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15 Abstract— The goal of Phylogenetic Comparative Methods (PCMs) is to study the

16 distribution of quantitative traits among related species. The observed traits are often seen
17 as the result of a Brownian Motion (BM) along the branches of a phylogenetic tree.

18 Reticulation events such as hybridization, gene flow or horizontal gene transfer, can

19 substantially affect a species’ traits, but are not modeled by a tree. Phylogenetic networks
2 have been designed to represent reticulate evolution. As they become available for

a1 downstream analyses, new models of trait evolution are needed, applicable to networks.

2 One natural extension of the BM is to use a weighted average model for the trait of a

3 hybrid, at a reticulation point. We develop here an efficient recursive algorithm to compute
2 the phylogenetic variance matrix of a trait on a network, in only one preorder traversal of
s the network. We then extend the standard PCM tools to this new framework, including

2 phylogenetic regression with covariates (or phylogenetic ANOVA), ancestral trait

a7 reconstruction, and Pagel’s A test of phylogenetic signal. The trait of a hybrid is sometimes
s outside of the range of its two parents, for instance because of hybrid vigor or hybrid

20 depression. These two phenomena are rather commonly observed in present-day hybrids.

s Transgressive evolution can be modeled as a shift in the trait value following a reticulation
s point. We develop a general framework to handle such shifts, and take advantage of the

» phylogenetic regression view of the problem to design statistical tests for ancestral

13 transgressive evolution in the evolutionary history of a group of species. We study the

s power of these tests in several scenarios, and show that recent events have indeed the

55 strongest impact on the trait distribution of present-day taxa. We apply those methods to
s a dataset of Xiphophorus fishes, to confirm and complete previous analysis in this group.

s All the methods developed here are available in the Julia package PhyloNetworks.

3 (Keywords: Phylogenetic Networks, Phylogenetic Comparative Methods, Transgressive

% Evolution, Heterosis, PhyloNetworks)
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40 The evolutionary history of species is known to shape the present-day distribution

a of observed characters (Felsenstein||1985). Phylogenetic Comparative Methods (PCMs)

22 have been developed to account for correlations induced by a shared history in the analysis

s of a quantitative dataset (Pennell and Harmon|2013). They usually rely on two main

w ingredients: a time-calibrated phylogenetic tree, and a dynamical model of trait evolution,
s that should be chosen to capture the features of the trait evolution over time. Much work
s has been made on the second ingredient, with more and more sophisticated models of trait

« evolution, with numerous variations around the original Brownian Motion (BM), see for

s instance Felsenstein| (1985)); Hansen and Martins| (1996); Hansen| (1997)); Blomberg et al.|

o (2003)); Butler and King| (2004)); Beaulieu et al. (2012); Landis et al.| (2013); Blomberg
so (2016), to cite only but a few.

51 In contrast, the first assumption has not been questioned until now (but see

2 Jhwueng and O’Meara/[2018). However, phylogenetic trees are not always well suited to

53 capture relationships between species, and phylogenetic networks are sometimes needed.
s« Phylogenetic networks differ from trees by added reticulation points, where two distinct
ss  branches come together to create a new species. Such reticulations can represent various

ss biological mechanisms, like hybridization, gene flow or horizontal gene transfer, that are

57 known to be common in some groups of organisms (Mallet|2005| 2007)). Ignoring those

2 events can lead to misleading tree inference (Kubatko [2009; Solis-Lemus et al|2016}; Long |

o jand Kubatko|2018). Thanks to recent methodological developments, the statistical

s inference of reliable phylogenetic networks has become possible (Maddison|[1997; Degnan |

s1 |and Salter]2005; [Kubatko|[2009; [Yu et al.[2012], 2014 [Yu and Nakhleh|2015}; [Solis-Lemus |

2 jand Ané|2016)). Although these state-of-the-art methods are still limited by their

&3 computational burden, we believe that the use of these networks will increase in the future.
s« The goal of this work is to propose an adaptation of standard PCMs to a group of species

es  with reticulate evolution, related by a network instead of a tree.
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66 We describe an extension of the BM model of trait evolution to a network. The

e main modeling choice is about the trait of hybrid species. How should these species inherit
¢ their trait from their two parents? In this work, we first choose a weighted-average merging
so rule: the trait of a hybrid is a mixture of its two parents, weighted by their relative genetic
70 contributions. This rule can be seen as a reasonable null model. However, in some cases,

7 the trait of a hybrid is observed to be outside of the range of its two parents. This

72 phenomenon can be modeled by a shift in the trait value occurring right after the

7z reticulation point: the hybrid trait value being the weighted average of the two parents,

72 plus an extra term specific to the hybridization event at hand. Such a shift can model

s several biological mechanisms, such as transgressive segregation (Rieseberg et al.|1999) or
76 heterosis (Fiévet et al.|[2010j; |Chen|2013)), with hybrid vigor (when the hybrid species is

7 particularly fit to its environment) or depression (when the hybrid is ill-fit). In the

7 following, we will refer to this class of phenomena using the generic term transgressive

7o evolution. Here, this term only refers to the hybrid trait being different from the weighted
s average of its parents. This model allows for an explicit mathematical derivation of the trait
s1 distribution at the tips of the network and extends to networks the use of standard PCM
22 tools such as phylogenetic regression (Grafen| 1989, |1992)), ancestral state reconstruction

g3 (Felsenstein [1985; [Schluter et al.|[1997) or tests of phylogenetic signal (Pagel [1999)).

84 In the following, we first describe this BM model of trait evolution and show how it
s fits into the standard PCM framework. We then show how to add shifts in the trait values
s to model transgressive evolution. We propose a statistical test for transgressive evolution.
sz 'These methods are validated with a simulation study, and with the theoretical study of the
ss power of the tests in a range of scenarios. Finally, we revisit the analysis of a Xiphophorus
o dataset about sword index and female preference made by |Cui et al| (2013)), in the light of

90 our new network methods.
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o1 MODEL

o In our model for trait evolution on a phylogenetic network, the novel aspect is the
i3 merging rule at reticulation events, compared to standard PCMs on trees. Our model is
u very similar to that defined in |[Jhwueng and O’Mearal (2018]), but we adopt a different

os statistical view point, based on the phylogenetic linear regression representation.

