there are no hybrids), then V is the well-known BM covariance150

(Felsenstein 1985): Vij = tij is the time of shared evolution between nodes i and j, i.e. the151

time elapsed between the root and the most recent common ancestor (mrca) of i and j.152

When the network contains hybrids, this formula is not valid anymore. To see this,153

let’s re-write tij as:154

tij =
∑

e∈pi∩pj

`e

where pi is the path going from the root to node i. This formula just literally expresses155

that tij is the length of the shared path between the two nodes, that ends at their mrca.156

On a network, the difficulty is that there is not a unique path going from the root to a157

given node. Indeed, if there is a hybrid among the ancestors of node i, then a path might158

go “right” of “left” of the hybrid loop to go from the root to i.159

Under the BM model in Definition 1 (with a fixed root), it turns out that we need160

to sum over all the possible paths going from the root to a given node, weighting paths by161

the inheritance probabilities γe of all the traversed edges:162

Vij =
∑
pi∈Pi
pj∈Pj

(∏
e∈pi

γe

)(∏
e∈pj

γe

) ∑
e∈pi∩pj

`e (1)

where Pi denotes the set of all the paths going from the root to node i.163

This general formula for V was first presented in Pickrell and Pritchard (2012) in164

the context of population genomics. A formal proof is provided here (Appendix).165

Remark 1 (Variance reduction). From the expression above, we can show that the variance166

of any tip i decreases with each hybridization ancestral to i. Consider time-consistent167
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network, in the sense that all paths from the root to a given hybrid node have the same168

length, as expected if branch lengths measure calendar time. Note that this is the opposite169

of the “NELP” property (No Equally Long Paths) defined by Pardi and Scornavacca170

(2015). For tip i, let ti be the length of any path from the root to i. If the network is a171

tree, then Vii = ti. If the history of tip i involves one or more reticulations, then we show172

(Appendix), that:173

Vii < ti . (2)

This shows that hybridization events, that imply taking a weighted means of two traits,174

cause the trait variance to decrease.175

Algorithm.— The formula above, although general, is not practical to compute. Using the176

recursive characterization of the process given in Definition 1, we can derive an efficient177

way to compute this covariance matrix across all nodes in the network (tips and internal178

nodes), in a single traversal of the network. This traversal needs to be in “preorder”, from179

the root to the tips, such that any given node is listed after all of its parent(s): for any two180

nodes numbered i and j, if there is a directed path from i to j, then i ≤ j. Such an181

ordering (also called topological sorting) can be obtained in linear time in the number of182

nodes and edges (Kahn 1962). On Figure 1a, nodes are numbered from 1 to 13 in preorder.183

The result below, proved in the Appendix, provides an efficient algorithm to compute the184

phylogenetic variance matrix V in a time linear in the number of nodes of the network, in185

a single preorder traversal.186

Proposition 1 (Iterative computation of the phylogenetic variance). Assume that the187

nodes of a network are numbered in preorder. Then V can be calculated using the following188

step for each node i, from i = 1 to i = n+m:189

� If i = 1 then i is the root, and Vii = 0.190
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� If i is a tree node, denote by a the parent of i, and by `ea the length of the branch ea191

going from a to i. Then:192


Vij = Vaj for all 1 ≤ j ≤ i− 1

Vii = Vaa + `ea .

(3)

� If i is a hybrid node, denote by a and b the parents of i, by `ea and `eb the lengths of193

the branches ea and eb going from a or b to i, and by γea and γeb the associated194

inheritances probabilities. Then:195


Vij = γeaVaj + γebVbj for all 1 ≤ j ≤ i− 1

Vii = γ2
ea(Vaa + `ea) + γ2

eb
(Vbb + `eb) + 2γeaγebVab .

(4)

Phylogenetic Regression196

We can now define a phylogenetic regression on networks, the same way it is defined197

for phylogenetic trees (Grafen 1989, 1992).198

Linear Regression Framework.— Define Y as the vector of trait values observed at the tips199

of the network. This is a sub-vector of the larger vector of trait values at all nodes. Let200

Vtip be the sub-matrix of V, with covariances between the observed taxa (tips). The201

phylogenetic linear regression can be written as:202

Y = Rθ + σ2E with E ∼ N (0n,V
tip) (5)

where R is a n× q matrix of regressors, and θ a vector of q coefficients. We can recover the203

distribution of Y under a simple BM with a fixed root value equal to µ (and no shift) by204
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taking R = 1n and θ = µ (with q = 1). Regression matrix R can also contain some205

explanatory trait variables of interest. In this phylogenetic regression, the BM model206

applies to the residual variation not explained by predictors, E.207

This formulation is very powerful, as it recasts the problem into the well-known208

linear regression framework. The variance matrix Vtip is known (it is entirely characterized209

by the network used) so that, through a Cholesky factorization, we can reduce this210

regression to the canonical case of independent sampling units. This problem hence211

inherits all the features of the standard linear regression, such as confidence intervals for212

coefficients or data prediction, as explained in the next paragraph.213

Ancestral State Reconstruction and Missing Data.— The phylogenetic variance matrix can214

also be used to do ancestral state reconstruction, or missing data imputation. Both tasks215

are equivalent from a mathematical point of view, rely on the Best Linear Unbiased216

Predictor (BLUP, see e.g. Robinson 1991) and are well known in the standard PCM217

toolbox. They have been implemented in many R packages, such as ape (Paradis et al.218

2004, function ace), phytools (Revell 2012, function fastAnc) or more recently Rphylopars219

(Goolsby et al. 2017, function phylopars). In our Julia package PhyloNetworks, it is available220

as function ancestralStateReconstruction.221

Pagel’s λ.— The variance structure induced by the BM can be made more flexible using222

standard transformations of the network branch lengths, such as Pagel’s λ (Pagel 1999).223

Because the network is calibrated with node ages, it is time-consistent: the time ti elapsed224

between the root and a given node i is well defined, and does not depend on the path taken.225

Hence, the lambda transform used on a tree can be extended to networks, as shown below.226

Definition 2 (Pagel’s λ transform). First, for any hybrid tip in the network, add a child227

edge of length 0 to change this tip into an internal (hybrid) node, and transfer the data228

from the former hybrid tip to the new tip. Next, let e be a branch of the network, with229
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child node i, parent node pa(i), and length `e. Then its transformed length is given by:230

`e(λ) =


λ`e if i is an internal node

`e + (1− λ)tpa(i) = λ`e + (1− λ)ti if i is a tip,

(6)

where ti and tpa(i) are the times elapsed from the root to node i and to its parent.231

