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2 MaIAGE, INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France8

3 Department of Statistics, University of Wisconsin-Madison, WI, 53706, USA9

4 Department of Botany, University of Wisconsin-Madison, WI, 53706, USA10

Corresponding author: Paul Bastide, UMR MIA-Paris, AgroParisTech, INRA,11
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Abstract.— The goal of Phylogenetic Comparative Methods (PCMs) is to study the15

distribution of quantitative traits among related species. The observed traits are often seen16

as the result of a Brownian Motion (BM) along the branches of a phylogenetic tree.17

Reticulation events such as hybridization, gene flow or horizontal gene transfer, can18

substantially affect a species’ traits, but are not modeled by a tree. Phylogenetic networks19

have been designed to represent reticulate evolution. As they become available for20

downstream analyses, new models of trait evolution are needed, applicable to networks.21

One natural extension of the BM is to use a weighted average model for the trait of a22

hybrid, at a reticulation point. We develop here an efficient recursive algorithm to compute23

the phylogenetic variance matrix of a trait on a network, in only one preorder traversal of24

the network. We then extend the standard PCM tools to this new framework, including25

phylogenetic regression with covariates (or phylogenetic ANOVA), ancestral trait26

reconstruction, and Pagel’s λ test of phylogenetic signal. The trait of a hybrid is sometimes27

outside of the range of its two parents, for instance because of hybrid vigor or hybrid28

depression. These two phenomena are rather commonly observed in present-day hybrids.29

Transgressive evolution can be modeled as a shift in the trait value following a reticulation30

point. We develop a general framework to handle such shifts, and take advantage of the31

phylogenetic regression view of the problem to design statistical tests for ancestral32

transgressive evolution in the evolutionary history of a group of species. We study the33

power of these tests in several scenarios, and show that recent events have indeed the34

strongest impact on the trait distribution of present-day taxa. We apply those methods to35

a dataset of Xiphophorus fishes, to confirm and complete previous analysis in this group.36

All the methods developed here are available in the Julia package PhyloNetworks.37

(Keywords: Phylogenetic Networks, Phylogenetic Comparative Methods, Transgressive38

Evolution, Heterosis, PhyloNetworks)39
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The evolutionary history of species is known to shape the present-day distribution40

of observed characters (Felsenstein 1985). Phylogenetic Comparative Methods (PCMs)41

have been developed to account for correlations induced by a shared history in the analysis42

of a quantitative dataset (Pennell and Harmon 2013). They usually rely on two main43

ingredients: a time-calibrated phylogenetic tree, and a dynamical model of trait evolution,44

that should be chosen to capture the features of the trait evolution over time. Much work45

has been made on the second ingredient, with more and more sophisticated models of trait46

evolution, with numerous variations around the original Brownian Motion (BM), see for47

instance Felsenstein (1985); Hansen and Martins (1996); Hansen (1997); Blomberg et al.48

(2003); Butler and King (2004); Beaulieu et al. (2012); Landis et al. (2013); Blomberg49

(2016), to cite only but a few.50

In contrast, the first assumption has not been questioned until now (but see51

Jhwueng and O’Meara 2018). However, phylogenetic trees are not always well suited to52

capture relationships between species, and phylogenetic networks are sometimes needed.53

Phylogenetic networks differ from trees by added reticulation points, where two distinct54

branches come together to create a new species. Such reticulations can represent various55

biological mechanisms, like hybridization, gene flow or horizontal gene transfer, that are56

known to be common in some groups of organisms (Mallet 2005, 2007). Ignoring those57

events can lead to misleading tree inference (Kubatko 2009; Soĺıs-Lemus et al. 2016; Long58

and Kubatko 2018). Thanks to recent methodological developments, the statistical59

inference of reliable phylogenetic networks has become possible (Maddison 1997; Degnan60

and Salter 2005; Kubatko 2009; Yu et al. 2012, 2014; Yu and Nakhleh 2015; Soĺıs-Lemus61

and Ané 2016). Although these state-of-the-art methods are still limited by their62

computational burden, we believe that the use of these networks will increase in the future.63

The goal of this work is to propose an adaptation of standard PCMs to a group of species64

with reticulate evolution, related by a network instead of a tree.65
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We describe an extension of the BM model of trait evolution to a network. The66

main modeling choice is about the trait of hybrid species. How should these species inherit67

their trait from their two parents? In this work, we first choose a weighted-average merging68

rule: the trait of a hybrid is a mixture of its two parents, weighted by their relative genetic69

contributions. This rule can be seen as a reasonable null model. However, in some cases,70

the trait of a hybrid is observed to be outside of the range of its two parents. This71

phenomenon can be modeled by a shift in the trait value occurring right after the72

reticulation point: the hybrid trait value being the weighted average of the two parents,73

plus an extra term specific to the hybridization event at hand. Such a shift can model74

several biological mechanisms, such as transgressive segregation (Rieseberg et al. 1999) or75

heterosis (Fiévet et al. 2010; Chen 2013), with hybrid vigor (when the hybrid species is76

particularly fit to its environment) or depression (when the hybrid is ill-fit). In the77

following, we will refer to this class of phenomena using the generic term transgressive78

evolution. Here, this term only refers to the hybrid trait being different from the weighted79

average of its parents. This model allows for an explicit mathematical derivation of the trait80

distribution at the tips of the network and extends to networks the use of standard PCM81

tools such as phylogenetic regression (Grafen 1989, 1992), ancestral state reconstruction82

(Felsenstein 1985; Schluter et al. 1997) or tests of phylogenetic signal (Pagel 1999).83

In the following, we first describe this BM model of trait evolution and show how it84

fits into the standard PCM framework. We then show how to add shifts in the trait values85

to model transgressive evolution. We propose a statistical test for transgressive evolution.86

These methods are validated with a simulation study, and with the theoretical study of the87

power of the tests in a range of scenarios. Finally, we revisit the analysis of a Xiphophorus88

dataset about sword index and female preference made by Cui et al. (2013), in the light of89

our new network methods.90
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Model91

In our model for trait evolution on a phylogenetic network, the novel aspect is the92

merging rule at reticulation events, compared to standard PCMs on trees. Our model is93

very similar to that defined in Jhwueng and O’Meara (2018), but we adopt a different94

statistical view point, based on the phylogenetic linear regression representation.95

Trait Evolution on Networks96

Phylogenetic Network.— In this work, we assume that we have access to a rooted, calibrated97

and weighted phylogenetic network that describes the relationships between a set of98

observed species (Huson et al. 2010). In such a network, reticulations, or hybrids, are nodes99

that have two parent nodes. They receive a given proportion of their genetic material from100

each parent. This proportion is controlled by a weight γe that represents the inheritance101

probability associated with each branch e of the network. A branch that is tree-like, i.e.102

that ends at a non-hybrid node, has a weight γe = 1. We further assume that the length `e103

of a branch e represents evolutionary time. In the example in Figure 1a, the two hybrid104

edges have length zero, but this need not to be the case, see Jhwueng and O’Meara (2018);105

Degnan (2017).106

Brownian Motion Model.— Since Felsenstein (1985), the Brownian Motion (BM) has been107

intensively used to model trait evolution on phylogenetic trees. It is well adapted to model108

several biological processes, from random genetic drift, to rapid adaptation to a fluctuating109

environment (see e.g. Felsenstein 2004, Chap. 24). In order to adapt this process to a110

network instead of a tree, we define a weighted average merging rule at hybrids, as defined111

below. This rule expresses the idea that a hybrid inherits its trait from both its parents,112

with a relative weight determined by the proportion of genetic material received from each:113
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(b) BM on the branches of the network

Figure 1: Realization of a BM (with µ = 0 and σ2 = 0.04) on a calibrated network. Only
tip values are observed (here at time t = 0). For simplicity, the two hybrid branches were
chosen to have a length of 0, but this need not be the case. Inheritance probabilities at the
hybridization event are γ6a and γ6b, with γ6a + γ6b = 1.

if it inherits 90% of its genes from parent A, then 90% of its trait value should be114

determined by the trait of A. Because the BM usually models the evolution of a polygenic115

character, that is the additive result of the expression of numerous genes, this rule is a116

natural null hypothesis.117

Definition 1 (BM on a Network). Consider a rooted phylogenetic network with branch118

lengths and inheritance probabilities. Let Xv be the random variable describing the trait119

value of node (or vertex) v.120

• At the root node ρ, we assume that Xρ = µ is fixed.121

• For a tree node v with parent node a, we assume that Xv is normally distributed122

with mean Xa + ∆e and with variance σ2`e, with σ2 the variance rate of the BM, and123

`e the length of the parent edge e from a to v. ∆e is a (fixed) shift value associated124

with branch e, possibly equal to 0.125

• For a hybrid node v with parent nodes a and b, we assume that Xv is normally126

distributed with mean γeaXa + γebXb, where ea and eb are the hybrid edges from a127
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(and b) to v. If these edges have length 0, meaning that a, b and their hybrid v are128

contemporary, then Xv is assumed to have variance 0, conditional on the parent129

traits Xa and Xb. In general, the conditional variance of Xv is γeaσ
2`ea + γebσ

2`eb .130

For the sake of identifiability, shifts are not allowed on hybrid branches (see Section131

on Transgressive Evolution for further details).132

An example of such a process (without shift) is presented Figure 1b. This process is133

similar to Jhwueng and O’Meara (2018), except that the shifts are treated differently. See134