% Trait Evolution on Networks

o Phylogenetic Network.— In this work, we assume that we have access to a rooted, calibrated
e and weighted phylogenetic network that describes the relationships between a set of

o observed species (Huson et al.[2010). In such a network, reticulations, or hybrids, are nodes
wo that have two parent nodes. They receive a given proportion of their genetic material from
w1 each parent. This proportion is controlled by a weight ~. that represents the inheritance

w2 probability associated with each branch e of the network. A branch that is tree-like, i.e.

103 that ends at a non-hybrid node, has a weight 7. = 1. We further assume that the length 7,
s of a branch e represents evolutionary time. In the example in Figure [Ia] the two hybrid

105 edges have length zero, but this need not to be the case, see |Jhwueng and O’Meara (2018));
s Degnan (2017)).

w7 Brownian Motion Model.— Since |Felsenstein, (1985), the Brownian Motion (BM) has been
s intensively used to model trait evolution on phylogenetic trees. It is well adapted to model
w9 several biological processes, from random genetic drift, to rapid adaptation to a fluctuating
1o environment (see e.g. [Felsenstein| 2004, Chap. 24). In order to adapt this process to a

m  network instead of a tree, we define a weighted average merging rule at hybrids, as defined
2 below. This rule expresses the idea that a hybrid inherits its trait from both its parents,

3 with a relative weight determined by the proportion of genetic material received from each:
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(a) A time-calibrated phylogenetic network (b) BM on the branches of the network

Figure 1: Realization of a BM (with x = 0 and 0® = 0.04) on a calibrated network. Only
tip values are observed (here at time ¢ = 0). For simplicity, the two hybrid branches were
chosen to have a length of 0, but this need not be the case. Inheritance probabilities at the
hybridization event are ~g, and g, With Ye, + Ve = 1.

na if it inherits 90% of its genes from parent A, then 90% of its trait value should be

us determined by the trait of A. Because the BM usually models the evolution of a polygenic

us character, that is the additive result of the expression of numerous genes, this rule is a

u7  natural null hypothesis.

us  Definition 1 (BM on a Network). Consider a rooted phylogenetic network with branch
ne lengths and inheritance probabilities. Let X, be the random variable describing the trait

120 value of node (or vertex) v.

121 e At the root node p, we assume that X, = p is fixed.

122 e For a tree node v with parent node a, we assume that X, is normally distributed

123 with mean X, + A. and with variance 02/,, with o2 the variance rate of the BM, and
124 (. the length of the parent edge e from a to v. A, is a (fixed) shift value associated
125 with branch e, possibly equal to 0.

126 e For a hybrid node v with parent nodes a and b, we assume that X, is normally

127 distributed with mean ~., X, + 7., X», where e, and e, are the hybrid edges from a
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128 (and b) to v. If these edges have length 0, meaning that a, b and their hybrid v are
120 contemporary, then X, is assumed to have variance 0, conditional on the parent

130 traits X, and X,. In general, the conditional variance of X, is %GUQEBG + 76b02€eb.

131 For the sake of identifiability, shifts are not allowed on hybrid branches (see Section
132 on [Transgressive Evolution| for further details).

133 An example of such a process (without shift) is presented Figure . This process is

13 similar to |Jhwueng and O’Meara, (2018), except that the shifts are treated differently. See

135 Section on [Iransgressive Evolution| and [Discussion| for more information on the links and

s differences between the two models. For the sake of generality, shifts are allowed on any
137 tree edge. We will see in the next section how they are used to model transgressive

s evolution. In the rest of this section, we take all shifts to be zero, and only consider the
130 un-shifted BM (A, = 0 for all edges e).

140 Note that the state at the root, u, could also be drawn from a Gaussian

w distribution, instead of being fixed. This would not change the derivations below, and

12 would simply add a constant value to all terms in the variance matrix.

143 Variance Matrix

us  From a Tree to a Network.— The distribution of trait values at all nodes, X, can be fully
s characterized as a multivariate Gaussian with mean p1,,4, and variance matrix o?C,

us where 1,,., is the vector of ones, n is the number of tips and m the number of internal

17 nodes. The matrix C, which depends on the topology of the network, encodes the

us correlations induced by the phylogenetic relationships between taxa. When the network

1o reduces to a tree (if there are no hybrids), then C is the well-known BM covariance

150 (Felsenstein |1985): C;; = t;; is the time of shared evolution between nodes i and j, i.e. the

151 time elapsed between the root and the most recent common ancestor (MRCA) of 7 and j.
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152 When the network contains hybrids, this formula is not valid anymore. To see this,

153 let’s re-write ¢;; as:

tiy= > L

e€pinp;
154 where p; is the path going from the root to node ¢. This formula just literally expresses

155 that t;; is the length of the shared path between the two nodes, that ends at their MRCA.
15 On a network, the difficulty is that there is not a unique path going from the root to a

157 given node. Indeed, if there is a hybrid among the ancestors of node i, then a path might
158 g0 “right” of “left” of the hybrid loop to go from the root to .

150 Under the BM model in Definition (1| (with a fixed root), it turns out that we need
1o to sum over all the possible paths going from the root to a given node, weighting paths by

11 the inheritance probabilities 7, of all the traversed edges:

Cy= > (H7><H7> P2 (1)

pi€P; \ e€p; eEp; eEp;Np;
P;€P;

12 where P; denotes the set of all the paths going from the root to node 1.
163 This general formula for C was first presented in Pickrell and Pritchard) (2012)) in

16« the context of population genomics. A formal proof is provided here (Appendix).

165 Remark 1 (Variance reduction). From the expression above, we can show that the variance
16 of any tip ¢ decreases with each hybridization ancestral to i. Consider a time-consistent

17 network, in the sense that all paths from the root to a given hybrid node have the same

s length, as expected if branch lengths measure calendar time. Note that this is the opposite
160 of the “NELP” property (No Equally Long Paths) defined by |Pardi and Scornavacca

wo  (2015). For tip ¢, let ¢; be the length of any path from the root to i. If the network is a

1 tree, then Cj; = t;. If the history of tip ¢ involves one or more reticulations, then we show


https://doi.org/10.1101/194050
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/194050; this version posted April 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

172

173

174

176

177

178

179

180

181

182

183

184

186

187

188

189

190

191

192

193

194

aCC-BY-NC-ND 4.0 International license.