The interpretation of this transformation in term of phylogenetic signal is as usual:232

when λ decreases to zero, the phylogenetic structure is less and less important, and traits233

at the tips are completely independent for λ = 0. The first step of resolving hybrid tips is234

similar to a common technique to resolve polytomies in trees, using extra branches of235

length 0. This transformation does not change the interpretation of the network or the age236

of the hybrid. The added external edge does allow extra variation specific to the hybrid237

species, however, immediately after the hybridization, by Pagel’s λ transformation. The238

second part of (6) applies to the new external tree edge, and hybrid edges are only affected239

by the first part of (6). The transformation’s impact on the matrix Vtip is not exactly the240

same as on trees. It still involves a simple multiplication of the off-diagonal terms by λ, but241

the diagonal terms are also modified. The following proposition is proved in the Appendix.242

Proposition 2 (Pagel’s λ effect on the variance). The phylogenetic variance of a BM243

running on a network transformed by a parameter λ, V(λ) is given by:244


V (λ)ij = λVij for i and j such that i or j is an internal node, or i 6= j

V (λ)ii = λVii + (1− λ)ti for any tree tip i

where V = V(1) is the variance of the BM process on the non-transformed network.245

On a tree, we have V (λ)ii = ti for any tip i and any λ, so that the diagonal terms246

remain unchanged. This is not true on a network, however, as the Pagel transformation247
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erases the variance-reduction effect of ancestral hybridizations.248

Other transformations, for instance based on Pagel’s κ or δ (Pagel 1999), could be249

adapted to the phylogenetic network setting. Although these are not implemented for the250

moment, they would be straightforward to add in our linear regression framework.251

Shifted BM and Transgressive Evolution252

In our BM model, we allowed for shifts on non-hybrid edges. In this section, we253

show how those shifts can be inferred from the linear regression framework, and how they254

can be used to test for ancestral transgressive evolution events. When considering shifts,255

we again require that all tips are tree nodes. If a tip is a hybrid node, then the network is256

first resolved by adding a child edge of length 0 to the hybrid, making this node an internal257

node. This network resolution does not affect the interpretation of the network or the258

variance of the BM model. It adds more flexibility to the mean vector of the BM process,259

because the extra edge is a tree edge on which a shift can be placed.260

Shift Vector.— We first describe an efficient way to represent the shifts on the network261

branches in a vector format. In Definition 1, we forbade shifts on hybrid branches. This262

does not lose generality, and is just for the sake of identifiability. Indeed, a hybrid node263

connects to three branches, two incoming and one outgoing. A shift on any of these three264

branches would impact the same set of nodes (apart from the hybrid itself), and hence265

would produce the same data distribution at the tips. The position of a shift on these three266

branches is consequently not identifiable. By restricting shifts to tree branches, the267

combined effect of branches with the same set of descendants is identified by a shift on a268
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single (tree) edge. We can combine all shift values in a vector ∆ indexed by nodes:269

∆i =


µ if i = ρ is the root node

∆e if i is a tree node with parent edge e

0 if i is a hybrid node.

Note that any tree edge e is associated to its child node i in this definition. In the270

following, when there is no ambiguity, we will refer indifferently to one or the other.271

Descendence Matrix.— For a rooted tree, a matrix of 0/1 values where each column272

corresponds to a clade can fully represent the tree topology. In column j, entries are equal273

to 1 for descendants of node number j, and 0 otherwise (Ho and Ané 2014; Bastide et al.274

2017b). On a network, a node i can be a “partial” descendant of j, with the proportion of275

inherited genetic material represented by the inheritance probabilities γe. Hence, the276

descendence matrix of a network can be defined with non-binary entries between 0 and 1 as277

follows.278

Definition 3 (Descendence Matrix). The descendence matrix U of a network, given some279

ordering of its n tips and m internal nodes, is defined as an (n+m)× (n+m) matrix by:280

Uij =
∑

p∈Pj→i

∏
e∈p

γe

where Pj→i is the set of all the paths going from node j to node i (respecting the direction281

of edges). Note that, if i is not a descendant of j, then Pj→i is empty and Uij = 0. By282

convention, if i = j, we take Uii = 1 (that is, a node is considered to be a descendant of283

itself). If the network is a tree, we recover the usual definition (all the γe are equal to 1).284

In general, the set of nodes i for which Uij > 0 is the hardwired cluster of i, or the clade285

below i if the network is a tree.286
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Further define T as the (non-square) submatrix of U made of the rows that correspond to287

tip nodes (see example below).288

Example 1 (Descendence Matrix and Shift Vector). The descendence matrices U and T289

associated with the network presented in Figure 2 are shown below, with zeros replaced by290

dots to improve readability:291

U =



X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

X1 1 · · · · · · · · · · · ·

X2 1 1 · · · · · · · · · · ·

X3 1 1 1 · · · · · · · · · ·

X4 1 · · 1 · · · · · · · · ·

X5 1 1 · · 1 · · · · · · · ·

X6 1 γ6a · γ6b γ6a 1 · · · · · · ·

X7 1 · · 1 · · 1 · · · · · ·
X8 1 · · 1 · · 1 1 · · · · ·

X9 1 · · 1 · · 1 · 1 · · · ·

X10 1 γ6a · γ6b γ6a 1 · · · 1 · · ·

X11 1 1 · · 1 · · · · · 1 · ·

X12 1 1 1 · · · · · · · · 1 ·

X13 1 1 1 · · · · · · · · · 1





T

The associated shift vector and associated trait means at the tips are shown below, where292

the only non-zero shift is assumed to correspond to transgressive evolution at the293
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hybridization event, captured by ∆10 on edge 10:294

∆ =



1 µ

2 ·

3 ·

4 ·

5 ·

6 ·

7 ·

8 ·

9 ·

10 ∆10

11 ·

12 ·

13 ·



T∆ =



8 µ

9 µ

10 µ+ ∆10

11 µ

12 µ

13 µ



Note that rapid trait evolution or jumps in the trait value in other parts of the phylogeny295

could be also be modeled, by letting ∆i be non-zero for other tree edges i.296

Linear Model.— The shifted BM model in Definition 1 can be expressed by:297

Y = T∆ + σ2E with E ∼ N (0n,V
tip) (7)

where Y is the trait vector at the tips, and ∆ and T are the shift vector and the298

descendence matrix as defined above (see the Appendix for the proof).299

Transgressive Evolution.— Even though the linear formulation above makes it easier to300
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Figure 2: Realization of a univariate BM process (with µ = 0 and σ2 = 0.04) on a calibrated
network, with transgressive evolution. The shift occurs right after the hybridization event,
and changes the trajectory of the BM from the grey one to the colored one.

study, the problem of locating the non-zero shifts on the branches of a phylogenetic tree is301

difficult, and is still an active research area (see e.g. Uyeda and Harmon 2014; Bastide302

et al. 2017b; Khabbazian et al. 2016; Bastide et al. 2017a).303

On networks as on trees, a shift can represent various biological processes. In the304

present work, we limit our study to shifts occurring on branches that are outgoing from a305

hybrid node (see Figure 2 for an example). Such shifts might represent a transgressive306

evolution effect, as defined in the introduction, and as a component of hybridization: the307

new species inherits its trait as a weighted average of the traits of its two parents, plus a308

shift representing extra variation, perhaps as a result of rapid selection.309

Limiting shifts to being right after reticulations avoids the difficult exploration of all310

the possible locations of an unknown number of shifts on all the tree branches.311