Section on Transgressive Evolution and Discussion for more information on the links and135

differences between the two models. For the sake of generality, shifts are allowed on any136

tree edge. We will see in the next section how they are used to model transgressive137

evolution. In the rest of this section, we take all shifts to be zero, and only consider the138

un-shifted BM (∆e = 0 for all edges e).139

Note that the state at the root, µ, could also be drawn from a Gaussian140

distribution, instead of being fixed. This would not change the derivations below, and141

would simply add a constant value to all terms in the variance matrix.142

Variance Matrix143

From a Tree to a Network.— The distribution of trait values at all nodes, X, can be fully144

characterized as a multivariate Gaussian with mean µ1m+n and variance matrix σ2C,145

where 1m+n is the vector of ones, n is the number of tips and m the number of internal146

nodes. The matrix C, which depends on the topology of the network, encodes the147

correlations induced by the phylogenetic relationships between taxa. When the network148

reduces to a tree (if there are no hybrids), then C is the well-known BM covariance149

(Felsenstein 1985): Cij = tij is the time of shared evolution between nodes i and j, i.e. the150

time elapsed between the root and the most recent common ancestor (MRCA) of i and j.151
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When the network contains hybrids, this formula is not valid anymore. To see this,152

let’s re-write tij as:153

tij =
∑

e∈pi∩pj

`e

where pi is the path going from the root to node i. This formula just literally expresses154

that tij is the length of the shared path between the two nodes, that ends at their MRCA.155

On a network, the difficulty is that there is not a unique path going from the root to a156

given node. Indeed, if there is a hybrid among the ancestors of node i, then a path might157

go “right” of “left” of the hybrid loop to go from the root to i.158

Under the BM model in Definition 1 (with a fixed root), it turns out that we need159

to sum over all the possible paths going from the root to a given node, weighting paths by160

the inheritance probabilities γe of all the traversed edges:161

Cij =
∑
pi∈Pi
pj∈Pj

(∏
e∈pi

γe

)(∏
e∈pj

γe

) ∑
e∈pi∩pj

`e (1)

where Pi denotes the set of all the paths going from the root to node i.162

This general formula for C was first presented in Pickrell and Pritchard (2012) in163

the context of population genomics. A formal proof is provided here (Appendix).164

Remark 1 (Variance reduction). From the expression above, we can show that the variance165

of any tip i decreases with each hybridization ancestral to i. Consider a time-consistent166

network, in the sense that all paths from the root to a given hybrid node have the same167

length, as expected if branch lengths measure calendar time. Note that this is the opposite168

of the “NELP” property (No Equally Long Paths) defined by Pardi and Scornavacca169

(2015). For tip i, let ti be the length of any path from the root to i. If the network is a170

tree, then Cii = ti. If the history of tip i involves one or more reticulations, then we show171
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(Appendix), that:172

Cii < ti . (2)

This shows that hybridization events, which imply taking a weighted means of two traits,173

cause the trait variance to decrease. Note that this variance reduction is a consequence of174

our particular model of trait hybridization. Other merging rules might yield different trait175

variances after hybrid nodes. Our model of transgressive evolution acts on the trait mean176

(through shifts ∆e, see next section) such that variation due to transgressive segregation is177

assumed to be captured by variation in the trait means, not by an increased trait variance.178

Algorithm.— The formula above, although general, is not practical to compute. Using the179

recursive characterization of the process given in Definition 1, we can derive an efficient180

way to compute this covariance matrix across all nodes in the network (tips and internal181

nodes), in a single traversal of the network. This traversal needs to be in “preorder”, from182

the root to the tips, such that any given node is listed after all of its parent(s): for any two183

nodes numbered i and j, if there is a directed path from i to j, then i ≤ j. Such an184

ordering (also called topological sorting) can be obtained in linear time in the number of185

nodes and edges (Kahn 1962). On Figure 1a, nodes are numbered from 1 to 13 in preorder.186

The result below, proved in the Appendix, provides an efficient algorithm to compute the187

phylogenetic variance matrix C in a time linear in the number of nodes of the network, in a188

single preorder traversal.189

Proposition 1 (Iterative computation of the phylogenetic variance). Assume that the190

nodes of a network are numbered in preorder. Then C can be calculated using the following191

step for each node i, from i = 1 to i = n+m:192

• If i = 1 then i is the root, and Cii = 0.193

• If i is a tree node, denote by a the parent of i, and by `ea the length of the branch ea194
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going from a to i. Then:195


Cij = Caj for all 1 ≤ j ≤ i− 1

Cii = Caa + `ea .

(3)

• If i is a hybrid node, denote by a and b the parents of i, by `ea and `eb the lengths of196

the branches ea and eb going from a or b to i, and by γea and γeb the associated197

inheritances probabilities. Then:198


Cij = γeaCaj + γebCbj for all 1 ≤ j ≤ i− 1

Cii = γ2
ea(Caa + `ea) + γ2

eb
(Cbb + `eb) + 2γeaγebCab .

(4)

Phylogenetic Regression199

We can now define a phylogenetic regression on networks, the same way it is defined200

for phylogenetic trees (Grafen 1989, 1992).201

Linear Regression Framework.— Define Y as the vector of trait values observed at the tips202

of the network. This is a sub-vector of the larger vector of trait values at all nodes. Let203

Ctip be the sub-matrix of C, with covariances between the observed taxa (tips). The204

phylogenetic linear regression can be written as:205

Y = Rθ + σE with E ∼ N (0n,C
tip) (5)

where R is a n× q matrix of regressors, and θ a vector of q coefficients. We can recover the206

distribution of Y under a simple BM with a fixed root value equal to µ (and no shift) by207

taking R = 1n and θ = µ (with q = 1). The regression matrix R can also contain some208
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explanatory trait variables of interest. In this phylogenetic regression, the BM model209

applies to the residual variation not explained by predictors, E.210

This formulation is very powerful, as it recasts the problem into the well-known211

linear regression framework. The variance matrix Ctip is known (it is entirely characterized212

by the network used) so that, through a Cholesky factorization, we can reduce this213

regression to the canonical case of independent sampling units. This problem hence214

inherits all the features of the standard linear regression, such as confidence intervals for215

coefficients or data prediction, as explained in the next paragraph.216

Ancestral State Reconstruction and Missing Data.— The phylogenetic variance matrix can217

also be used to do ancestral state reconstruction, or missing data imputation. Both tasks218

are equivalent from a mathematical point of view, rely on the Best Linear Unbiased219

Predictor (BLUP, see e.g. Robinson 1991) and are well known in the standard PCM220

toolbox. They have been implemented in many R packages, such as ape (Paradis et al.221

2004, function ace), phytools (Revell 2012, function fastAnc) or Rphylopars (Goolsby et al.222

2017, function phylopars). In our Julia package PhyloNetworks, it is available as function223

ancestralStateReconstruction.224

Pagel’s λ.— The variance structure induced by the BM can be made more flexible using225

standard transformations of the network branch lengths, such as Pagel’s λ (Pagel 1999).226

Because the network is calibrated with node ages, it is time-consistent: the time ti elapsed227

between the root and a given node i is well defined, and does not depend on the path taken.228

Hence, the lambda transform used on a tree can be extended to networks, as shown below.229

Definition 2 (Pagel’s λ transform). First, for any hybrid tip in the network, add a child230

edge of length 0 to change this tip into an internal (hybrid) node, and transfer the data231

from the former hybrid tip to the new tip. Next, let e be a branch of the network, with232
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child node i, parent node pa(i), and length `e. Then its transformed length is given by:233

`e(λ) =


λ`e if i is an internal node

`e + (1− λ)tpa(i) = λ`e + (1− λ)ti if i is a tip,

(6)

where ti and tpa(i) are the times elapsed from the root to node i and to its parent.234

The interpretation of this transformation in term of phylogenetic signal is as usual:235

when λ decreases to zero, the phylogenetic structure is less and less important, and traits236

at the tips are completely independent for λ = 0. The first step of resolving hybrid tips is237

similar to a common technique to resolve polytomies in trees, using extra branches of238

length 0. This transformation does not change the interpretation of the network or the age239

of the hybrid. The added external edge does allow extra variation specific to the hybrid240

species, however, immediately after the hybridization, by Pagel’s λ transformation. The241

second part of (6) applies to the new external tree edge, and hybrid edges are only affected242

by the first part of (6). The transformation’s impact on the matrix Ctip is not exactly the243

same as on trees. It still involves a simple multiplication of the off-diagonal terms by λ, but244

the diagonal terms are also modified. The following proposition is proved in the Appendix.245

Proposition 2 (Pagel’s λ effect on the variance). The phylogenetic variance of a BM246

running on a network transformed by a parameter λ, C(λ) is given by:247


C(λ)ij = λCij for i and j such that i or j is an internal node, or i 6= j

C(λ)ii = λCii + (1− λ)ti for any tree tip i

where C = C(1) is the variance of the BM process on the non-transformed network.248

On a tree, we have C(λ)ii = ti for any tip i and any λ, so that the diagonal terms249

remain unchanged. This is not true on a network, however, as the Pagel transformation250
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erases the variance-reduction effect of ancestral hybridizations.251

Other transformations, for instance based on Pagel’s κ or δ (Pagel 1999), could be252

adapted to the phylogenetic network setting. Although these are not implemented for the253

moment, they would be straightforward to add in our linear regression framework.254

Shifted BM and Transgressive Evolution255

In our BM model, we allowed for shifts on non-hybrid edges. In this section, we256

show how those shifts can be inferred from the linear regression framework, and how they257

can be used to test for ancestral transgressive evolution events. When considering shifts,258

we again require that all tips are tree nodes. If a tip is a hybrid node (with two parents),259

then the network is first resolved by adding a child edge of length 0 to the hybrid, making260

this node an internal node. This network resolution does not affect the interpretation of261

the network or the variance of the BM model. It adds more flexibility to the mean vector262

of the BM process, because the extra edge is a tree edge on which a shift can be placed.263

Shift Vector.— We first describe an efficient way to represent the shifts on the network264

branches in a vector format. In Definition 1, we forbade shifts on hybrid branches. This265

does not lose generality, and is just for the sake of identifiability. Indeed, a hybrid node266

connects to three branches, two incoming (the hybrid edges) and one outgoing (a tree edge267

typically). A shift on any of these three branches would impact the same set of nodes268

(apart from the hybrid itself), and hence would produce the same data distribution at the269

tips. The position of a shift on these three branches is consequently not identifiable. By270

restricting shifts to tree branches, the combined effect of branches with the same set of271

descendants is identified by a shift on a single (tree) edge. We can combine all shift values272

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/194050doi: bioRxiv preprint 

https://doi.org/10.1101/194050
http://creativecommons.org/licenses/by-nc-nd/4.0/


in a vector ∆ indexed by nodes:273

∆i =


µ if i = ρ is the root node

∆e if i is a tree node with parent edge e

0 if i is a hybrid node.