(Appendix), that:
Oi‘ <. (2)

This shows that hybridization events, which imply taking a weighted means of two traits,
cause the trait variance to decrease. Note that this variance reduction is a consequence of
our particular model of trait hybridization. Other merging rules might yield different trait
variances after hybrid nodes. Our model of transgressive evolution acts on the trait mean
(through shifts A, see next section) such that variation due to transgressive segregation is

assumed to be captured by variation in the trait means, not by an increased trait variance.

Algorithm.— The formula above, although general, is not practical to compute. Using the
recursive characterization of the process given in Definition [I, we can derive an efficient
way to compute this covariance matrix across all nodes in the network (tips and internal
nodes), in a single traversal of the network. This traversal needs to be in “preorder”, from
the root to the tips, such that any given node is listed after all of its parent(s): for any two
nodes numbered 7 and j, if there is a directed path from ¢ to j, then ¢ < j. Such an
ordering (also called topological sorting) can be obtained in linear time in the number of
nodes and edges (Kahn|/1962)). On Figure nodes are numbered from 1 to 13 in preorder.
The result below, proved in the Appendix, provides an efficient algorithm to compute the
phylogenetic variance matrix C in a time linear in the number of nodes of the network, in a

single preorder traversal.

Proposition 1 (Iterative computation of the phylogenetic variance). Assume that the
nodes of a network are numbered in preorder. Then C can be calculated using the following

step for each node i, fromi=1toi=n+m:
o [fi=1 then i is the root, and Cy = 0.

e [fi is a tree node, denote by a the parent of i, and by L., the length of the branch e,
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195 going from a tov. Then:

Cij:Caj fOT’Cl”lS]SZ—l

Cii = Caa + gea .

196 o If i is a hybrid node, denote by a and b the parents of i, by Le, and {., the lengths of

197 the branches e, and e, going from a or b to i, and by e, and 7., the associated
108 inheritances probabilities. Then:
Cij = ’yeaCaj + ’yebC’bj fOT all 1 Sj S 1—1

(4)
C’L’i = ’Yza(Caa + gea) + %2,, (Cbb + geb) + 27€a7€bcab .

100 Phylogenetic Regression

200 We can now define a phylogenetic regression on networks, the same way it is defined

21 for phylogenetic trees (Grafen |1989,|1992).

202 Linear Regression Framework.— Define Y as the vector of trait values observed at the tips
203 of the network. This is a sub-vector of the larger vector of trait values at all nodes. Let
20 CUP be the sub-matrix of C, with covariances between the observed taxa (tips). The

20s  phylogenetic linear regression can be written as:

Y =RO+ oE with E ~ N(0,, C"P) (5)

206 where R is a n X ¢ matrix of regressors, and @ a vector of ¢ coefficients. We can recover the
207 distribution of Y under a simple BM with a fixed root value equal to p (and no shift) by

208 taking R =1, and 8 = p (with ¢ = 1). The regression matrix R can also contain some
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200 explanatory trait variables of interest. In this phylogenetic regression, the BM model

210 applies to the residual variation not explained by predictors, E.

211 This formulation is very powerful, as it recasts the problem into the well-known

212 linear regression framework. The variance matrix C'P is known (it is entirely characterized
23 by the network used) so that, through a Cholesky factorization, we can reduce this

2 regression to the canonical case of independent sampling units. This problem hence

215 inherits all the features of the standard linear regression, such as confidence intervals for

26 coefficients or data prediction, as explained in the next paragraph.

a7 Ancestral State Reconstruction and Missing Data.— The phylogenetic variance matrix can
218 also be used to do ancestral state reconstruction, or missing data imputation. Both tasks
219 are equivalent from a mathematical point of view, rely on the Best Linear Unbiased

20 Predictor (BLUP, see e.g. Robinson||1991) and are well known in the standard PCM

21 toolbox. They have been implemented in many R packages, such as ape (Paradis et al.

22 2004, function ace), phytools (Revell 2012 function fastAnc) or Rphylopars (Goolsby et al.
23 2017, function phylopars). In our Julia package PhyloNetworks, it is available as function

24 ancestralStateReconstruction.

25 Pagel’s \.— The variance structure induced by the BM can be made more flexible using
26 standard transformations of the network branch lengths, such as Pagel’s A (Pagel[1999).
27 Because the network is calibrated with node ages, it is time-consistent: the time ¢; elapsed
28 between the root and a given node 7 is well defined, and does not depend on the path taken.

20 Hence, the lambda transform used on a tree can be extended to networks, as shown below.

20 Definition 2 (Pagel’s A transform). First, for any hybrid tip in the network, add a child
a1 edge of length 0 to change this tip into an internal (hybrid) node, and transfer the data

232 from the former hybrid tip to the new tip. Next, let e be a branch of the network, with


https://doi.org/10.1101/194050
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/194050; this version posted April 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

233 child node 4, parent node pa(i), and length /.. Then its transformed length is given by:

M, if 7 is an internal node
le(N) = (6)
lo+ (1= Ntpa@p) = Me + (L= N)t;  if i is a tip,

2 where t; and ?p,,(;) are the times elapsed from the root to node i and to its parent.

235 The interpretation of this transformation in term of phylogenetic signal is as usual:
236 when A\ decreases to zero, the phylogenetic structure is less and less important, and traits
237 at the tips are completely independent for A = 0. The first step of resolving hybrid tips is
238 similar to a common technique to resolve polytomies in trees, using extra branches of

239 length 0. This transformation does not change the interpretation of the network or the age
20 Of the hybrid. The added external edge does allow extra variation specific to the hybrid

21 species, however, immediately after the hybridization, by Pagel’s A transformation. The

a2 second part of @ applies to the new external tree edge, and hybrid edges are only affected
23 by the first part of @ The transformation’s impact on the matrix C"P is not exactly the
24 same as on trees. It still involves a simple multiplication of the off-diagonal terms by A, but

xs the diagonal terms are also modified. The following proposition is proved in the Appendix.

25 Proposition 2 (Pagel’s A effect on the variance). The phylogenetic variance of a BM

a7 Tunning on a network transformed by a parameter X\, C(\) is given by:

C(N)i; = ACyj for i and j such that i or j is an internal node, or i # j
C(N)i = ANCyi + (L= N)t;  for any tree tip
23 where C = C(1) is the variance of the BM process on the non-transformed network.