Statistical Tests for Transgressive Evolution312

As there are typically only a few hybridization events in a phylogenetic network, we can313

test for transgressive evolution on each one individually. Thanks to the linear framework314

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/194050doi: bioRxiv preprint 

https://doi.org/10.1101/194050
http://creativecommons.org/licenses/by-nc-nd/4.0/


described above, this amounts to a well-known test of fixed effects.315

Statistical Model.— Denote by N the n× h sub-matrix of T containing only the columns316

corresponding to tree branches outgoing from hybrid nodes. We assume that N has full317

rank, that is, that the transgressive evolution shifts are identifiable. This is likely to be the318

case in networks that can be inferred by current methods, which typically have a small319

number of reticulations. We further denote by N̄ the vector of size n containing the row320

sums of N: for tip i, N̄i =
∑h

k=1 Nik. Then the phylogenetic linear regression extending (5)321

with transgressive evolution can be written as:322

Y = Rβ + N̄b+ Nd + E , d such that
h∑
k=1

dk = 0 , E ∼ N (0, σ2Vtip) (8)

where R is a given matrix of regressors, with associated coefficients β. These are included323

for the sake of generality, but usually only represent the ancestral state of the BM: R = 1n324

and β = µ. The coefficient b represents a common transgressive evolution effect, that325

would affect all the hybridization events uniformly, while the vector d has h entries with a326

specific deviation from this common effect for each event, and represents heterogeneity.327

Fisher Test.— When written this way, the problem of testing for transgressive evolution328

just amounts to testing the fixed effects b and d. Some hypotheses that can be tested are329

summarized in the next table. H0 corresponds to the null model where the hybrids inherit330

their parents’ weighted average. H1 is a model where all hybridization events share the331

same transgressive evolution effect, the trait being shifted by a common coefficient b.332

Finally, H2 is a model where each hybridization event k has its own transgressive evolution333

effect, with a shift b+ dk.334
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Hypotheses Linear Model

H0 No transgressive evolution b = 0 and d = 0

H1 Single effect transgressive evolution b 6= 0 and d = 0

H2 Multi effect transgressive evolution b 6= 0 and d 6= 0

335

Tests of fixed effects are very classic in the statistics literature (see e.g. Lehman336

1986; Searle 1987). Compared to a likelihood ratio test, an F-test is exact and is more337

powerful, when available. Here we can define two F (Fisher) statistics F10 and F21 (see the338

Appendix). To see if H2 fits the data significantly better than H1, we compare F21 to an F339

distribution with degrees of freedom r[R N] − r[R N̄] and n− r[R N], where r is the matrix340

rank, and [R N] is the matrix obtained by pasting the columns of R and N together. To341

test H1 versus the null model H0, we compare F10 to an F distribution with degrees of342

freedom r[R N̄] − rR and n− r[R N̄]. We study these tests for several symmetric networks in343

the following section.344

Simulation and Power Study345

In this section, we first analyse the performance of the PCM tools described above, and346

then provide a theoretical power study of our statistical tests for transgressive evolution.347

Implementation of the Network PCMs348

All the tools described above, as well as simulation tools, were implemented in the349

julia package PhyloNetworks (Soĺıs-Lemus et al. 2017). To perform a phylogenetic regression,350

the main function is phyloNetworklm. It relies on functions preorder! and sharedPathMatrix351

to efficiently compute the variance matrix using the algorithm in Proposition 1, and on352

julia package GLM (Bates 2016) for the linear regression. All the analysis and extraction353

tools provided by this GLM package can hence be used, including the ftest function to354
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perform the Fisher statistical tests for transgressive evolution. For the Xiphophorus fishes355

study (see below), we developed function calibrateFromPairwiseDistances! to calibrate a356

network topology based on pairwise genetic distances.357

Simulation Study358

Setting.— We considered 4 network topologies, all based on the same symmetric backbone359

tree with unit height and 32 tips, to which we added several hybridization events (Fig. 3,360

top). Those events were either taken very recent and numerous (h = 8 events each affecting361

1 taxon) or quite ancient and scarce (h = 2 events each affecting 4 taxa). All networks had362

8 tips with a hybrid ancestry. All the hybridization events had inheritance probability363

γ = 0.3. We then simulated datasets on these networks with µ = 0, σ2 = 1, and Pagel’s λ364

transformation with λ in {0, 0.25, 0.5, 0.75, 1}. Recall that λ = 0 corresponds to all tips365

being independent, and λ = 1 is the simple BM on the original network. Each simulation366

scenario was replicated 500 times. To study the scalability of the implementation, we then367

reproduced these analysis on networks with 32 to 256 tips, and 1 to 8 hybridization events,368

each affecting 8 tips.369

We analysed each dataset assuming either a BM or a λ model of evolution. When370

λ 6= 1, we could study the effect of wrongly using the BM. All the analyses were conducted371

on a laptop computer, with four Intel Core i7-6600U, and a 2.60GHz CPU speed.372

Results.— When the vanilla BM model is used for both the simulation and the inference,373

the two parameters µ and σ2 are well estimated, with no bias, for all the network374

topologies tested (Fig. 3, last two rows, red boxes for λ = 1). The estimation of µ is quite375

robust to the misspecification of the model, while σ2 tends to be over-estimated (Fig. 3,376

last two rows, red boxes for λ 6= 1). This is expected, as in this case, the BM model377

wrongly tries to impose a strong correlation phylogenetic structure on the data, and can378

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/194050doi: bioRxiv preprint 

https://doi.org/10.1101/194050
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.00

0.25

0.50

0.75

1.00

λ̂

0

1

2

4

8

σ̂2

Estimation Model
BM
Lambda

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

−1

0

1

True λ

µ̂

Figure 3: Estimated λ, σ2 and µ values for several network topologies, with γ = 0.3, when
the data are simulated according to a BM process with Pagel’s λ transformation. Data were
analyzed either with a straight BM model, which corresponds to λ = 1 (red), or with Pagel’s
λ transformed model (blue). True values are marked by a grey line. Boxplots show variation
across 500 replicates.
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only account for the observed diversity by raising the estimated variance, to accommodate379

both phylogenetic variance and independent intra-specific variation. When we use the true380

λ model for the inference, this bias is corrected, and both µ and σ2 are correctly estimated381

(Fig. 3, last two rows, blue boxes). Furthermore, the λ estimate has a small bias but rather382

high variance (Fig. 3, second row). As expected, when the number of taxa increases, this383

variance decreases (data not shown). Finally, our implementation is quite fast (Fig. 4),384

with computing times ranging between 1 and 10 ms for a BM fit, and between 10 ms and385

1 s for a Pagel’s λ fit.386

1

10

100

1000

32 64 128 256
Number of tips

T
im

e 
(m

s) Lambda
BM

Figure 4: Computing time needed for fitting a continuous trait evolution model in PhyloNet-
works. Median and confidence interval for 6000 repetitions in various conditions for each
number of taxa. A log scale is used for the computing time.