Note that any tree edge e is associated to its child node i in this definition. In the274

following, when there is no ambiguity, we will refer indifferently to one or the other.275

Descendence Matrix.— For a rooted tree, a matrix of 0/1 values where each column276

corresponds to a clade can fully represent the tree topology. In column j, entries are equal277

to 1 for descendants of node number j, and 0 otherwise (Ho and Ané 2014; Bastide et al.278

2017). This representation is similar to the additive binary coding of a tree (Farris et al.279

1970; Brooks 1981) as used for instance in methods by matrix representation parsimony for280

supertree estimation (Baum 1992; Ragan 1992) On a network, a node i can be a “partial”281

descendant of j, with the proportion of inherited genetic material represented by the282

inheritance probabilities γe. Hence, the descendence matrix of a network can be defined283

with non-binary entries between 0 and 1 as follows.284

Definition 3 (Descendence Matrix). The descendence matrix U of a network, given some285

ordering of its n tips and m internal nodes, is defined as an (n+m)× (n+m) matrix by:286

Uij =
∑

p∈Pj→i

∏
e∈p

γe

where Pj→i is the set of all the paths going from node j to node i (respecting the direction287

of edges). Note that, if i is not a descendant of j, then Pj→i is empty and Uij = 0. By288

convention, if i = j, we take Uii = 1 (that is, a node is considered to be a descendant of289

itself). If the network is a tree, we recover the usual definition (all the γe are equal to 1).290
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In general, the set of nodes i for which Uij > 0 is the hardwired cluster of i, or the clade291

below i if the network is a tree.292

Further define T as the (non-square) submatrix of U made of the rows that correspond to293

tip nodes (see example below).294

Example 1 (Descendence Matrix and Shift Vector). The descendence matrices U and T295

associated with the network presented in Figure 2 are shown below, with zeros replaced by296

dots to improve readability:297

U =



X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

X1 1 · · · · · · · · · · · ·

X2 1 1 · · · · · · · · · · ·

X3 1 1 1 · · · · · · · · · ·

X4 1 · · 1 · · · · · · · · ·

X5 1 1 · · 1 · · · · · · · ·

X6 1 γ6a · γ6b γ6a 1 · · · · · · ·

X7 1 · · 1 · · 1 · · · · · ·
X8 1 · · 1 · · 1 1 · · · · ·

X9 1 · · 1 · · 1 · 1 · · · ·

X10 1 γ6a · γ6b γ6a 1 · · · 1 · · ·

X11 1 1 · · 1 · · · · · 1 · ·

X12 1 1 1 · · · · · · · · 1 ·

X13 1 1 1 · · · · · · · · · 1





T

The associated shift vector and associated trait means at the tips are shown below, where298

the only non-zero shift is assumed to correspond to transgressive evolution at the299
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hybridization event, captured by ∆10 on edge 10:300

∆ =



1 µ

2 ·

3 ·

4 ·

5 ·

6 ·

7 ·

8 ·

9 ·

10 ∆10

11 ·

12 ·

13 ·



T∆ =



8 µ

9 µ

10 µ+ ∆10

11 µ

12 µ

13 µ



Note that rapid trait evolution or jumps in the trait value in other parts of the phylogeny301

could be also be modeled, by letting ∆i be non-zero for other tree edges i. However,302

allowing for too many non-zero values in ∆ can lead to severe identifiability issues. See303

e.g. Bastide et al. (2017) for an identifiability study of this vector on a phylogenetic tree.304

Linear Model.— The shifted BM model in Definition 1 can be expressed by:305

Y = T∆ + σE with E ∼ N (0n,C
tip) (7)

where Y is the trait vector at the tips, and ∆ and T are the shift vector and the306
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(b) BM on the branches of the network

Figure 2: Realization of a univariate BM process (with µ = 0 and σ2 = 0.04) on a calibrated
network, with transgressive evolution. The shift occurs right after the hybridization event,
and changes the trajectory of the BM from the grey dotted one to the colored one.

descendence matrix as defined above (see the Appendix for the proof).307

Transgressive Evolution.— Even though the linear formulation above makes it easier to308

study, the problem of locating the non-zero shifts on the branches of a phylogenetic tree is309

difficult, and is still an active research area (see e.g. Uyeda and Harmon 2014; Bastide310

et al. 2017; Khabbazian et al. 2016; Bastide et al. 2018).311

On networks as on trees, a shift can represent various biological processes. In the312

present work, we limit our study to shifts occurring on branches that are outgoing from a313

hybrid node (see Figure 2 for an example). Such shifts might represent a transgressive314

evolution effect, as defined in the introduction, and as a component of hybridization: the315

new species inherits its trait as a weighted average of the traits of its two parents, plus a316

shift representing extra variation, perhaps as a result of rapid selection.317

Limiting shifts to being right after reticulations avoids the difficult exploration of all318

the possible locations of an unknown number of shifts on all the tree branches.319

Statistical Tests for Transgressive Evolution320
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As there are typically only a few hybridization events in a phylogenetic network, we can321

test for transgressive evolution on each one individually. Thanks to the linear framework322

described above, this amounts to a well-known test of fixed effects.323

Statistical Model.— Denote by N the n× h sub-matrix of T containing only the columns324

corresponding to tree branches outgoing from hybrid nodes. We assume that N has full325

rank, that is, that the transgressive evolution shifts are identifiable. This is likely to be the326

case in networks that can be inferred by current methods, which typically have a small327

number of reticulations. We further denote by N̄ the vector of size n containing the row328

sums of N: for tip i, N̄i =
∑h

k=1 Nik. Then the phylogenetic linear regression extending (5)329

with transgressive evolution can be written as:330

Y = Rβ + N̄b+ Nd + σE , d such that
h∑
k=1

dk = 0 , E ∼ N (0n,C
tip) (8)

where R is a given matrix of regressors, with associated coefficients β. These are included331

for the sake of generality, but usually only represent the ancestral state of the BM: R = 1n332

and β = µ. The coefficient b represents a common transgressive evolution effect, that333

would affect all the hybridization events uniformly, while the vector d has h entries with a334

specific deviation from this common effect for each event, and represents heterogeneity.335

F Test.— When written this way, the problem of testing for transgressive evolution just336

amounts to testing the fixed effects b and d. Some hypotheses that can be tested are337

summarized in the next table. H0 corresponds to the null model where the hybrids inherit338

their parents weighted average. H1 is a model where all hybridization events share the339

same transgressive evolution effect, the trait being shifted by a common coefficient b.340

Finally, H2 is a model where each hybridization event k has its own transgressive evolution341

effect, with a shift b+ dk.342
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Hypotheses Linear Model

H0 No transgressive evolution b = 0 and d = 0h

H1 Single effect transgressive evolution b 6= 0 and d = 0h

H2 Multi effect transgressive evolution b 6= 0 and d 6= 0h

343

Tests of fixed effects are very classic in the statistics literature (see e.g. Lehman344

1986; Searle 1987). Compared to a likelihood ratio test, an F-test is exact and is more345

powerful, when available. Here we can define two F statistics F10 and F21 (see the346

Appendix). To see if H2 fits the data significantly better than H1, we compare F21 to an F347

distribution with degrees of freedom r[R N] − r[R N̄] and n− r[R N], where r is the matrix348

rank, and [R N] is the matrix obtained by pasting the columns of R and N together. To349

test H1 versus the null model H0, we compare F10 to an F distribution with degrees of350

freedom r[R N̄] − rR and n− r[R N̄]. We study these tests for several symmetric networks in351

the following section.352

Simulation and Power Study353

In this section, we first analyse the performance of the PCM tools described above, and354

then provide a theoretical power study of our statistical tests for transgressive evolution.355

Implementation of the Network PCMs356

All the tools described above, as well as simulation tools, were implemented in the357

Julia (Bezanson et al. 2017) package PhyloNetworks (Soĺıs-Lemus et al. 2017). To perform a358

phylogenetic regression, the main function is phyloNetworklm. It relies on functions359

preorder! and sharedPathMatrix to efficiently compute the variance matrix using the360

algorithm in Proposition 1, and on Julia package GLM (Bates 2016) for the linear361

regression. All the analysis and extraction tools provided by this GLM package can hence362
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be used, including the ftest function to perform the F statistical tests for transgressive363

evolution. For the Xiphophorus fishes study (see below), we developed a function364

calibrateFromPairwiseDistances! to calibrate a network topology based on pairwise genetic365

distances.366

Simulation Study367

Setting.— We considered 4 network topologies, all based on the same symmetric backbone368

tree with unit height and 32 tips, to which we added several hybridization events (Fig. 3,369

top). Those events were either taken very recent and numerous (h = 8 events each affecting370

1 taxon) or quite ancient and scarce (h = 2 events each affecting 4 taxa). All networks had371

8 tips with a hybrid ancestry. All the hybridization events had inheritance probability372