249 On a tree, we have C'()\);; = t; for any tip ¢ and any A, so that the diagonal terms

0 remain unchanged. This is not true on a network, however, as the Pagel transformation
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51 erases the variance-reduction effect of ancestral hybridizations.
252 Other transformations, for instance based on Pagel’s k or ¢ (Pagel |1999), could be
3 adapted to the phylogenetic network setting. Although these are not implemented for the

s« moment, they would be straightforward to add in our linear regression framework.

5 Shifted BM and Transgressive Evolution

256 In our BM model, we allowed for shifts on non-hybrid edges. In this section, we

7 show how those shifts can be inferred from the linear regression framework, and how they
s can be used to test for ancestral transgressive evolution events. When considering shifts,
50 we again require that all tips are tree nodes. If a tip is a hybrid node (with two parents),
%0 then the network is first resolved by adding a child edge of length 0 to the hybrid, making
261 this node an internal node. This network resolution does not affect the interpretation of
»%2  the network or the variance of the BM model. It adds more flexibility to the mean vector

x3  of the BM process, because the extra edge is a tree edge on which a shift can be placed.

wa Shift Vector.— We first describe an efficient way to represent the shifts on the network

s branches in a vector format. In Definition [T}, we forbade shifts on hybrid branches. This

6 does not lose generality, and is just for the sake of identifiability. Indeed, a hybrid node

267 connects to three branches, two incoming (the hybrid edges) and one outgoing (a tree edge
28 typically). A shift on any of these three branches would impact the same set of nodes

20 (apart from the hybrid itself), and hence would produce the same data distribution at the
o0 tips. The position of a shift on these three branches is consequently not identifiable. By

on restricting shifts to tree branches, the combined effect of branches with the same set of

a2 descendants is identified by a shift on a single (tree) edge. We can combine all shift values
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a3 in a vector A indexed by nodes:

i if i = p is the root node

A; =< A, ifiisa tree node with parent edge e

0 if ¢ is a hybrid node.
(

a2 Note that any tree edge e is associated to its child node 7 in this definition. In the

s following, when there is no ambiguity, we will refer indifferently to one or the other.

26 Descendence Matriz.— For a rooted tree, a matrix of 0/1 values where each column

o7 corresponds to a clade can fully represent the tree topology. In column j, entries are equal
2s to 1 for descendants of node number j, and 0 otherwise (Ho and Ané|2014; |[Bastide et al.
29 2017)). This representation is similar to the additive binary coding of a tree (Farris et al.

220 (1970 Brooks |1981) as used for instance in methods by matrix representation parsimony for
21 supertree estimation (Baum/|[1992; Ragan/[1992)) On a network, a node i can be a “partial”
22 descendant of j, with the proportion of inherited genetic material represented by the

283 inheritance probabilities ~.. Hence, the descendence matrix of a network can be defined

2« with non-binary entries between 0 and 1 as follows.

25 Definition 3 (Descendence Matrix). The descendence matrix U of a network, given some

2 ordering of its n tips and m internal nodes, is defined as an (n +m) X (n + m) matrix by:

Uij = Z H’Ye

pEP; i €Ep

27 where P;_,; is the set of all the paths going from node j to node i (respecting the direction
26s of edges). Note that, if 7 is not a descendant of j, then P;_,; is empty and U;; = 0. By
20 convention, if ¢ = j, we take U;; = 1 (that is, a node is considered to be a descendant of

200 itself). If the network is a tree, we recover the usual definition (all the v, are equal to 1).
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In general, the set of nodes ¢ for which U;; > 0 is the hardwired cluster of ¢, or the clade
below i if the network is a tree.
Further define T as the (non-square) submatrix of U made of the rows that correspond to

tip nodes (see example below).

Ezample 1 (Descendence Matrix and Shift Vector). The descendence matrices U and T
associated with the network presented in Figure [2[ are shown below, with zeros replaced by

dots to improve readability:

Xl X2 XS X4 X5 XG X? X8 X9 XlO Xll X12 X13

X[ 1
X1 o1
X1 o1 1
X, |1 1
;|1 1 1
Xe| 1 Ya - Yoo Yoa 1
U= x, 1 1 \
Xs 1 1
X, | 1 1 1 1
Xiofl T Ya - Yo Yoa 1 - S |
Xl 1 1 1 1 T
Xio| 1 1 1 1
Xiz\ 1 1 1 1

The associated shift vector and associated trait means at the tips are shown below, where

the only non-zero shift is assumed to correspond to transgressive evolution at the
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s0 hybridization event, captured by Ay on edge 10:

301

302

303

304

305

306

L[ p
2
3
4
8 @
)
9 Y
6
10 +A
A= 7 TA — H 10
11 W
8
12 L
9
13 7
10] Aqp
11
12
13

Note that rapid trait evolution or jumps in the trait value in other parts of the phylogeny
could be also be modeled, by letting A; be non-zero for other tree edges i. However,
allowing for too many non-zero values in A can lead to severe identifiability issues. See

e.g. Bastide et al.| (2017)) for an identifiability study of this vector on a phylogenetic tree.

Linear Model.— The shifted BM model in Definition (1| can be expressed by:

Y =TA +0oE with E ~ A(0,, C"P) (7)

where Y is the trait vector at the tips, and A and T are the shift vector and the
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(a) A phylogenetic network with transgressive evo- (b) BM on the branches of the network

lution

Figure 2: Realization of a univariate BM process (with 4 = 0 and 02 = 0.04) on a calibrated
network, with transgressive evolution. The shift occurs right after the hybridization event,
and changes the trajectory of the BM from the grey dotted one to the colored one.

descendence matrix as defined above (see the Appendix for the proof).

Transgressive Fvolution.— Even though the linear formulation above makes it easier to
study, the problem of locating the non-zero shifts on the branches of a phylogenetic tree is
difficult, and is still an active research area (see e.g. Uyeda and Harmon 2014} Bastide

et al.||2017; [Khabbazian et al.|2016; Bastide et al.[2018]).

On networks as on trees, a shift can represent various biological processes. In the
present work, we limit our study to shifts occurring on branches that are outgoing from a
hybrid node (see Figure [2| for an example). Such shifts might represent a transgressive
evolution effect, as defined in the introduction, and as a component of hybridization: the
new species inherits its trait as a weighted average of the traits of its two parents, plus a
shift representing extra variation, perhaps as a result of rapid selection.

Limiting shifts to being right after reticulations avoids the difficult exploration of all

the possible locations of an unknown number of shifts on all the tree branches.