Power Study of the Statistical Tests for Transgressive Evolution387

We determined that our test statistics have the following noncentral Fisher distributions:388

Under H1, F10 ∼ F
(
r[R N̄] − rR, n− r[R N̄],

b2

2σ2
∆2

10(R, N̄,Vtip)

)
(9)

Under H2, F21 ∼ F
(
r[R N] − r[R N̄], n− r[R N],

1

2σ2
∆2

21(d,R, N̄,N,Vtip)

)
(10)
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The noncentral coefficient are determined by ∆10 and ∆21, detailed in the Appendix. These389

∆ terms are zero under the null hypothesis (H0 for ∆10 and H1 for ∆21), and depend on the390

network topology through the metric defined by Vtip, and through the regression matrix N.391

Because we know the exact distribution of our F statistics, we do not need to resort392

to simulations to assess the power of these tests. In the following, we present a theoretical393

power study.394

Test H0 vs H1.— We first studied the theoretical power to detect a single transgressive395

evolution effect, depending on the size b of this effect, and on the position of the396

hybridization event on the network. We considered 4 network topologies, using the same397

backbone tree than in the simulation study above, but adding only one hybridization event,398

occurring at various depths, from a very recent event affecting a single taxon to a very399

ancient event affecting 8 taxa (Fig. 5, top). The inheritance probability of this added400

hybrid branch was fixed to γ = 0.4. This parameter proved to have little influence to401

detect transgressive evolution (data not shown), for all the values tested, between 0 and402

0.5. The underlying BM process had fixed ancestral value µ = 0, and variance rate σ2 = 1.403

Finally, for each network topology, we varied the transgressive evolution effect from 0 to 5,404

and computed the power of the test H0 vs H1 for three fixed standard levels (α in405

{0.01, 0.05, 0.1}).406

As expected, the power improves with the size of the effect, reaching approximately407

1 for b = 5 in all scenarios (Fig. 5, bottom). In addition, the transgressive evolution effect408

seems easier to detect for recent hybridization events, even if they affect fewer tips. One409

intuition for that is that ancient hybridization effects are “diluted” by the variance of the410

BM, and are hence harder to detect, even if they affect more tips. This may be similar to411

the difficulty of detecting ancient hybridization compared to recent hybridizations.412

Test H1 vs H2.— We used a similar framework to study the power of the test to detect413
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heterogeneity in the transgressive evolution effects. We used here the same 4 networks than414

in the simulation study, with 32 tips and 2 to 8 hybridization events (Fig. 6, top), but with415

inheritance probabilities fixed to γ = 0.4. Transgressive evolution effects were set to416

d = ddu, with du fixed to dui = 1 for i ≤ h/2 and dui = −1 for i > h/2, h being the number417

of hybrids, which was even in all the scenarios we considered. Note that the average418

transgressive evolution effect was 0, because the dui values sum up to 0. This allowed us to419

reduce the “strength of heterogeneity” to a single parameter d, which we varied between 0420

and 5 (see appendices for the reduced expression of the noncentral coefficient). Like before,421

we computed the power of the test H1 vs H2 for three fixed standard levels (α in422

{0.01, 0.05, 0.1}).423

Figure 6 (bottom) shows a similar pattern: the test is more powerful for a high424

heterogeneity coefficient, and for recent hybridization events. For variation of about 3.5 in425

transgressive evolution, the power is close to one in all the scenarios considered here.426

Xiphophorus fishes427

Methods428

Network inference.— We revisited the example in Soĺıs-Lemus and Ané (2016) and429

re-analyzed transcriptome data from Cui et al. (2013) to reconstruct the evolutionary430

history of 23 swordtails and platyfishes (Xiphophorus: Poeciliidae). The original work431

included 24 taxa, but we eliminated X. nezahualcoyotl, because the individual sequenced in432

Cui et al. (2013) was found to be a lab hybrid not representative of the wild species X.433

nezahualcoyotl (personal communication). We re-analyzed their first set of 1183434

transcripts, and BUCKy (Larget et al. 2010) was performed on each of the 8,855 4-taxon435
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Figure 5: Theoretical power of the shared transgressive evolution test H0 vs H1, for four
different networks topologies with inheritance probability γ = 0.4 (top), and a BM with
ancestral value µ = 0 and variance rate σ2 = 1. The power of the test increases with the
transgressive evolution effect b (bottom).

sets. The resulting quartet CFs were used in SNaQ (Soĺıs-Lemus and Ané 2016), using436

h = 0 to h = 5 and 10 runs each. The network scores (negative log-pseudolikelihood)437

decreased very sharply from h = 0 to 1, strongly between h = 1 to 3, then decreased only438

slightly and somewhat linearly beyond h = 3 (Fig. 7, top left). Using a broken stick439

heuristic, one might suggest that h = 1 or perhaps h = 3 best fits the data. Given our440

focus on PCMs, we used both networks (h = 1 and 3) as well as the tree (h = 0) to study441

trait evolution, and to compare results across the different choices of reticulation numbers.442

Network calibration.— SNaQ estimates branch lengths in coalescent units, which are not443

expected to be proportional to time, and are also not estimable for some edges (like444
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Figure 6: Theoretical power of the test for heterogeneous transgressive evolution H1 vs H2,
for three different networks topologies with inheritance probability γ = 0.4 (top), and a BM
with ancestral value µ = 0 and variance σ2 = 1. The power of the test increases with the
heterogeneity coefficient d (bottom).

external branches to taxa represented by a single individual). To calibrate the network, we445

estimated pairwise genetic distances between taxa, and then optimized node divergence446

times using a least-square criterion, as detailed below.447

To estimate pairwise distances, individual gene trees were estimated with RAxML,448

using the HKY model and gamma-distributed rate variation among sites. For each locus,449

branch lengths were rescaled to a median of 1 to reduce rate variation across loci, before450

obtaining a pairwise distance matrix from each rescaled gene tree. Loci with one or more451

missing taxon were then excluded (leaving 1019 loci), and pairwise distance matrices were452

averaged across loci.453

This average pairwise distance matrix was used to estimate node ages on each454
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network (h = 0, 1, 3). The network pairwise distance between taxa i and j was taken as the455

weighted average distance between i and j on the trees displayed by the network, where456

the weight of a displayed tree is the product of the inheritance probabilities γe for all edges457

e retained in the tree. We estimated node ages that minimized the ordinary least-squares458

mismatch between the genetic pairwise distances and the network pairwise distances.459