γ = 0.3. We then simulated datasets on these networks with µ = 0, σ2 = 1, and Pagel’s λ373

transformation with λ in {0, 0.25, 0.5, 0.75, 1}. Recall that λ = 0 corresponds to all tips374

being independent, and λ = 1 is the simple BM on the original network. Each simulation375

scenario was replicated 500 times. To study the scalability of the implementation, we then376

reproduced these analysis on networks with 32 to 256 tips, and 1 to 8 hybridization events,377

each affecting 8 tips.378

We analysed each dataset assuming either a BM or a λ model of evolution. When379

λ 6= 1, we could study the effect of wrongly using the BM. All the analyses were conducted380

on a laptop computer, with four Intel Core i7-6600U, and a 2.60GHz CPU speed.381

Results.— When the vanilla BM model is used for both the simulation and the inference,382

the two parameters µ and σ2 are well estimated, with no bias, for all the network383

topologies tested (Fig. 3, last two rows, dark grey boxes for true λ = 1). The estimation of384

µ is quite robust to the misspecification of the model, while σ2 tends to be over-estimated385

(Fig. 3, last two rows, dark grey boxes for true λ 6= 1). This is expected, as in this case, the386
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Figure 3: Estimated λ, σ2 and µ values for several network topologies, with γ = 0.3, when
the data are simulated according to a BM process with Pagel’s λ transformation. Data were
analyzed either with a straight BM model, which corresponds to λ = 1 (dark grey), or with
Pagel’s λ transformed model (light grey). True values are marked by a grey line. Boxplots
show variation across 500 replicates.
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BM model wrongly tries to impose a strong correlation phylogenetic structure on the data,387

and can only account for the observed diversity by raising the estimated variance, to388

accommodate both phylogenetic variance and independent intra-specific variation. When389

we use the true λ model for the inference, this bias is corrected, and both µ and σ2 are390

correctly estimated (Fig. 3, last two rows, light grey boxes). Furthermore, the λ estimate391

has a small bias but rather high variance (Fig. 3, second row). As expected, when the392

number of taxa increases, this variance decreases (data not shown). Finally, our393

implementation is quite fast (Fig. 4), with computing times ranging between 1 and 10 ms394

for a BM fit, and between 10 ms and 1 s for a Pagel’s λ fit.395

1

10

100

1000

32 64 128 256
Number of tips

T
im

e 
(m

s) Lambda
BM

Figure 4: Computing time needed for fitting a continuous trait evolution model in PhyloNet-
works. Median and confidence interval for 6000 repetitions in various conditions for each
number of taxa. A log scale is used for the computing time.

Power Study of the Statistical Tests for Transgressive Evolution396

We determined that our test statistics have the following noncentral Fisher-Snedecor (F)397
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distributions:398

Under H1, F10 ∼ F
(
r[R N̄] − rR, n− r[R N̄],

b2

σ2
∆2

10(R, N̄,Ctip)

)
(9)

Under H2, F21 ∼ F
(
r[R N] − r[R N̄], n− r[R N],

1

σ2
∆2

21(d,R, N̄,N,Ctip)

)
(10)

The noncentral coefficient are determined by ∆10 and ∆21, detailed in the Appendix. They399

depend on the network topology through the metric defined by Ctip, and through the400

regression matrix N. Under the null hypothesis (H0 for F10 and H1 for F21), the statistics401

follow a central F distribution, and these ∆ terms are zero.402

Because we know the exact distribution of our F statistics under the alternative403

hypothesis, we do not need to resort to simulations to assess the power of these tests. In404

the following, we present a theoretical power study.405

Test H0 vs H1.— We first studied the theoretical power to detect a single transgressive406

evolution effect, depending on the size b of this effect, and on the position of the407

hybridization event on the network. We considered 4 network topologies, using the same408

backbone tree than in the simulation study above, but adding only one hybridization event,409

occurring at various depths, from a very recent event affecting a single taxon to a very410

ancient event affecting 8 taxa (Fig. 5, top). The inheritance probability of this added411

hybrid branch was fixed to γ = 0.4. This γ parameter proved to have little influence to412

detect transgressive evolution (data not shown), for all the values tested, between 0 and413

0.5. The underlying BM process had fixed ancestral value µ = 0, and variance rate σ2 = 1.414

Finally, for each network topology, we varied the transgressive evolution effect from 0 to 4,415

and computed the power of the test H0 vs H1 for three fixed standard levels (α in416

{0.01, 0.05, 0.1}). The range of effects (0 to 4) was chosen so that the power reaches 1417

within this range for all 4 networks. This range is quite wide, compared to what could be418
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considered a “biologically reasonable” effect size. As a comparison, we added a dashed line419

at b = 0.8 (Fig. 5), a value typically considered as being a “large” effect size (Cohen 1988).420

We can see that the power at b = 0.8 is rather small, hardly reaching 0.5 in the most421

favorable scenario. This reflects imbalance in group sizes, and power degradation due to422

phylogenetic correlation when reticulation is ancient (see Fig. 8 in the Appendix for a423

quantitative comparison). To give another benchmark, if the trait is measured on the424

log-scale, then b = log(2) ≈ 0.7 corresponds to a trait doubling because of transgressive425

evolution. We hence recommend doing a power study before collecting comparative data or426

after data collection, to determine which transgressive effects would likely go undetected427

due to a lack of power. We show in the next section how this can be done on a biological428

example, along with the empirical power observed. We also refer to the online429

supplementary material for practical ways to conduct a power analysis.430

As expected, the power improves with the size of the effect, reaching approximately431

1 for b = 4 in all scenarios (Fig. 5, bottom). In addition, the transgressive evolution effect432

seems easier to detect for recent hybridization events, even if they affect fewer tips. One433

intuition for that is that ancient hybridization effects are “diluted” by the variance of the434

BM, and are hence harder to detect, even if they affect more tips. This may be similar to435

the difficulty of detecting ancient hybridization compared to recent hybridizations.436

Test H1 vs H2.— We used a similar framework to study the power of the test to detect437

heterogeneity in the transgressive evolution effects. We used here the first 3 networks from438

the simulation study, with 32 tips and 2 to 8 hybridization events (Fig. 6, top), but with439

inheritance probabilities fixed to γ = 0.4. Transgressive evolution effects were set to440

d = ddu, with du fixed to dui = 1 for i ≤ h/2 and dui = −1 for i > h/2, h being the number441

of hybrids, which was even in all the scenarios we considered. Note that the average442

transgressive evolution effect was 0, because the dui values sum up to 0. This allowed us to443
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reduce the “strength of heterogeneity” to a single parameter d, which we varied between 0444

and 4 (see appendices for the reduced expression of the noncentral coefficient). Like before,445

we computed the power of the test H1 vs H2 for three fixed standard levels (α in446

{0.01, 0.05, 0.1}).447

Figure 6 (bottom) shows a similar pattern: the test is more powerful for a high448

heterogeneity coefficient, and for recent hybridization events. For variation of about 2 in449

transgressive evolution, the power is close to one in all the scenarios considered here.450
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Figure 5: Theoretical power of the shared transgressive evolution test H0 vs H1, for four
different networks topologies with inheritance probability γ = 0.4 (top), and a BM with
ancestral value µ = 0 and variance rate σ2 = 1. The power of the test increases with the
transgressive evolution effect b (bottom).

Power of hypothesis tests and confidence intervals.— A major contribution of this work is451

to cast a network model of trait evolution in the well-studied framework of fixed-effects452

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/194050doi: bioRxiv preprint 

https://doi.org/10.1101/194050
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.00

0.25

0.50

0.75

1.00

d

th
eo

re
tic

al
 p

ow
er

level

0.1

0.05

0.01

Figure 6: Theoretical power of the test for heterogeneous transgressive evolution H1 vs H2,
for three different networks topologies with inheritance probability γ = 0.4 (top), and a BM
with ancestral value µ = 0 and variance σ2 = 1. The power of the test increases with the
heterogeneity coefficient d (bottom).

linear models, from which we borrow exact hypothesis tests and confidence intervals. Our453

power calculations provide insights to compare the information content across various454

networks, chosen to represent various possible hybridization scenarios. These calculations455

can be easily repeated on any phylogenetic network given a set of trait evolution456

parameters, as estimated from a data set for instance. For the analysis of a particular data457

set, we recommend the use of confidence intervals, which carry more information about the458

size of transgressive effects than the simple (non-)rejection of a hypothesis. These459

possibilities are illustrated in the next section.460

Xiphophorus fishes461
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Methods462

Network inference.— We revisited the example in Soĺıs-Lemus and Ané (2016) and463

re-analyzed transcriptome data from Cui et al. (2013) to reconstruct the evolutionary464

history of 23 swordtails and platyfishes (Xiphophorus: Poeciliidae). The original work465

included 24 taxa, but we eliminated X. nezahualcoyotl, because the individual sequenced in466

Cui et al. (2013) was found to be a lab hybrid not representative of the wild species X.467

nezahualcoyotl (personal communication). We re-analyzed their first set of 1183468

transcripts, and BUCKy (Larget et al. 2010) was performed on each of the 8,855 4-taxon469

sets. The resulting quartet CFs were used in SNaQ (Soĺıs-Lemus and Ané 2016), using470

h = 0 to h = 5 and 10 runs each. The network scores (negative log-pseudolikelihood)471

decreased very sharply from h = 0 to 1, strongly between h = 1 to 3, then decreased only472

slightly and somewhat linearly beyond h = 3 (Fig. 7, top left). Using a broken stick473

heuristic, one might suggest that h = 1 or perhaps h = 3 best fits the data. Given our474

focus on PCMs, we used both networks (h = 1 and 3) as well as the tree (h = 0) to study475

trait evolution, and to compare results across the different choices of reticulation numbers.476