Statistical Tests for Transgressive Evolution
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s21 As there are typically only a few hybridization events in a phylogenetic network, we can
22 test for transgressive evolution on each one individually. Thanks to the linear framework

23 described above, this amounts to a well-known test of fixed effects.

s24  Statistical Model— Denote by N the n x h sub-matrix of T containing only the columns
»s  corresponding to tree branches outgoing from hybrid nodes. We assume that N has full

»s rank, that is, that the transgressive evolution shifts are identifiable. This is likely to be the
w7 case in networks that can be inferred by current methods, which typically have a small

2 number of reticulations. We further denote by N the vector of size n containing the row

2o sums of N: for tip i, N; = ZZ:1 Ni.. Then the phylogenetic linear regression extending (5]

;0 with transgressive evolution can be written as:

h
Y =RB+Nb+Nd+oE, dsuchthat » dy=0, E~AN(0,,C"™) (8)
k=1

s where R is a given matrix of regressors, with associated coefficients 3. These are included
s for the sake of generality, but usually only represent the ancestral state of the BM: R =1,
;3 and B = p. The coefficient b represents a common transgressive evolution effect, that

;0 would affect all the hybridization events uniformly, while the vector d has h entries with a

135 specific deviation from this common effect for each event, and represents heterogeneity.

16 P Test.— When written this way, the problem of testing for transgressive evolution just

ssw - amounts to testing the fixed effects b and d. Some hypotheses that can be tested are

ss summarized in the next table. H, corresponds to the null model where the hybrids inherit
;30 their parents weighted average. H; is a model where all hybridization events share the

s same transgressive evolution effect, the trait being shifted by a common coefficient b.

s Finally, Hs is a model where each hybridization event £ has its own transgressive evolution

a2 effect, with a shift b+ dj.
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Hypotheses Linear Model

Ho | No transgressive evolution b=0and d =0,
‘H, | Single effect transgressive evolution | b # 0 and d = 0,

Hs | Multi effect transgressive evolution | b # 0 and d # 0y,

Tests of fixed effects are very classic in the statistics literature (see e.g. |[Lehman
1986}, Searle [1987). Compared to a likelihood ratio test, an F-test is exact and is more
powerful, when available. Here we can define two F statistics Fo and Fy; (see the
Appendix). To see if H, fits the data significantly better than #;, we compare F»; to an F
distribution with degrees of freedom rg nj — TR N and n — rr nj, where r is the matrix
rank, and [R IN] is the matrix obtained by pasting the columns of R and N together. To
test H; versus the null model Hy, we compare Fjy to an F distribution with degrees of
freedom rig ) — TR and n — 7 ). We study these tests for several symmetric networks in

the following section.

SIMULATION AND POWER STUDY

In this section, we first analyse the performance of the PCM tools described above, and

then provide a theoretical power study of our statistical tests for transgressive evolution.

Implementation of the Network PCMs

All the tools described above, as well as simulation tools, were implemented in the
Julia (Bezanson et al.||[2017)) package PhyloNetworks (Solis-Lemus et al.[2017). To perform a
phylogenetic regression, the main function is phyloNetworklm. It relies on functions
preorder! and sharedPathMatrix to efficiently compute the variance matrix using the
algorithm in Proposition [I] and on Julia package GLM (Bates|[2016)) for the linear

regression. All the analysis and extraction tools provided by this GLM package can hence
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3 be used, including the ftest function to perform the F statistical tests for transgressive

3¢ evolution. For the [Xiphophorus fishes| study (see below), we developed a function

w5 calibrateFromPairwiseDistances! to calibrate a network topology based on pairwise genetic

366 distances.

367 Simulation Study

e Setting.— We considered 4 network topologies, all based on the same symmetric backbone
30 tree with unit height and 32 tips, to which we added several hybridization events (Fig. ,
s top). Those events were either taken very recent and numerous (h = 8 events each affecting
sn 1 taxon) or quite ancient and scarce (h = 2 events each affecting 4 taxa). All networks had
sz 8 tips with a hybrid ancestry. All the hybridization events had inheritance probability
sy = 0.3. We then simulated datasets on these networks with u = 0, 02 = 1, and Pagel’s )
s transformation with A in {0,0.25,0.5,0.75,1}. Recall that A = 0 corresponds to all tips

a5 being independent, and A = 1 is the simple BM on the original network. Each simulation
se  scenario was replicated 500 times. To study the scalability of the implementation, we then
sr7 - reproduced these analysis on networks with 32 to 256 tips, and 1 to 8 hybridization events,
ss  each affecting 8 tips.

379 We analysed each dataset assuming either a BM or a A model of evolution. When
0 A # 1, we could study the effect of wrongly using the BM. All the analyses were conducted

;31 on a laptop computer, with four Intel Core i7-6600U, and a 2.60GHz CPU speed.

2 Results— When the vanilla BM model is used for both the simulation and the inference,
33 the two parameters 1 and o2 are well estimated, with no bias, for all the network

s topologies tested (Fig. 3] last two rows, dark grey boxes for true A = 1). The estimation of
s 1 1S quite Tobust to the misspecification of the model, while 0% tends to be over-estimated

s (Fig. , last two rows, dark grey boxes for true A # 1). This is expected, as in this case, the
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A

1.00+
0.754
<<

0.50+

0.25+

0.00+

81 . ’ Estimation Model

EZ BM
E3 Lambda

<3

Figure 3: Estimated A, 0% and u values for several network topologies, with v = 0.3, when
the data are simulated according to a BM process with Pagel’s A transformation. Data were
analyzed either with a straight BM model, which corresponds to A = 1 (dark grey), or with
Pagel’s A transformed model (light grey). True values are marked by a grey line. Boxplots
show variation across 500 replicates.
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;7 BM model wrongly tries to impose a strong correlation phylogenetic structure on the data,
e and can only account for the observed diversity by raising the estimated variance, to

0 accommodate both phylogenetic variance and independent intra-specific variation. When
30 we use the true A model for the inference, this bias is corrected, and both p and o2 are

;1 correctly estimated (Fig. , last two rows, light grey boxes). Furthermore, the A estimate
12 has a small bias but rather high variance (Fig. , second row). As expected, when the

»: number of taxa increases, this variance decreases (data not shown). Finally, our

;¢ implementation is quite fast (Fig. [4)), with computing times ranging between 1 and 10 ms

s for a BM fit, and between 10 ms and 1 s for a Pagel’s A fit.