Traits.— With data presented in Cui et al. (2013) and following their study on sword460

evolution, we revisited the hypotheses that females have a preference for males with longer461

swords, and that the common ancestor of the genus Xiphophorus likely had a sword.462

Rather than using the methods of parsimony character mapping and independent contrasts463

as in Cui et al. (2013), we tested the effect of hybridization on the ancestral state464

reconstructions and the correlation between both traits using networks with zero, one or465

three hybridization events, using phyloNetworklm. For each network, the topology and466

branch lengths were assumed to be perfectly estimated, and fixed. We also tested for467

phylogenetic signal in both traits on all networks using Pagel’s λ, as well as for468

transgressive evolution, using the F statistics defined above. For the phylogenetic469

regression, more than half of the species were excluded because they lack information on470

female preference.471

Along with the datasets used, two executables julia markdown (.jmd) files are472

provided in the online supplementary material, allowing the interested reader to reproduce473

all the analyses described here.474

Results475

The Xiphophorus fish topologies with zero, one, and three hybridization events were476

calibrated using pairwise genetic distances (Fig. 7, bottom, for h = 0 and 3). With h = 1,477

the reticulation event did not necessarily imply the existence of unsampled or extinct taxa,478
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so we constrained this reticulation to occur between contemporary populations (with an479

edge length of 0). For the network with h = 3, two reticulation events implied the existence480

of unsampled taxa, so we calibrated this network without constraint, to allow minor481

reticulation edges of positive lengths. Optimized branch lengths were similar between482

networks. Branch lengths were estimated to be 0 for some tree edges and some483

unconstrained hybrid edges, creating polytomies.484

Using networks with 0, 1 or 3 hybridization events, we found a positive correlation485

between female preference and longer swords in males, but this relationship was not486

statistically significant (h = 0: p = 0.096; h = 1: p = 0.110; h = 3: p = 0.106). Ancestral487

state reconstruction of sword index shows the presence of a sword at the MRCA of each488

network because unsworded species were assigned a value of 0.275 in Cui et al. (2013) and489

the ancestral state in all networks was reconstructed to be 0.46. Phylogenetic signal was490

high for both traits with estimated λ = 1.0 on all networks (or above 1.0 with491

unconstrained maximum likelihood).492

We also applied our tests for transgressive evolution on both traits, using the493

network with 3 hybridization events (Fig. 7, lower right). For the sword index, we found no494

evidence of transgressive evolution (p = 0.55 and p = 0.28, respectively, for homogeneous or495

heterogeneous transgressive evolution). However, we did find some evidence for an496

heterogeneous transgressive evolution effect for female preference. Testing H2 against H1497

gives p = 0.0087. Testing H2 against H0 directly, we get p = 0.0064 (see the Appendix for498

a description of this third test, also based on a Fisher statistic). However, transgressive499

evolution effects were in opposite directions (one positive and two negative), such that the500

common effect was not significantly different from 0: H1 vs H0 gave p = 0.11.501

Discussion502
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Figure 7: Results of the analysis on the fish dataset. Top left: negative pseudo log-likelihood
score of the estimated networks with various numbers of hybridizations. Top right: scatter
plot of sword index and female preference. Gray stars are taxa missing female preference
data, for which female preference was predicted using ancestral state reconstruction of the
trait on the network (independent of sword index). Bottom: ancestral state reconstruction
of both traits, independently, using a BM model on the tree (h = 0, left) or on the network
with h = 3 (right). Starred values indicate taxa with missing preference data, and imputed
female preference values. Branches with an estimated length zero are indicated by a green
dot, to show the network topologies.
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Impact of the Network.— The results from the fish dataset analysis using a tree (h = 0) or503

a network (h = 1 or h = 3) show that taking the hybridization events into account has a504

small impact on the ancestral state reconstruction and on the estimation of parameters,505

both for the regression analysis and for the test for phylogenetic signal. This finding was506

corroborated by simulations: when we ignored hybridization events, using a tree while the507

true underlying model was a network, we found that the estimation of parameters µ and σ2
508

was only slightly affected (data not shown). These results may indicate that major509

previous findings, that used a phylogenetic tree where a phylogenetic network might have510

been more appropriate, are likely to be robust to a violation of the tree-like ancestry511

assumption. Our new model may simply refine previous estimates in many cases.512

However, the structure of the network has a strong impact on the study of513

transgressive evolution. This is expected, as the model allows for shifts below each inferred514

hybrid. If one reticulation is undetected, or if one was incorrectly located on the network,515

then the model will be ill-fitted, leading to potentially misleading conclusions. As an516

example, we reproduced the analysis of transgressive evolution for female preference on the517

network with three hybridization events, but this time pruning the network, to keep only518

the taxa with a measured trait. Preference data were missing for species X. signum, X.519

alvarezi and X. mayae, such that X. helleri became the only species impacted by one of520

the reticulation event, which became a simple loop in the network. In other words, X.521

helleri was the only descendant of the reticulation, and also the closest relative of the522

hybrid’s parent among the remaining taxa. The reticulation could be dropped from the523

pruned network. This new and simplified network only retained the two hybridization524

events associated with negative shifts. As a consequence, and contrary to the conclusion we525

found in the main text, we found support for homogeneous transgressive evolution526

(p = 0.0071 for H1 vs H0), and no support for heterogeneous effects (p = 0.88 for H1 vs527

H0). This illustrates that caution is needed for the interpretation of tests of transgressive528
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evolution, as those highly depend on the quality of the input network inference, which is a529

recognized hard problem.530

Network Calibration.— To conduct PCMs, we developed a distance-based method to531

calibrate a network topology into a time-consistent network. This is a basic method that532

makes a molecular clock assumption on the input pairwise distance matrix. Important533

improvements could be made to account for rate variation across lineages, and to use534

calibration dates from fossil data, like in relaxed clock calibration methods for phylogenetic535

trees such as r8s (Sanderson 2003) or BEAST (Drummond et al. 2006). In our fish536

example, we averaged pairwise distances across loci, to mitigate a violation of the537

molecular clock that might be specific to each locus.538

Our method estimated some branch lengths to be 0, thereby creating polytomies.539

This behavior is shared by other well-tested distance-based methods like Neighbor-Joining540

(Saitou and Nei 1987), which can also estimate 0 or even negative branch lengths.541

We also noticed that several calibrations could fit the same matrix of genetic542

pairwise distances equally well, pointing to a lack of identifiability of some node ages. This543

issue occurred for the age of hybrid nodes and of their parent nodes. Branch lengths and544

node ages around reticulation points were also found to be non-identifiable by Pardi and545

Scornavacca (2015), when the input data consist of the full set of trees displayed by the546

network, and when these trees are calibrated. This information on gene trees can only547

identify the ”unzipped” version of the network, where unzipping a reticulation means548

moving the hybrid point as close as possible to its child node (see Pardi and Scornavacca549