Network calibration.— SNaQ estimates branch lengths in coalescent units, which are not477

expected to be proportional to time, and are also not estimable for some edges (like478

external branches to taxa represented by a single individual). To calibrate the network, we479

estimated pairwise genetic distances between taxa, and then optimized node divergence480

times using a least-square criterion, as detailed below.481

To estimate pairwise distances, individual gene trees were estimated with RAxML,482

using the HKY model and gamma-distributed rate variation among sites. For each locus,483

branch lengths were rescaled to a median of 1 to reduce rate variation across loci, before484

obtaining a pairwise distance matrix from each rescaled gene tree. Loci with one or more485

missing taxa were then excluded (leaving 1019 loci), and pairwise distance matrices were486
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averaged across loci.487

This average pairwise distance matrix was used to estimate node ages on each488

network (h = 0, 1, 3). The network pairwise distance between taxa i and j was taken as the489

weighted average distance between i and j on the trees displayed by the network, where490

the weight of a displayed tree is the product of the inheritance probabilities γe for all edges491

e retained in the tree. We estimated node ages that minimized the ordinary least-squares492

mismatch between the genetic pairwise distances and the network pairwise distances.493

Traits.— With data presented in Cui et al. (2013) and following their study on sword494

evolution, we revisited the hypotheses that females have a preference for males with longer495

swords, and that the common ancestor of the genus Xiphophorus likely had a sword.496

Rather than using the methods of parsimony character mapping and independent contrasts497

as in Cui et al. (2013), we tested the effect of hybridization on the ancestral state498

reconstructions and the correlation between both traits using networks with zero, one or499

three hybridization events, using phyloNetworklm. For each network, the topology and500

branch lengths were assumed to be perfectly estimated, and fixed. We also tested for501

phylogenetic signal in both traits on all networks using Pagel’s λ, as well as for502

transgressive evolution, using the F statistics defined above. For the phylogenetic503

regression, more than half of the species were excluded because they lack information on504

female preference.505

Along with the datasets used, two executables IJulia notebooks (.ipynb) files are506

provided in the online supplementary material (Dryad data repository507

doi:10.5061/dryad.60t0f), allowing the interested reader to reproduce all the analyses508

described here.509

Results510
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The Xiphophorus fish topologies with zero, one, and three hybridization events were511

calibrated using pairwise genetic distances (Fig. 7, bottom, for h = 0 and 3). With h = 1,512

the reticulation event did not necessarily imply the existence of unsampled or extinct taxa,513

so we constrained this reticulation to occur between contemporary populations (with an514

edge length of 0). For the network with h = 3, two reticulation events implied the existence515

of unsampled taxa, so we calibrated this network without constraint, to allow minor516

reticulation edges of positive lengths. Optimized branch lengths were similar between517

networks. Branch lengths were estimated to be 0 for some tree edges and some518

unconstrained hybrid edges, creating polytomies.519

Using networks with 0, 1 or 3 hybridization events, we found a positive correlation520

between female preference and longer swords in males, but this relationship was not521

statistically significant (h = 0: p = 0.096; h = 1: p = 0.110; h = 3: p = 0.106). Ancestral522

state reconstruction of sword index shows the presence of a sword at the MRCA of each523

network because unsworded species were assigned a value of 0.275 in Cui et al. (2013) and524

the ancestral state in all networks was reconstructed to be 0.46. This reconstruction needs525

to be taken with caution, however, because 0.275 belongs in the 95% confidence interval for526

the ancestral sword index: [0.26 , 0.66] for h = 3. This interval is wide when compared to527

the observed variation at the tips of the tree: [0.275 , 1.03]. (Note that 0.275 is outside the528

90% interval: [0.30 , 0.63].) Phylogenetic signal was high for both traits with estimated529

λ = 1.0 on all networks (or above 1.0 with unconstrained maximum likelihood).530

We also applied our tests for transgressive evolution on both traits, using the531

network with 3 hybridization events (Fig. 7, lower right). For the sword index, we found no532

evidence of transgressive evolution (p = 0.55 and p = 0.28, respectively, for homogeneous or533

heterogeneous transgressive evolution). This lack of evidence was reflected in the 95%534

confidence intervals for the transgressive shifts at the three hybridization events, which535

included 0: [−0.45 , 0.06], [−0.20 , 0.56] and [−0.34 , 0.44]. However, we did find some536
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evidence for an heterogeneous transgressive evolution effect for female preference. Testing537

H2 against H1 gives p = 0.0087. Testing H2 against H0 directly, we get p = 0.0064 (see the538

Appendix for a description of this third test, also based on a F statistic). However,539

transgressive evolution effects were in opposite directions (one positive and two negative),540

such that the common effect was not significantly different from 0: H1 vs H0 gave p = 0.11.541

Namely, the 95% confidence intervals for the shifts at the three hybridization events were542

[−0.57 ,−0.09], [−0.63 , 0.10] and [0.12 , 1.02]. Although these intervals are wide, the size of543

two of these effects is quite large: one negative and one positive by at least ∼ 10% of the544

observed variation at the tips ([−0.33 , 0.91]). These large shifts match the fairly strong545

evidence for transgressive evolution from the F tests.546

We computed the power of the tests (Fig. 5 and 6) but using the Xiphophorous547

network with three hybridizations, and using the estimated model parameters (including548

transgressive effects). The observed power for H2 vs H0 was low at 0.47 for the sword549

index but very high at almost 1.00 for the female preference.550

Discussion551

Impact of the Network552

The results from the fish dataset analysis using a tree (h = 0) or a network (h = 1 or553

h = 3) show that taking the hybridization events into account has a small impact on the554

ancestral state reconstruction and on the estimation of parameters, both for the regression555

analysis and for the test for phylogenetic signal. This finding was corroborated by556

simulations: when we ignored hybridization events, using a tree while the true underlying557

model was a network, we found that the estimation of parameters µ and σ2 was only558

slightly affected (data not shown). These results may indicate that major previous559
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Figure 7: Results of the analysis on the fish dataset. Top left: negative pseudo log-likelihood
score of the estimated networks with various numbers of hybridizations. Top right: scatter
plot of sword index and female preference. Gray stars are taxa missing female preference
data, for which female preference was predicted using ancestral state reconstruction of the
trait on the network (independent of sword index). Bottom: ancestral state reconstruction
of both traits, independently, using a BM model on the tree (h = 0, left) or on the network
with h = 3 (right). Starred values indicate taxa with missing preference data, and imputed
female preference values. Branches with an estimated length zero are indicated by a green
dot, to show the network topologies.
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findings, where a phylogenetic tree was used rather than a more appropriate network, are560

likely to be robust to a violation of the tree-like ancestry assumption. Our new model may561

simply refine previous estimates in many cases.562

However, the structure of the network has a strong impact on the study of563

transgressive evolution. This is expected, as the model allows for shifts below each inferred564

hybrid. If one reticulation is undetected, or if one was incorrectly located on the network,565

then the model will be ill-fitted, leading to potentially misleading conclusions. As an566

example, we reproduced the analysis of transgressive evolution for female preference on the567

network with three hybridization events, but this time pruning the network, to keep only568

the taxa with a measured trait. Preference data were missing for species X. signum, X.569

alvarezi and X. mayae, such that X. helleri became the only species impacted by one of570

the reticulation event, which became a simple loop in the network. In other words, X.571

helleri was the only descendant of the reticulation, and also the closest relative of the572

hybrid’s parent among the remaining taxa. The reticulation could be dropped from the573

pruned network. This new and simplified network only retained the two hybridization574

events associated with negative shifts. As a consequence, and contrary to the conclusion we575

found in the main text, we found support for homogeneous transgressive evolution576

(p = 0.0071 for H1 vs H0), and no support for heterogeneous effects (p = 0.88 for H2 vs577

H1). This illustrates that caution is needed for the interpretation of tests of transgressive578

evolution, as those highly depend on the quality of the input network inference, which is a579

recognized hard problem.580

Network Calibration581

To conduct PCMs, we developed a distance-based method to calibrate a network topology582

into a time-consistent network. This is a basic method that makes a molecular clock583

assumption on the input pairwise distance matrix. Important improvements could be made584
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to account for rate variation across lineages, and to use calibration dates from fossil data,585

like in relaxed clock calibration methods for phylogenetic trees such as r8s (Sanderson586

2003) or BEAST (Drummond et al. 2006). In our fish example, we averaged pairwise587

distances across loci, to mitigate a violation of the molecular clock that might be specific to588

each locus.589

Our method estimated some branch lengths to be 0, thereby creating polytomies.590

This behavior is shared by other well-tested distance-based methods like Neighbor-Joining591

(Saitou and Nei 1987), which can also estimate 0 or even negative branch lengths.592

We also noticed that several calibrations could fit the same matrix of genetic593

pairwise distances equally well, pointing to a lack of identifiability of some node ages. This594

issue occurred for the age of hybrid nodes and of their parent nodes. Branch lengths and595

node ages around reticulation points were also found to be non-identifiable by Pardi and596

Scornavacca (2015), when the input data consist of the full set of trees displayed by the597

network, and when these trees are calibrated. This information on gene trees can only598

identify the ”unzipped” version of the network, where unzipping a reticulation means599

moving the hybrid point as close as possible to its child node (see Pardi and Scornavacca600

2015, for a rigorous description of “canonical” networks). This unzipping operation creates601

a polytomy after the reticulation point. We observed such polytomies for two events in our602

calibrated network (Fig. 7, bottom right). Pardi and Scornavacca (2015) proved that the603

lack of identifiability is worse for time-consistent networks, which violates their “NELP”604

property (no equally-long paths). Lack of identifiable branch lengths around reticulations605

is thus observed from different sources of input data, and requires more study. Methods606

utilizing multiple sources of data might be able to resolve the issue. For instance, gene tree607

discordance is informative about branch lengths in coalescent units around reticulation608

nodes, and could rescue the lack of information from other input data like pairwise609

distances or calibrated displayed trees. More work is also needed to study the robustness of610
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transgressive evolution tests to errors in estimated branch lengths.611