10004
™ 1007 Lambda
E ~— BM
£
i: 10'
1 4
32 64 128 256

Number of tips

Figure 4: Computing time needed for fitting a continuous trait evolution model in PhyloNet-
works. Median and confidence interval for 6000 repetitions in various conditions for each
number of taxa. A log scale is used for the computing time.

396 Power Study of the Statistical Tests for Transgressive Evolution

37 We determined that our test statistics have the following noncentral Fisher-Snedecor (F)
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308 distributions:

b o
Under My, Fig~ F (’f’[R N] — TR, 7 — T[R N]; ;Afo(ﬂ N, C“p)> (9)

1 _ .
Under HQ, Fyy ~F (T‘[R N] — TR N} — T[R N], ;A% (d7 Ra N7 N, Ctlp)) (10)

30 The noncentral coefficient are determined by Ajq and Ag;, detailed in the Appendix. They
w0 depend on the network topology through the metric defined by C'P, and through the

s regression matrix N. Under the null hypothesis (H, for Fig and H; for Fy), the statistics
w2 follow a central F distribution, and these A terms are zero.

403 Because we know the exact distribution of our F statistics under the alternative

ws  hypothesis, we do not need to resort to simulations to assess the power of these tests. In

ws the following, we present a theoretical power study.

ws  Test Hy vs Hi.— We first studied the theoretical power to detect a single transgressive

w7 evolution effect, depending on the size b of this effect, and on the position of the

w8 hybridization event on the network. We considered 4 network topologies, using the same
a0 backbone tree than in the simulation study above, but adding only one hybridization event,
a0 occurring at various depths, from a very recent event affecting a single taxon to a very

s ancient event affecting 8 taxa (Fig. [5] top). The inheritance probability of this added

a1z hybrid branch was fixed to v = 0.4. This v parameter proved to have little influence to

a3 detect transgressive evolution (data not shown), for all the values tested, between 0 and
asa 0.5, The underlying BM process had fixed ancestral value g = 0, and variance rate 0% = 1.
a5 Finally, for each network topology, we varied the transgressive evolution effect from 0 to 4,
a6 and computed the power of the test Ho vs H; for three fixed standard levels (« in

a7 {0.01,0.05,0.1}). The range of effects (0 to 4) was chosen so that the power reaches 1

sis - within this range for all 4 networks. This range is quite wide, compared to what could be
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a0 considered a “biologically reasonable” effect size. As a comparison, we added a dashed line
20 at b= 0.8 (Fig. [p]), a value typically considered as being a “large” effect size (Cohen|[1988).
21 We can see that the power at b = 0.8 is rather small, hardly reaching 0.5 in the most

w22 favorable scenario. This reflects imbalance in group sizes, and power degradation due to

#23 phylogenetic correlation when reticulation is ancient (see Fig. |8 in the Appendix for a

24 quantitative comparison). To give another benchmark, if the trait is measured on the

w5 log-scale, then b = log(2) ~ 0.7 corresponds to a trait doubling because of transgressive

w6 evolution. We hence recommend doing a power study before collecting comparative data or
w7 after data collection, to determine which transgressive effects would likely go undetected
w8 due to a lack of power. We show in the next section how this can be done on a biological
a0 example, along with the empirical power observed. We also refer to the online

a0 supplementary material for practical ways to conduct a power analysis.

231 As expected, the power improves with the size of the effect, reaching approximately
22 1 for b=4in all scenarios (Fig. 5] bottom). In addition, the transgressive evolution effect
133 seems easier to detect for recent hybridization events, even if they affect fewer tips. One
s34 intuition for that is that ancient hybridization effects are “diluted” by the variance of the
a5 BM, and are hence harder to detect, even if they affect more tips. This may be similar to

a6 the difficulty of detecting ancient hybridization compared to recent hybridizations.

a7 Test Hqi vs Ho.— We used a similar framework to study the power of the test to detect

a8 heterogeneity in the transgressive evolution effects. We used here the first 3 networks from
a9 the simulation study, with 32 tips and 2 to 8 hybridization events (Fig. @, top), but with
ao inheritance probabilities fixed to v = 0.4. Transgressive evolution effects were set to

s d =dd", with d* fixed to d}! =1 for i < h/2 and d} = —1 for ¢ > h/2, h being the number
a2 of hybrids, which was even in all the scenarios we considered. Note that the average

w3 transgressive evolution effect was 0, because the d}' values sum up to 0. This allowed us to
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reduce the “strength of heterogeneity” to a single parameter d, which we varied between 0
and 4 (see appendices for the reduced expression of the noncentral coefficient). Like before,
we computed the power of the test H; vs Hy for three fixed standard levels (« in
{0.01,0.05,0.1}).

Figure [6] (bottom) shows a similar pattern: the test is more powerful for a high
heterogeneity coefficient, and for recent hybridization events. For variation of about 2 in

transgressive evolution, the power is close to one in all the scenarios considered here.

hinia

1.00 4

0.754

0.504

0.254

theoretical power

0.004

Figure 5: Theoretical power of the shared transgressive evolution test Hg vs H;i, for four
different networks topologies with inheritance probability v = 0.4 (top), and a BM with
ancestral value p = 0 and variance rate 0> = 1. The power of the test increases with the
transgressive evolution effect b (bottom).

Power of hypothesis tests and confidence intervals.— A major contribution of this work is

to cast a network model of trait evolution in the well-studied framework of fixed-effects
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Figure 6: Theoretical power of the test for heterogeneous transgressive evolution H; vs Ha,
for three different networks topologies with inheritance probability v = 0.4 (top), and a BM
with ancestral value g = 0 and variance 02 = 1. The power of the test increases with the
heterogeneity coefficient d (bottom).

linear models, from which we borrow exact hypothesis tests and confidence intervals. Our
power calculations provide insights to compare the information content across various
networks, chosen to represent various possible hybridization scenarios. These calculations
can be easily repeated on any phylogenetic network given a set of trait evolution
parameters, as estimated from a data set for instance. For the analysis of a particular data
set, we recommend the use of confidence intervals, which carry more information about the
size of transgressive effects than the simple (non-)rejection of a hypothesis. These

possibilities are illustrated in the next section.