2015, for a rigorous description of “canonical” networks). This unzipping operation creates550

a polytomy after the reticulation point. We observed such polytomies for two events in our551

calibrated network (Fig. 7, bottom right). Pardi and Scornavacca (2015) proved that the552

lack of identifiability is worse for time-consistent networks, which violates their “NELP”553
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property (no equally-long paths). Lack of identifiable branch lengths around reticulations554

is thus observed from different sources of input data, and requires more study. Methods555

utilizing multiple sources of data might be able to resolve the issue. For instance, gene tree556

discordance is informative about branch lengths in coalescent units around reticulation557

nodes, and could rescue the lack of information from other input data like pairwise558

distances or calibrated displayed trees. More work is also needed to study the robustness of559

transgressive evolution tests to errors in estimated branch lengths.560

Comparison with Jhwueng and O’Meara (2017).— In their model, Jhwueng and O’Meara561

(2017) include hybridization events as random shifts. Using their notations, each hybrid k562

shifts by a coefficient log β + δk, with δk a random Gaussian with variance νH :563

δk ∼ N (0, νH). This formulation provides a mixed effects linear model, with shifts564

appearing as random effects. In this framework, the test of heterogeneity (H2 vs H1)565

amounts to a test of null variance, νH = 0. In the context of mixed effects linear models,566

such tests are also well studied, but are known to be more difficult than tests of fixed567

effects (Lehman 1986; Khuri et al. 1998). Assuming that the variance νH is 0, our test for a568

common transgressive evolution effect (H1 vs H0) is then similar to the likelihood-based569

test for log β = 0 in Jhwueng and O’Meara (2017). A mixed-effect model is legitimate,570

although it might be more difficult to study theoretically, and its inference can be more571

tricky. Jhwueng and O’Meara (2017) indeed report some numerical problems, and rather572

large sampling error for both log β and νH . Current state-of-the-art methods to infer573

phylogenetic networks cannot handle more than 30 taxa and no more than a handful of574

reticulation events (Hejase and Liu 2016). Hence, it might not be surprising that575

estimating a variance νH for an event that is only observed two or three times is indeed576

difficult. On data sets with few reticulations, we believe that our fixed effect approach can577

be better suited. However, our approach adds a parameter for each hybridization event,578
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whereas the random-effect approach of Jhwueng and O’Meara (2017) maintains only two579

parameters (mean and variance). As the available networks are likely to grow over the next580

few decades, this later approach might be preferable in the future.581

Perspectives.— As stated in the introduction, PCMs rely on two fundamental components:582

the species relationship model (tree or network), and the model of trait evolution. Here, we583

showed how a network could be used instead of a tree, but we used the most simple model584

of trait evolution (BM). Future developments could adapt some of the more refined models585

to the network framework, in order to capture the diverse tempo and modes of evolution.586

In doing so, the salient point to be careful about is the merging rule one might adopt for587

all these processes.588

For instance, the Ornstein-Uhlenbeck (OU) process is popular to model trait589

evolution (Hansen 1997). It has extra parameters compared to the BM: a primary590

optimum for the trait, and α, a rubber band parameter that controls how the trait is591

pulled toward its optimum. Either one might vary across lineages. What behavior would592

be biologically realistic at reticulation points? For an OU with one single optimum value593

over the whole tree, the weighted average merging rule could be adopted. But how should594

transgressive evolution be modeled? With the OU process, shifts have been traditionally595

considered on the optimal value rather that directly on the process’ value, as we did for the596

BM (Butler and King 2004; Beaulieu et al. 2012). If a transgressive evolution shift is597

allowed on the optimum value, this would result in several optima on different regions of598

the network, which might not capture biological realism. A related problem is to find a599

realistic merging rule for reticulations between two species evolving in two different600

phylogenetic groups with different optima.601

More generally, the numerous improvements that have been developed for PCMs on602

trees should be adapted to phylogenetic networks, such as support for measurement error603
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or intra-specific variation (as in, e.g. Lynch 1991; Ives et al. 2007; Felsenstein 2008;604

Goolsby et al. 2017); distinct regimes of evolution on different regions of the network (see605

e.g. Beaulieu et al. 2012); and multivariate processes (Felsenstein 1985; Bartoszek et al.606

2012; Clavel et al. 2015).607

Sticking with the vanilla BM, it could also be interesting to look into other merging608

rules at reticulation points. For instance, instead of taking a weighted average, one could609

draw either one of the two parents’ trait for the hybrid, with probabilities defined by the610

weights γa and γb of the parents. If such a rule could be justified from a modelling point of611

view, further work would be needed to derive the induced distribution of the trait at the612

tips of the network.613
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Larget B, Kotha S, Dewey C, Ané C. 2010. BUCKy: Gene tree / species tree reconciliation701

with Bayesian concordance analysis. Bioinformatics. 26:2910–2911.702

Lehman EL. 1986. Testing Statistical Hypotheses. Springer Texts in Statistics. New York,703

NY: Springer New York.704

Long C, Kubatko L. 2017. The effect of gene flow on coalescent-based species-tree705

inference. Systematic Biology. p. submitted for Symposium issue.706

Lynch M. 1991. Methods for the Analysis of Comparative Data in Evolutionary Biology.707

Evolution. 45:1065–1080.708

Maddison WP. 1997. Gene trees in species trees. Systematic Biology. 46:523.709

Mallet J. 2005. Hybridization as an invasion of the genome. Trends in Ecology &710

Evolution. 20:229–237.711

Mallet J. 2007. Hybrid speciation. Nature. 446:279–283.712

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/194050doi: bioRxiv preprint 

https://doi.org/10.1101/194050
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature.713

401:877–884.714

Paradis E, Claude J, Strimmer K. 2004. APE: Analyses of Phylogenetics and Evolution in715

R language. Bioinformatics. 20:289–290.716

Pardi F, Scornavacca C. 2015. Reconstructible phylogenetic networks: Do not distinguish717

the indistinguishable. PLOS Computational Biology. 11:e1004135.718

Pennell MW, Harmon LJ. 2013. An integrative view of phylogenetic comparative methods:719

connections to population genetics, community ecology, and paleobiology. Annals of the720

New York Academy of Sciences. 1289:90–105.721

Pickrell JK, Pritchard JK. 2012. Inference of population splits and mixtures from722

genome-wide allele frequency data. PLoS Genetics. 8:e1002967.723

Revell LJ. 2012. phytools: An R package for phylogenetic comparative biology (and other724

things). Methods in Ecology and Evolution. 3:217–223.725

Rieseberg LH, Archer Ma, Wayne RK. 1999. Transgressive segregation, adaptation and726

speciation. Heredity. 83:363–372.727

Robinson GK. 1991. That BLUP is a good thing: The estimation of random effects.728