Comparison with Jhwueng and O’Meara (2018)612

In their model, Jhwueng and O’Meara (2018) include hybridization events as random613

shifts. Using their notations, each hybrid k shifts by a coefficient log β + δk, with δk a614

random Gaussian with variance νH : δk ∼ N (0, νH). This formulation provides a mixed615

effects linear model, with shifts appearing as random effects. The effects of transgressive616

segregation, instead of being reflected in the mean as in our model, is then reflected in the617

extra variance νH introduced after each hybrid. This extra term changes the structure of618

the variance matrix C, such that reticulation points do not necessarily induce a decrease in619

variance, like for the vanilla BM as shown in (2). In this framework, the test of620

heterogeneity (H2 vs H1) amounts to a test of null variance, νH = 0. In the context of621

mixed effects linear models, such tests are also well studied, but are known to be more622

difficult than tests of fixed effects (Lehman 1986; Khuri et al. 1998). Assuming that the623

variance νH is 0, our test for a common transgressive evolution effect (H1 vs H0) is then624

similar to the likelihood-based test for log β = 0 in Jhwueng and O’Meara (2018). A625

mixed-effect model is legitimate, although it might be more difficult to study theoretically,626

and its inference can be more tricky. Jhwueng and O’Meara (2018) indeed report some627

numerical problems, and rather large sampling error for both log β and νH . Current628

state-of-the-art methods to infer phylogenetic networks cannot handle more than 30 taxa629

and no more than a handful of reticulation events (Hejase and Liu 2016). Hence, it might630

not be surprising that estimating a variance νH for an event that is only observed two or631

three times is indeed difficult. On data sets with few reticulations, we believe that our fixed632

effect approach can be better suited. However, our approach adds a parameter for each633

hybridization event, whereas the random-effect approach of Jhwueng and O’Meara (2018)634
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maintains only two parameters (mean and variance). As the available networks are likely635

to grow over the next few decades, this later approach might be preferable in the future.636

Comparison with pedigrees637

There is an extensive literature for the analysis of phenotypic traits on individuals with a638

known pedigree (see Thompson 2000, and references therein). Pedigrees are highly detailed639

phylogenetic networks where nodes are individuals within a species. The ancestral state of640

a trait corresponds to the breeding value of a given ancestor. Our model is similar to the641

animal model for polygenic values. The correlation between the additive genetic (breeding)642

values of two individuals i and j was shown to be proportional to Aij, defined as twice the643

coefficient of kinship between i and j (Crow and Kimura 1970). This coefficient is the644

probability that two homologous genes picked at random from i and from j are identical by645

descent. The matrix A can be calculated recursively, taking individuals in the order in646

which they were born (preorder). Namely, if i has parents a and b then647


Aij = 1

2
Aaj + 1

2
Abj for all 1 ≤ j ≤ i− 1

Aii = 1 + 1
2
Aab .

(11)

Next, Var [X] = σ2A can be expressed as a linear recursive model: if individual i has648

parents a and b, then649

Xi =
1

2
Xa +

1

2
Xb + ε with ε ∼ N (0, τabσ

2) , (12)

where τab = 1− 0.25(Aaa + Abb) (Henderson 1976; Mrode 2014, section 2.3). For a founder650

individual, Aii = 1 so Xi is assumed to be normally distributed with variance σ2. In our651

framework, this model corresponds to Definition 1 on a network where each individual is a652
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hybrid node, except for founders who act like roots with no parents. The network may653

have polytomies if an individual has multiple children. Each parent-child relationship is654

represented by a hybrid edge from parent a to child i with inheritance γ = 1
2

and length655

2− Aaa. Since Aaa depends on the pedigree of a, branch lengths in the network need to be656

computed recursively and cannot be specified a priori. The recursion (11) is equivalent to657

(4) for covariance C in our model, given the specific γs and branch lengths on the pedigree.658

The calculation of A was first derived by Wright (1922) using a path counting algorithm.659

We extend this algorithm to general networks in the Appendix, giving a path formula660

similar but different from (1).661

The developments above show that the two main equations defining our model (the662

recursive and path methods for the variance computation) have a counterpart in the663

pedigree literature. However, there are important differences, both from a mathematical664

and a modeling point of view. Indeed, our model is more general than the pedigree model665

in that hybrid edges can have any inheritance γ not restricted to 1/2, tree edges can take666

any value to represent time ideally, and we can model transgressive evolution. In a667

pedigree network, branch lengths are such that the variance of all individuals is bounded668

by 2σ2. Non-inbred individuals have variance σ2, and inbred individuals have variance669

σ2Aii = σ2(1 + fi) depending on their inbreeding coefficient fi. On a general phylogenetic670

network, the BM variance grows indefinitely with time, a fact well recognized when using671

trees. This difference reflects their different biological justifications. The pedigree model672

was derived from a micro-evolutionary genetic mechanism within a population and one673

generation per edge, while the network model typically scales time in millions of years, and674

was developed from a heuristic model for macroevolution. Another major difference is data675

availability: trait data are typically observed at most nodes in a pedigree, but only at the676

tips of a phylogenetic network (with important computational consequences). Future work677

should build on the rich literature on pedigrees for faster computations on general networks678
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(e.g. to invert A), or for expectation-maximization or Markov-chain Monte Carlo679

techniques.680

Extensions and perspectives681

The BM model we presented here can be extended in many ways in order to account for682

various biological assumptions and mechanisms. First, keeping the vanilla BM, it could be683

interesting to look into other merging rules at reticulation points. For instance, instead of684

taking a weighted average, one could draw either one of the two parents’ trait for the685

hybrid, with probabilities defined by the weights γa and γb of the parents. If such a rule686

could be justified from a modelling point of view, further work would be needed to derive687

the induced distribution of the trait at the tips of the network.688

Easy extensions could allow for rate variation. Following O’Meara et al. (2006) on689

trees, we could allow for rate variation across clades (or across separate parts of the690

network) by stretching or shrinking the edges in the same rate category by a common691

factor. One could then estimate the rate in each part of the phylogeny and then test if692

rates differ significantly. Extensions for rate variation over time could involve standard693

methods that rescale branch lengths, such as Pagel’s κ or δ as mentioned earlier. The early694

burst transformation (EB, Harmon et al. 2010) would be particularly valuable for studying695

adaptive radiation, to accommodate acceleration (or deceleration) of trait evolution696

(Blomberg et al. 2003), where the rate of evolution increases (or decreases) exponentially697

through time as σ2
0e
rt, with r < 0 for early bursts followed by a slow down. Like Pagel’s δ,698

the EB model can be implemented via a transformation of node ages. A node of age a is699

given a new age of (era − 1)/r under the EB model, so a branch of length ` starting at this700

node is rescaled to era(er` − 1)/r. Such transformations require a time-consistent network,701

in which the age of every node is well defined.702
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The Ornstein-Uhlenbeck (OU) process is popular to model trait evolution for the703

study of stabilizing selection, regime shifts, and convergent evolution (e.g. Hansen 1997;704

Butler and King 2004; Beaulieu et al. 2012; Khabbazian et al. 2016; Bastide et al. 2018).705

The OU process has extra parameters compared to the BM: a primary optimum θ706

representing an adaptive peak, and a rubber band parameter α that controls how fast the707

trait is pulled toward its optimum. Extending our network model to an OU process is708

complicated because the mean of the OU process, not just the variance, changes over time709

along each lineage. After evolving for time `, the trait Xb of the OU process has a mean710

that depends on both the ancestral value Xa and the primary optimum:711

e−α`Xa + (1− e−α`)θ. What trait value would be biologically realistic at reticulation712

points? For an OU with one single optimum θ over the whole tree, the ancestral trait at713

the root can be assumed to be centered on θ, such that the mean trait value is θ at all714

nodes. In this case, the weighted average merging rule could be adopted. But how should715

transgressive evolution be modeled? With the OU process, shifts have been traditionally716

considered on its parameters (like θ) rather that directly on the trait itself X, as we did for717

the BM (Butler and King 2004; Beaulieu et al. 2012). If a transgressive evolution shift is718

allowed on the optimum value, this would result in several optima on different regions of719

the network, which might not capture biological realism. A related problem is to find a720

realistic merging rule for reticulations between two species evolving in two different721

phylogenetic groups with different optima.722

PCMs rely on two fundamental components: the species relationship model (tree or723

network), and the model of trait evolution. Here, we showed how a network could be used724

instead of a tree. Our study sets up a rigorous and flexible theoretical framework for PCMs725

on phylogenies with reticulations. Taking the simplest model for continuous trait evolution726

– the BM with fixed variance – we showed how some standard tools, such as phylogenetic727

regression or test of phylogenetic signal, can be extended to take reticulation into account.728
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We also discussed issues that are specific to networks and offered new tools to deal with729

them, such as tests for transgressive evolution. The numerous improvements that have730

been developed for PCMs on trees should be adapted to phylogenetic networks, starting731

with support for measurement error or intra-specific variation (as in, e.g. Lynch 1991; Ives732

et al. 2007; Felsenstein 2008; Goolsby et al. 2017); multivariate processes (Felsenstein 1985;733

Bartoszek et al. 2012; Clavel et al. 2015) and developments mentioned above. Unexplored734

and more challenging questions will be to analyze geographical traits (biogeography) or to735

correlate trait evolution with diversification, when the phylogeny has reticulations. A736

salient point to be careful about will be the merging rule one might adopt for all these737

processes. Our work opens a door for much needed future work for trait evolution on738

phylogenetic networks.739
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Proof of the Variance Formula and Algorithm918

We prove here both formula (1) for the BM variance matrix and Proposition 1919

giving an efficient algorithm to calculate this matrix. We do so by induction on the number920

of nodes in the network: N = n+m. When the network is made of a single node i = 1,921

equation (1) and Proposition 1 are obviously correct. We now assume that these results are922

correct for any phylogenetic network with up to N − 1 nodes, and we consider a network923
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with N nodes. When these nodes are sorted in preorder, the last node i = N is necessarily924

a tip (with no descendants), so removing it and its parent edges from the original network925

gives a valid phylogenetic network with N − 1 nodes. Using the same notations as in the926

main text, we can focus on the case i = N . Because of the preorder, there is no directed927

path from i to j for any j < i. We use here the formulas of Definition 1, and assume σ2 = 1928

without loss of generality.929

• If i is a hybrid node, then Xi = (γeaXa + γebXb) + (γeaεa + γebεb), with εk ∼ N (0, `ek),930

and εk independent of the all values Xj in the subnetwork (j < i) for k = a and931

k = b. Because of the preorder, a < i and b < i. Then:932

Cov [Xi;Xj] =


γeaCov [Xa;Xj] + γebCov [Xb;Xj] if j < i

γ2
ea (Cov [Xa;Xa] + `ea) + γ2

eb
(Cov [Xb;Xb] + `eb)

+ 2γeaγebCov [Xa;Xb]

if j = i .