Xiphophorus FISHES
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w3 Network inference.— We revisited the example in |Solis-Lemus and Ané (2016) and

wa  re-analyzed transcriptome data from |Cui et al.| (2013) to reconstruct the evolutionary

w5 history of 23 swordtails and platyfishes (Xiphophorus: Poeciliidae). The original work

w6 included 24 taxa, but we eliminated X. nezahualcoyotl, because the individual sequenced in
w7 |Cul et al| (2013]) was found to be a lab hybrid not representative of the wild species X.

s nezahualcoyotl (personal communication). We re-analyzed their first set of 1183

wo transcripts, and BUCKy (Larget et al.2010) was performed on each of the 8,855 4-taxon
a0 sets. The resulting quartet CFs were used in SNaQ (Solis-Lemus and Ané 2016), using

an h=0toh=>5and 10 runs each. The network scores (negative log-pseudolikelihood)

a2 decreased very sharply from h = 0 to 1, strongly between h = 1 to 3, then decreased only
a3 slightly and somewhat linearly beyond h = 3 (Fig. |7, top left). Using a broken stick

ana heuristic, one might suggest that h = 1 or perhaps h = 3 best fits the data. Given our

a5 focus on PCMs, we used both networks (h =1 and 3) as well as the tree (h = 0) to study

a6 trait evolution, and to compare results across the different choices of reticulation numbers.

ar - Network calibration.— SNa(Q) estimates branch lengths in coalescent units, which are not
ws expected to be proportional to time, and are also not estimable for some edges (like

a9 external branches to taxa represented by a single individual). To calibrate the network, we
a0 estimated pairwise genetic distances between taxa, and then optimized node divergence

w1 times using a least-square criterion, as detailed below.

482 To estimate pairwise distances, individual gene trees were estimated with RAxML,
a3 using the HKY model and gamma-distributed rate variation among sites. For each locus,
sa  branch lengths were rescaled to a median of 1 to reduce rate variation across loci, before
w5 Obtaining a pairwise distance matrix from each rescaled gene tree. Loci with one or more

6 missing taxa were then excluded (leaving 1019 loci), and pairwise distance matrices were
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averaged across loci.

This average pairwise distance matrix was used to estimate node ages on each
network (h = 0,1, 3). The network pairwise distance between taxa i and j was taken as the
weighted average distance between ¢ and j on the trees displayed by the network, where
the weight of a displayed tree is the product of the inheritance probabilities 7, for all edges
e retained in the tree. We estimated node ages that minimized the ordinary least-squares

mismatch between the genetic pairwise distances and the network pairwise distances.

Traits— With data presented in |Cui et al.| (2013]) and following their study on sword
evolution, we revisited the hypotheses that females have a preference for males with longer
swords, and that the common ancestor of the genus Xiphophorus likely had a sword.
Rather than using the methods of parsimony character mapping and independent contrasts
as in |Cui et al.| (2013), we tested the effect of hybridization on the ancestral state
reconstructions and the correlation between both traits using networks with zero, one or
three hybridization events, using phyloNetworklm. For each network, the topology and
branch lengths were assumed to be perfectly estimated, and fixed. We also tested for
phylogenetic signal in both traits on all networks using Pagel’s A, as well as for
transgressive evolution, using the F' statistics defined above. For the phylogenetic
regression, more than half of the species were excluded because they lack information on
female preference.

Along with the datasets used, two executables |Julia notebooks (.ipynb) files are
provided in the online supplementary material (Dryad data repository
do0i:10.5061 /dryad.60t0f), allowing the interested reader to reproduce all the analyses
described here.

Results
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511 The Xiphophorus fish topologies with zero, one, and three hybridization events were
s calibrated using pairwise genetic distances (Fig. [7} bottom, for h = 0 and 3). With h =1,
s13 the reticulation event did not necessarily imply the existence of unsampled or extinct taxa,
sie S0 we constrained this reticulation to occur between contemporary populations (with an

sis edge length of 0). For the network with h = 3, two reticulation events implied the existence
si6  of unsampled taxa, so we calibrated this network without constraint, to allow minor

si7 reticulation edges of positive lengths. Optimized branch lengths were similar between

sis networks. Branch lengths were estimated to be 0 for some tree edges and some

s unconstrained hybrid edges, creating polytomies.

520 Using networks with 0, 1 or 3 hybridization events, we found a positive correlation
s21 between female preference and longer swords in males, but this relationship was not

s2  statistically significant (h = 0: p = 0.096; h = 1: p = 0.110; h = 3: p = 0.106). Ancestral

23 state reconstruction of sword index shows the presence of a sword at the MRCA of each

s2 network because unsworded species were assigned a value of 0.275 in |Cui et al.| (2013)) and
s»s  the ancestral state in all networks was reconstructed to be 0.46. This reconstruction needs
s26 t0 be taken with caution, however, because 0.275 belongs in the 95% confidence interval for
s the ancestral sword index: [0.26,0.66] for h = 3. This interval is wide when compared to
s the observed variation at the tips of the tree: [0.275,1.03]. (Note that 0.275 is outside the
s20  90% interval: [0.30,0.63].) Phylogenetic signal was high for both traits with estimated

s A = 1.0 on all networks (or above 1.0 with unconstrained maximum likelihood).

531 We also applied our tests for transgressive evolution on both traits, using the

s network with 3 hybridization events (Fig. m, lower right). For the sword index, we found no
s13 evidence of transgressive evolution (p = 0.55 and p = 0.28, respectively, for homogeneous or
s3¢ heterogeneous transgressive evolution). This lack of evidence was reflected in the 95%

s35  confidence intervals for the transgressive shifts at the three hybridization events, which

s3 included 0: [—0.45,0.06], [—0.20,0.56] and [—0.34,0.44]. However, we did find some
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s evidence for an heterogeneous transgressive evolution effect for female preference. Testing
si  Ho against H; gives p = 0.0087. Testing H, against H, directly, we get p = 0.0064 (see the
s20  Appendix for a description of this third test, also based on a F statistic). However,

s transgressive evolution effects were in opposite directions (one positive and two negative),
s such that the common effect was not significantly different from 0: H; vs Hg gave p = 0.11.
s2  Namely, the 95% confidence intervals for the shifts at the three hybridization events were
sa3 [—0.57,—0.09], [-0.63,0.10] and [0.12,1.02]. Although these intervals are wide, the size of
sas  two of these effects is quite large: one negative and one positive by at least ~ 10% of the
ss  observed variation at the tips ([—0.33,0.91]). These large shifts match the fairly strong

ss6  evidence for transgressive evolution from the F tests.