Statistical Science. 6:15–32.729

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing730

phylogenetic trees. Molecular Biology and Evolution. 4:406–425.731

Sanderson MJ. 2003. r8s: inferring absolute rates of molecular evolution and divergence732

times in the absence of a molecular clock. Bioinformatics. 19:301–302.733

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/194050doi: bioRxiv preprint 

https://doi.org/10.1101/194050
http://creativecommons.org/licenses/by-nc-nd/4.0/


Schluter D, Price T, Mooers AØ, Ludwig D. 1997. Likelihood of ancestor states in734

adaptive radiation. Evolution. 51:1699–1711.735

Searle SR. 1987. Linear Models for Unbalanced Data. Wiley Series in Probability and736

Statistics. Wiley.737
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Soĺıs-Lemus C, Bastide P, Ané C. 2017. PhyloNetworks: a package for phylogenetic740

networks. Molecular Biology and Evolution. .741
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We prove here both formula (1) for the BM variance matrix and Proposition 1755

giving an efficient algorithm to calculate this matrix. We do so by induction on the number756

of nodes in the network: N = n+m. When the network is made of a single node i = 1,757

equation (1) and Proposition 1 are obviously correct. We now assume that these results are758

correct for any phylogenetic network with up to N − 1 nodes, and we consider a network759

with N nodes. When these nodes are sorted in preorder, the last node i = N is necessarily760

a tip (with no descendants), so removing it and its parent edges from the original network761

gives a valid phylogenetic network with N − 1 nodes. Using the same notations as in the762

main text, we can focus on the case i = N . Because of the preorder, there is no directed763

path from i to j for any j < i. We use here the formulas of Definition 1, and assume σ2 = 1764

without loss of generality.765

� If i is a tree node, then Xi = Xa + ε, with ε ∼ N (0, `ea), ε independent of the values766

Xj in the subnetwork (j < i). Moreover, a < i because of the preorder. Then:767

Cov [Xi;Xj] =


Cov [Xa;Xj] if j < i

Cov [Xa;Xa] + `ea if j = i

and all the needed quantities on the right-hand side have already been computed768

because a < i. This proves (3) in Proposition 1. Next, we seek to prove (1). Note769

that it is valid by induction for all nodes in the subnetwork, and we just need to770

prove it for i = N and any j ≤ i. By induction, we have that, for any j < i,771

Cov [Xa;Xj] =
∑
pa∈Pa
pj∈Pj

(∏
e∈pa

γe

)(∏
e∈pj

γe

) ∑
e∈pa∩pj

`e .

Because a is the only parent of node i = N , any paths from the root to i must start772

as a path from the root to a, and then follow ea between a and i. In other words, any773
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path from the root to a corresponds to a unique path from the root to i:774

Pi = {pi = (pa, ea) : pa ∈ Pa} .

Moreover, the inheritance weight of path pa and pi = (pa, ea) are the same, because ea775

is a tree edge with γea = 1:
∏

e∈pi γe =
∏

e∈pa γe. Now take j < i. Any path pj from776

the root to j cannot go through i (because of the preorder), therefore it cannot go777

through ea, and the edges shared by pi and pj are exactly the same as the edges778

shared by pa and pj. Putting these considerations together, we get:779

Cov [Xi;Xj] = Cov [Xa;Xj] =
∑
pa∈Pa
pj∈Pj

(∏
e∈pa

γe

)(∏
e∈pj

γe

) ∑
e∈pa∩pj

`e

=
∑
pi∈Pi
pj∈Pj

(∏
e∈pi

γe

)(∏
e∈pj

γe

) ∑
e∈pa∩pj

`e ,

which proves (1) for i = N and j < i. For j = i, any path pj from the root to j = i780

must go through a and ea, so that the shared edges between pi and pj are the edges781

shared by pa and pj, plus edge ea. Therefore, we get that782

Cov [Xi;Xi] = Cov [Xa;Xa] + `ea

=
∑
p1∈Pa
p2∈Pa

(∏
e∈p1

γe

)(∏
e∈p2

γe

) ∑
e∈p1∩p2

`e + `ea

=
∑
p1∈Pi
p2∈Pi

(∏
e∈p1

γe

)(∏
e∈p2

γe

)(( ∑
e∈p1∩p2

`e

)
− `ea

)
+ `ea

=
∑
p1∈Pi
p2∈Pi

(∏
e∈p1

γe

)(∏
e∈p2

γe

) ∑
e∈p1∩p2

`e
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where the last equality follows from
∑

p∈Pi

(∏
e∈p

)
= 1. This completes the proof of783

(1), for i = j.784

� If i is a hybrid node, then Xi = (γeaXa + γebXb) + (γeaεa + γebεb), with εk ∼ N (0, `ek),785

and εk independent of the all values Xj in the subnetwork (j < i) for k = a and786

k = b. Again, a < i and b < i because of the preorder. Then:787

Cov [Xi;Xj] =


γeaCov [Xa;Xj] + γebCov [Xb;Xj] if j < i

γ2
ea (Cov [Xa;Xa] + `ea) + γ2

eb
(Cov [Xb;Xb] + `eb)

+ 2γeaγebCov [Xa;Xb]

if j = i .

This proves (4) in Proposition 1. Next, we focus on proving (1). Again, it is valid by788

induction for all nodes in the subnetwork, and we need to prove it for i = N and any789

j ≤ i. By induction, (1) holds for a, b, and any j < i. Then, because a and b are the790

only parents of i, any path pi from the root to i must go through a and ea, or791

through b and eb (and not both). In other words:792

Pi = {(pa, ea) : pa ∈ Pa} ∪ {(pb, eb) : pb ∈ Pb} .

Now considering node j < i and a path pj from the root to j, pj cannot go through i793

so it cannot go through ea or eb. Therefore, the shared edges between pj and794

pi = (pa, ea) are exactly the same edges as those shared between pj and pa, and the795

shared edges between pj and pi = (pb, eb) are also the same as those shared between796
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pj and pb. For j < i, we get:797

∑
pi∈Pi
pj∈Pj

(∏
e∈pi

γe

)(∏
e∈pj

γe

) ∑
e∈pi∩pj

`e

=
∑
pa∈Pa
pj∈Pj

(∏
e∈pa

γe

)
γea

(∏
e∈pj

γe

) ∑
e∈pa∩pj

`e +
∑
pb∈Pb
pj∈Pj

(∏
e∈pb

γe

)
γeb

(∏
e∈pj

γe

) ∑
e∈pb∩pj

`e

= γeaCov [Xa;Xj] + γebCov [Xb;Xj] by induction

= Cov [Xi;Xj] from above,

proving (1) for i = N and j < i. For j = i = N , we similarly decompose the set of798

paths Pi into two sets, either going through a or through b:799

∑
p1∈Pi
p2∈Pi

(∏
e∈p1

γe

)(∏
e∈p2

γe

) ∑
e∈p1∩p2

`e

=
∑
p1∈Pa
p2∈Pa

(∏
e∈p1

γe

)
γea

(∏
e∈p2

γe

)
γea

(( ∑
e∈p1∩p2

`e

)
+ `ea

)

+ 2×
∑
p1∈Pa
p2∈Pb

(∏
e∈p1

γe

)
γea

(∏
e∈p2

γe

)
γeb

∑
e∈p1∩p2

`e

+
∑
p1∈Pb
p2∈Pb

(∏
e∈p1

γe

)
γeb

(∏
e∈p2

γe

)
γeb

(( ∑
e∈p1∩p2

`e

)
+ `eb

)

= γ2
ea (Cov [Xa;Xa] + `a) + 2γeaγebCov [Xa;Xb] + γ2

eb
(Cov [Xb;Xb] + `b)

= Cov [Xi;Xi] by induction, and from above.