This proves (4) in Proposition 1. Next, we focus on proving (1). Note that it is valid933

by induction for all nodes in the subnetwork, and we just need to prove it for i = N934

and any j ≤ i. By induction, (1) holds for a, b, and any j < i. Then, because a and b935

are the only parents of i, any path pi from the root to i must go through a and ea, or936

through b and eb (and not both). In other words:937

Pi = {(pa, ea) : pa ∈ Pa} ∪ {(pb, eb) : pb ∈ Pb} .

Now considering node j < i and a path pj from the root to j, pj cannot go through i938

so it cannot go through ea or eb. Therefore, the shared edges between pj and939

pi = (pa, ea) are exactly the same edges as those shared between pj and pa, and the940

shared edges between pj and pi = (pb, eb) are also the same as those shared between941
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pj and pb. For j < i, we get:942

∑
pi∈Pi
pj∈Pj

(∏
e∈pi

γe

)(∏
e∈pj

γe

) ∑
e∈pi∩pj

`e

=
∑
pa∈Pa
pj∈Pj

(∏
e∈pa

γe

)
γea

(∏
e∈pj

γe

) ∑
e∈pa∩pj

`e +
∑
pb∈Pb
pj∈Pj

(∏
e∈pb

γe

)
γeb

(∏
e∈pj

γe

) ∑
e∈pb∩pj

`e

= γeaCov [Xa;Xj] + γebCov [Xb;Xj] by induction

= Cov [Xi;Xj] from above,

proving (1) for i = N and j < i. For j = i = N , we similarly decompose the set of943

paths Pi into two sets, either going through a or through b:944

∑
p1∈Pi
p2∈Pi

(∏
e∈p1

γe

)(∏
e∈p2

γe

) ∑
e∈p1∩p2

`e

=
∑
p1∈Pa
p2∈Pa

(∏
e∈p1

γe

)
γea

(∏
e∈p2

γe

)
γea

(( ∑
e∈p1∩p2

`e

)
+ `ea

)

+ 2×
∑
p1∈Pa
p2∈Pb

(∏
e∈p1

γe

)
γea

(∏
e∈p2

γe

)
γeb

∑
e∈p1∩p2

`e

+
∑
p1∈Pb
p2∈Pb

(∏
e∈p1

γe

)
γeb

(∏
e∈p2

γe

)
γeb

(( ∑
e∈p1∩p2

`e

)
+ `eb

)

= γ2
ea (Cov [Xa;Xa] + `a) + 2γeaγebCov [Xa;Xb] + γ2

eb
(Cov [Xb;Xb] + `b)

= Cov [Xi;Xi] by induction, and from above.

Where we used the equality
∑

p∈Pi

(∏
e∈p γe

)
= 1 to go from the first to the second945

line. This completes the proof of (1), for i = j, and for the last case when i is a946

hybrid node.947

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/194050doi: bioRxiv preprint 

https://doi.org/10.1101/194050
http://creativecommons.org/licenses/by-nc-nd/4.0/


• If i is a tree node, then Xi = Xa + εa, with εa ∼ N (0, `ea), εa independent of the948

values Xj in the subnetwork (j < i). A tree node can be seen as a particular case of a949

hybrid node by taking γea = 1, and creating an imaginary edge eb from b = a to i950

parallel to ea (for instance), with γeb = 0. This allows us to write951

Xi = (γeaXa + γebXb) + (γeaεa + γebεb) as before. Equation (3) in Proposition 1 then952

follows directly as a limit case. Equation (1) also follows from the same derivation as953

for a hybrid node, because all the paths going through the new edge eb contribute954

nothing due to γeb = 0.955

Variance Reduction956

Here, we prove Formula (2). As in the main text, consider a time-consistent957

network. For tip i, let ti be the length of any path from the root to i. If the history of tip i958

involves one or more reticulations then take any two paths pi and qi in Pi. We have:959 ∑
e∈pi∩qi `e ≤

∑
e∈pi `e = ti, with a strict inequality if and only if pi and qi are different960

paths. Seeing πpi =
∏

e∈pi γe as the probability associated with the path pi (with961 ∑
pi∈Pi

πpi = 1), we get from Equation (1):962

Cii ≤
∑

pi,qi∈Pi

πpiπqiti ≤ ti,

with the equality fulfilled if and only if there is a unique path from the root to taxon i, i.e.963

if i has no hybrid ancestry.964

Pagel’s λ Variance965

Proof of Proposition 2. In Equation 1, the first equation is straightforward, because all the966

edges shared by the paths to i and to j are internal edges, whose lengths are multiplied by967
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λ. Now take a tip node i. The first step of the transformation ensures that i is a tree node.968

Let a be its parent node, and parent branch ea. From the recursive formula given in969

Proposition 1, the variance at node i is proportional to:970

Cii(λ) = C(λ)aa + `ea(λ) = λCaa + λ`ea + (1− λ)ti = λCii + (1− λ)ti ,

hence the announced formulas.971

Shifted BM model with the Descendence Matrix972

Proof of Formula (7). The shifts are fixed, so they do not impact the variance structure of973

the traits, and we only need to show that E [Y] = T∆. Here, we prove a slightly more974

general formula on the complete vector of trait values at all the nodes, that is:975

E [X] = U∆. The original equality is easily derived from this one by keeping the tip values976

only.977

We show this equality recursively. Assume that the nodes are numbered in preorder.978

Denote by Ui the ith row-vector of U. Node i = 1 is the root, which is the descendant of no979

other node than itself, so980

E [X1] = µ = ∆1 = U1∆ .

We now assume that E [Xj] = Uj∆ for all nodes j < i, and we seek to prove that this981

property is also true for node i.982

• If i is a tree node, then denote by a its unique parent and by ea the edge from a to i.983

For any node k 6= i, Pk→i = {(pa, ea) : pa ∈ Pk→a}. Since ea is a tree edge with984
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γea = 1, we get from definition 3 that:985

Uik =


Uak ∀ k 6= i

1 if k = i ,

hence986

E [Xi] = E [Xa] + ∆i = Ua∆ + ∆i = Ui∆ .

• If i is a hybrid, then denote by a and b its two parents, by ea and eb the987

corresponding edges, with coefficients γea and γeb . Then for any node k 6= i, we have:988

Pk→i = {(pa, ea) : pa ∈ Pk→a} ∪ {(pb, eb) : pb ∈ Pk→b}, and using definition 3:989

Uik =


γeaUak + γebUbk ∀ k 6= i

1 if k = i .

Since no shift can occur on the hybrid branches, ∆i = 0 by convention and:990

E [Xi] = γeaE [Xa] + γebE [Xb] = γeaU
a∆ + γeaU

b∆ = Ui∆ .

This ends the recursion, and the proof of (7).991

Note that this proof also gives an efficient recursive way to compute the descendence992

matrix U.993

Mixed model formulation.— The transgressive evolution model (7) and the phylogenetic994

linear regression (5) have a residual term with variance Ctip structured by the network. In995

the same way as phylogenetic regression on trees (Lynch 1991), (5) can be seen as a linear996

mixed model. It is straightforward to prove by induction that model (7) written for the997
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entire network is equivalent to998

X = U∆ + σUb = U (∆ + σb) (13)

where b is a random vector with independent entries bi ∼ N (0, Li); and Li = `e if i is a999

tree node with parent branch e, Li = γ2
ea`ea + γ2

eb
`eb if i is a hybrid node with parent1000

branches ea and eb, and Lρ is 0 if the root ρ has a fixed trait value, and 1 if the root is1001

taken random with variance σ2. Besides giving an alternative statistical form to (7) (and1002

(5) more generally), this reformulation allows us to prove an alternative path formula for1003

the variance matrix:1004

Cij =
N∑
k=1

Lk
∑

pki ∈Pk→i

pkj∈Pk→j

( ∏
e∈pki ∪pkj

γe

)
(14)

where Pk→i is as in Definition 3, and where we chose by convention that
∏

e∈pii
γe = 1. To1005

prove (14), we use (13) to write Var [X] = σ2ULUT where L is the diagonal matrix with1006

entries the Li defined above. Hence, for any nodes i and j:1007

1

σ2
Cov [Xi;Xj] = [ULUT ]ij =

N∑
k=1

LkUikUjk =
N∑
k=1

Lk

 ∑
pki ∈Pk→i

∏
e∈pki

γe

 ∑
pkj∈Pk→j

∏
e∈pkj

γe

 .
Note that this formulation has both fixed and random effects, but lacks an1008

additional residual error term E (with independent entries) to match the phylogenetic1009

mixed model (Lynch 1991). This error term could represent other sources of variation, such1010

as intra-specific variation or measurement error. Including this term was proven to be1011

crucial in PCM analyses on trees (Silvestro et al. 2015), and including it on networks1012

should be the focus of future work.1013

F Test for Transgressive Evolution1014
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The F statistics used in Section Transgressive Evolution have the following1015

expression:1016

F10 =
‖Y − ProjR Y‖2

(Ctip)−1 −
∥∥Y − Proj[R N̄] Y

∥∥2

(Ctip)−1∥∥Y − Proj[R N̄] Y
∥∥2

(Ctip)−1

n− r[R N̄]

r[R N̄] − rR

F21 =

∥∥Y − Proj[R N̄] Y
∥∥2

(Ctip)−1
−
∥∥Y − Proj[R N] Y

∥∥2

(Ctip)−1∥∥Y − Proj[R N] Y
∥∥2

(Ctip)−1

n− r[R N]

r[R N] − r[R N̄]

where ProjM denotes the projection onto the linear space spanned by the columns of1017

matrix M, with respect to the metric defined by Ctip: ‖X‖2
(Ctip)−1 = XT (Ctip)−1X. In other1018

words, for any vector X:1019

ProjM X = argmin
U∈Span(M)

‖X−U‖2
(Ctip)−1 = M(MT (Ctip)−1M)−1MT (Ctip)−1X .

These statistics follow a noncentral F distribution as given in (9) and (10) of the main text,1020

where1021 
∆2

10(R, N̄,Ctip) =
∥∥(I− ProjR)N̄

∥∥2

(Ctip)−1

∆2
21(d,R, N̄,N,Ctip) =

∥∥(I− Proj[R N̄])Nd
∥∥2

(Ctip)−1
.

When studying the power of the test H1 vs H2, we took d = ddu, so that the noncentral1022

coefficient is:1023

1

σ2
∆2

21(d,R, N̄,N,Ctip) =
d2

σ2

∥∥(I− Proj[R N̄])Ndu
∥∥2

(Ctip)−1

and, as the networks are fixed, it only varies with the heterogeneity coefficient d.1024

Note that a third statistic, F20, can be defined in a similar way to test H2 vs H01025

directly. We first re-write the linear model as:1026

Y = Rβ + Nδ + σE , E ∼ N (0n,C
tip) ,
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where there are no constraints on coefficients δ. Then the F statistic can be written as:1027

F20 =
‖Y − ProjR Y‖2

(Ctip)−1 −
∥∥Y − Proj[R N] Y

∥∥2

(Ctip)−1∥∥Y − Proj[R N] Y
∥∥2

(Ctip)−1

n− r[R N]

r[R N] − rR
.

In the same way, it follows under H2 a noncentral F distribution:1028

F20 ∼ F
(
r[R N] − rR, n− r[R N],

1

σ2
∆2

20(d,R,N,Ctip)

)
,

with1029

∆2
20(δ,R,N,Ctip) = ‖(I− ProjR)Nδ‖2

(Ctip)−1 .

Thanks to the flexible framework provided by the GLM ftest function, all these tests are1030

readily implemented, as long as one can fit the three models (H0, H1, and H2).1031

Comparison with independent species.— We compared the power of our test for1032

phylogenetically correlated species, to a situation where all the species would be1033

independent. With independent units and for parameters in Figure 5, we get1034

∆2
10 = nh(n−nh)/n, where n = 32 is the total number of species, and nh ∈ {1, 2, 4, 8} is the1035

number of species with a hybrid ancestry. The effect size b is the mean difference between1036

species with a hybrid ancestry, and species with no hybrid ancestry, assuming variance1037

σ2 = 1 within groups. This allows us to compute the power to detect a shift (group1038

difference) at various values of b. This power can then be compared to that obtained under1039

phylogenetic correlation. The network structure tends to degrade the power when there are1040

more than 4 species impacted by the shift (Fig. 8). Even for independent species, the small1041

group sizes make for generally quite low power. In the most favorable situation, the power1042

to detect an effect of size b = 0.8 is only 0.47 (Fig. 8, right-most panel, dashed curve). In1043

the more standard situation where the two groups each have 30 individuals, an effect of1044
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size b = 0.8 would be detected with power 0.86, which would typically be considered as1045

sufficient. Interestingly, in the two networks on the left where only one or two species are1046

impacted by transgressive evolution, the network structure actually improves the power. In1047

these networks, the species with hybrid ancestry have very close sister clades, which1048

provide information about the ancestral trait just before the transgressive shift. The high1049

correlation between the recent hybrid and its sisters improves the power to detect the shift.1050
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Figure 8: Theoretical power of the shared transgressive evolution test H0 vs H1, as in
Figure 5, for a level of 0.05. The solid curve shows the actual test on the network. The dashed
curve shows the power if the species were all independent, and if the traditional F test (or
Student T test) were used to detect a shift affecting the species with hybrid ancestry. Under
independence, the power is highly dependent on sample sizes, with more balance providing
higher power. The network structure degrades the power compared to the independent
case, except when the hybridization is recent, in which case the dependence structure helps.
Under phylogenetic correlation, power is affected by the age of the hybridization and by the
imbalance in group sizes (with opposing effects here).
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Link with pedigrees1051

We first note that pedigrees may contain individuals with a single known parent, a1052

case omitted from the main text for conciseness. This case is easily modeled in the network1053

by including a node for the unknown parent, considering it as a founder individual. We1054

also note that in many reference publications, (12) is stated with τab simplified to 1/21055

(Thompson 2000; Thompson and Shaw 1990, e.g.). This simplified model is correct only if1056

the pedigree contains no inbred individuals.1057

Path formula.— We present here a path formula that is analogous to the path counting1058

method on pedigrees from Wright (1922) (equation (3.1) in Thompson 2000), generalized1059

to phylogenetic networks. For any i 6= j, we show below that:1060

Cij =
N∑
k=1

Ckk
∑

(pki ,p
k
j )∈Pk→i,j

( ∏
e∈pki ∪pkj

γe

)
(15)

where Pk→i,j is the set of pairs of directed paths (pki , p
k
j ) such that pku goes from k to u and1061

such that pki and pkj are disjoint, in the sense that they do not share any node other than k1062

(hence they do not share any edge). When applied to a pedigree, the last term
∏

e∈pki ∪pkj
γe1063

simplifies to 2−|E(pki ∪pkj )| where |E(p)| is the number of edges in path p. Unlike (1) and (14),1064

(15) says nothing about Cii. Like (14), (15) is applicable to networks with multiple roots.1065

Proof. We prove (15) by induction. For a network with a single node, there is nothing to1066

prove. For a network with N nodes, we preorder the nodes. By induction, (15) holds for1067

the subnetwork made of nodes {1, . . . , N − 1}. Next, we need to prove that (15) holds for1068

any i < N and for j = N .1069

• If N is a tree node with parent a, then CiN = Cia for any i 6= N , from (3). If, further,1070
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i 6= a then1071

CiN = Cia =
N−1∑
k=1

Ckk
∑

(pki ,p
k
a)∈Pk→i,a

( ∏
e∈pki ∪pka

γe

)

=
N∑
k=1

Ckk
∑

(pki ,p
k
N )∈Pk→i,N

( ∏
e∈pki ∪pkN

γe

)

thus proving (15). The last line comes from the fact that any path pkN is the union of1072

one path pka with the edge connecting a to N , which has γ = 1, and pkN is disjoint1073

with pki if and only if pka is disjoint with pki . Also, the contribution of node k = N is 01074

because the set of paths from k = N to i is empty.1075

If i = a, then (15) holds again because it simplifies to Caa: the only node k with a1076

non-empty pair Pk→a,N is k = a, for which there is a single pair (pka, p
k
N) where pka has1077

node a only (no edges), and pkN has a and N (and a single edge). For this pair, the1078

contribution is γ = 1.1079

• If N is a hybrid node with parents a and b, then CiN = γaCia + γbCib for i 6= N from1080

(4). Further, if i 6= a and i 6= b, then we can apply (15) to (i, a) and (i, b) to get:1081

CiN = = γa

N−1∑
k=1

Ckk
∑

(pki ,p
k
a)∈Pk→i,a

( ∏
e∈pki ∪pka

γe

)
+ γb

N−1∑
k=1

Ckk
∑

(pki ,p
k
b )∈Pk→i,b

( ∏
e∈pki ∪pkb

γe

)

=
N∑
k=1

Ckk
∑

(pki ,p
k
N )∈Pk→i,N

( ∏
e∈pki ∪pkN

γe

)

thus proving (15). The last line comes from the fact that any path pkN is the union of1082

one path pka with the edge connecting a to N , which has γ = γa, or the union of one1083

path pkb with the edge connecting b to N , which has γ = γb. Also, pkN is disjoint with1084

pki if and only if pka (resp. pkb ) is disjoint with pki . Also, like before, the contribution of1085

k = N is 0 because the set of paths from k = N to i is empty.1086
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Next, if i = a, then (15) holds again:1087

CaN = γaCaa + γbCab = γaCaa + γb

N−1∑
k=1

Ckk
∑

(pka,p
k
b )∈Pk→a,b

( ∏
e∈pka∪pkb

γe

)

=
N∑
k=1

Ckk
∑

(pka,p
k
N )∈Pk→a,N

( ∏
e∈pka∪pkN

γe

)

because if (pka, p
k
N) is in Pk→a,N and if k 6= a, then pka is required to be disjoint from1088

pkN , so pkN must be the union of a path pkb with the edge from b to N (with γ = γb),1089

and pkN is disjoint from pka exactly if pkb is disjoint from pka. Also, the contribution of1090

k = a is 0 in Cab, and γaCaa on the last line. The argument for i = b is analogous to1091

the case i = a.1092

1093
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