This completes the proof of (1), for i = j, and for the last case when i is a hybrid800

node.801
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Variance Reduction802

Here, we prove Formula (2). As in the main text, consider a time-consistent803

network. For tip i, let ti be the length of any path from the root to i. If the history of tip i804

involves one or more reticulations then take any two paths pi and qi in Pi. We have:805 ∑
e∈pi∩qi `e <

∑
e∈pi `e = ti, with a strict inequality if pi and qi are different paths. Seeing806

πpi =
∏

e∈pi γe as the probability associated with the path pi (with
∑

pi∈Pi
πpi = 1), we get807

from Equation (1):808

Vii <
∑

pi,qi∈Pi

πpiπqiti ≤ ti,

with the equality fulfilled if there is a unique path from the root to taxon i, i.e. if i has no809

hybrid ancestry.810

Pagel’s λ Variance811

Proof of Proposition 2. In Equation 1, the first equation is straightforward, because all the812

edges shared by the paths to i and to j are internal edges, whose lengths are multiplied by813

λ. Now take a tip node i. The first step of the transformation ensures that i is a tree node.814

Let a be its parent node, and parent branch ea. From the recursive formula given in815

Proposition 1, the variance at node i is proportional to:816

Vii(λ) = V (λ)aa + `ea(λ) = λVaa + λ`ea + (1− λ)ti = λVii + (1− λ)ti ,

hence the announced formulas.817

Shifted BM model with the Descendence Matrix818
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Proof of Formula (7). The shifts are fixed, so they do not impact the variance structure of819

the traits, and we only need to show that E [Y] = T∆. Here, we prove a slightly more820

general formula on the complete vector of trait values at all the nodes, that is:821

E [X] = U∆. The original equality is easily derived from this one by keeping the tip values822

only.823

We show this equality recursively. Assume that the nodes are numbered in preorder.824

Denote by Ui the ith row-vector of U. Node i = 1 is the root, which is the descendant of no825

other node than itself, so826

E [X1] = µ = ∆1 = U1∆ .

We now assume that E [Xj] = Uj∆ for all nodes j < i, and we seek to prove that this827

property is also true for node i.828

� If i is a tree node, then denote by a its unique parent and by ea the edge from a to i.829

For any node k 6= i, Pk→i = {(pa, ea) : pa ∈ Pk→a}. Since ea is a tree edge with830

γea = 1, we get from definition 3 that:831

Uik =


Uak ∀ k 6= i

1 if k = i ,

hence832

E [Xi] = E [Xa] + ∆i = Ua∆ + ∆i = Ui∆ .

� If i is a hybrid, then denote by a and b its two parents, by ea and eb the833

corresponding edges, with coefficients γea and γeb . Then for any node k 6= i, we have:834
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Pk→i = {(pa, ea) : pa ∈ Pk→a} ∪ {(pb, eb) : pb ∈ Pk→b}, and using definition 3:835

Uik =


γeaUak + γebUbk ∀ k 6= i

1 if k = i .

Since no shift can occur on the hybrid branches, ∆i = 0 by convention and:836

E [Xi] = γeaE [Xa] + γebE [Xb] = γeaU
a∆ + γeaU

b∆ = Ui∆ .

This ends the recursion, and the proof of (7).837

Note that this proof also gives an efficient recursive way to compute the838

descendence matrix U.839

Fisher Test for Transgressive Evolution840

The Fisher statistics used in Section Transgressive Evolution have the following841

expression:842

F10 =
‖Y − ProjR Y‖2

(Vtip)−1 −
∥∥Y − Proj[R N̄] Y

∥∥2

(Vtip)−1∥∥Y − Proj[R N̄] Y
∥∥2

(Vtip)−1

n− r[R N̄]

r[R N̄] − rR

F21 =

∥∥Y − Proj[R N̄] Y
∥∥2

(Vtip)−1
−
∥∥Y − Proj[R N] Y

∥∥2

(Vtip)−1∥∥Y − Proj[R N] Y
∥∥2

(Vtip)−1

n− r[R N]

r[R N] − r[R N̄]

where ProjM denotes the projection onto the linear space spanned by the columns of843

matrix M, with respect to the metric defined by Vtip: ‖X‖2
(Vtip)−1 = XT (Vtip)−1X. In844

other words, for any vector X:845

ProjM X = argmin
U∈Span(M)

‖X−U‖2
(Vtip)−1 = M(MT (Vtip)−1M)−1MT (Vtip)−1X .
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These statistics follow a noncentral Fisher distribution as given in (9) and (10) of the main846

text, where847 
∆2

10(R, N̄,Vtip) =
∥∥(I− ProjR)N̄

∥∥2

(Vtip)−1

∆2
21(d,R, N̄,N,Vtip) =

∥∥(I− Proj[R N̄])Nd
∥∥2

(Vtip)−1
.

When studying the power of the test H1 vs H2, we took d = ddu, so that the848

noncentral coefficient is:849

1

2σ2
∆2

21(d,R, N̄,N,Vtip) =
d2

2σ2

∥∥(I− Proj[R N̄])Ndu
∥∥2

(Vtip)−1

and, as the networks are fixed, it only varies with the heterogeneity coefficient d.850

Note that a third statistic, F20, can be defined in a similar way to test H2 vs H0851

directly. We first re-write the linear model as:852

Y = Rβ + Nδ + E , E ∼ N (0, σ2Vtip) ,

where there are no constraints on coefficients δ. Then the F statistic can be written as:853

F20 =
‖Y − ProjR Y‖2

(Vtip)−1 −
∥∥Y − Proj[R N] Y

∥∥2

(Vtip)−1∥∥Y − Proj[R N] Y
∥∥2

(Vtip)−1

n− r[R N]

r[R N] − rR
.

In the same way, it follows under H2 a noncentral Fisher distribution:854

F20 ∼ F
(
r[R N] − rR, n− r[R N],

1

2σ2
∆2

20(d,R,N,Vtip)

)
,

with855

∆2
20(δ,R,N,Vtip) = ‖(I− ProjR)Nδ‖2

(Vtip)−1 .

Thank to the flexible framework provided by the GLM ftest function, all these tests are856
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readily implemented, as long as one can fit the three models (H0, H1, and H2).857
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