547 We computed the power of the tests (Fig. [5| and @ but using the Xiphophorous

ses. network with three hybridizations, and using the estimated model parameters (including
s transgressive effects). The observed power for Hs vs Hg was low at 0.47 for the sword

ss0 index but very high at almost 1.00 for the female preference.

DI1SCUSSION

552 Impact of the Network

ss3. The results from the fish dataset analysis using a tree (h = 0) or a network (h =1 or

sss h = 3) show that taking the hybridization events into account has a small impact on the
55 ancestral state reconstruction and on the estimation of parameters, both for the regression
ss6  analysis and for the test for phylogenetic signal. This finding was corroborated by

ss7 - simulations: when we ignored hybridization events, using a tree while the true underlying
sss. model was a network, we found that the estimation of parameters p and o2 was only

ss0 slightly affected (data not shown). These results may indicate that major previous
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Figure 7: Results of the analysis on the fish dataset. Top left: negative pseudo log-likelihood
score of the estimated networks with various numbers of hybridizations. Top right: scatter
plot of sword index and female preference. Gray stars are taxa missing female preference
data, for which female preference was predicted using ancestral state reconstruction of the
trait on the network (independent of sword index). Bottom: ancestral state reconstruction
of both traits, independently, using a BM model on the tree (h = 0, left) or on the network
with h = 3 (right). Starred values indicate taxa with missing preference data, and imputed
female preference values. Branches with an estimated length zero are indicated by a green
dot, to show the network topologies.
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se0 findings, where a phylogenetic tree was used rather than a more appropriate network, are
ss1  likely to be robust to a violation of the tree-like ancestry assumption. Our new model may
ss2  simply refine previous estimates in many cases.

563 However, the structure of the network has a strong impact on the study of

sea  transgressive evolution. This is expected, as the model allows for shifts below each inferred
ses  hybrid. If one reticulation is undetected, or if one was incorrectly located on the network,
sss  then the model will be ill-fitted, leading to potentially misleading conclusions. As an

ss7 example, we reproduced the analysis of transgressive evolution for female preference on the
sss  network with three hybridization events, but this time pruning the network, to keep only
se0  the taxa with a measured trait. Preference data were missing for species X. signum, X.

st alvarezi and X. mayae, such that X. helleri became the only species impacted by one of

s the reticulation event, which became a simple loop in the network. In other words, X.

stz helleri was the only descendant of the reticulation, and also the closest relative of the

sz3 hybrid’s parent among the remaining taxa. The reticulation could be dropped from the

sz pruned network. This new and simplified network only retained the two hybridization

sis - events associated with negative shifts. As a consequence, and contrary to the conclusion we
st found in the main text, we found support for homogeneous transgressive evolution

s7 (p = 0.0071 for ‘H; vs Hy), and no support for heterogeneous effects (p = 0.88 for Hy vs

s.s H1). This illustrates that caution is needed for the interpretation of tests of transgressive
s79 - evolution, as those highly depend on the quality of the input network inference, which is a

ss0 recognized hard problem.

581 Network Calibration

ss2'To conduct PCMs, we developed a distance-based method to calibrate a network topology
ss3  into a time-consistent network. This is a basic method that makes a molecular clock

sea - assumption on the input pairwise distance matrix. Important improvements could be made
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sss 10 account for rate variation across lineages, and to use calibration dates from fossil data,
s¢5  like in relaxed clock calibration methods for phylogenetic trees such as r8s (Sanderson
se7|2003) or BEAST (Drummond et al.[2006]). In our fish example, we averaged pairwise

s distances across loci, to mitigate a violation of the molecular clock that might be specific to
ss0 each locus.

590 Our method estimated some branch lengths to be 0, thereby creating polytomies.

s This behavior is shared by other well-tested distance-based methods like Neighbor-Joining
2 (Saitou and Nei [1987), which can also estimate 0 or even negative branch lengths.

503 We also noticed that several calibrations could fit the same matrix of genetic

s pairwise distances equally well, pointing to a lack of identifiability of some node ages. This
sos issue occurred for the age of hybrid nodes and of their parent nodes. Branch lengths and
s node ages around reticulation points were also found to be non-identifiable by |[Pardi and
sor | Scornavacca| (2015)), when the input data consist of the full set of trees displayed by the

se¢ network, and when these trees are calibrated. This information on gene trees can only

so0 identify the "unzipped” version of the network, where unzipping a reticulation means

o0 moving the hybrid point as close as possible to its child node (see Pardi and Scornavacca
so1 2015, for a rigorous description of “canonical” networks). This unzipping operation creates
02 a polytomy after the reticulation point. We observed such polytomies for two events in our
s0s calibrated network (Fig. |7, bottom right). Pardi and Scornavacca (2015)) proved that the
s0a lack of identifiability is worse for time-consistent networks, which violates their “NELP”

s0s property (no equally-long paths). Lack of identifiable branch lengths around reticulations
s0s 1S thus observed from different sources of input data, and requires more study. Methods

v utilizing multiple sources of data might be able to resolve the issue. For instance, gene tree
s discordance is informative about branch lengths in coalescent units around reticulation

s0 nodes, and could rescue the lack of information from other input data like pairwise

s10 distances or calibrated displayed trees. More work is also needed to study the robustness of
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transgressive evolution tests to errors in estimated branch lengths.

Comparison with |Jhwueng and O’Meara (2018)

In their model, |Jhwueng and O’Meara/ (2018) include hybridization events as random
shifts. Using their notations, each hybrid k shifts by a coefficient log 5 + 95, with d; a
random Gaussian with variance vy: o ~ N(0,vy). This formulation provides a mized
effects linear model, with shifts appearing as random effects. The effects of transgressive
segregation, instead of being reflected in the mean as in our model, is then reflected in the
extra variance vy introduced after each hybrid. This extra term changes the structure of
the variance matrix C', such that reticulation points do not necessarily induce a decrease in
variance, like for the vanilla BM as shown in . In this framework, the test of
heterogeneity (Hs vs H1) amounts to a test of null variance, vy = 0. In the context of
mixed effects linear models, such tests are also well studied, but are known to be more
difficult than tests of fixed effects (Lehman|1986; Khuri et al.|[1998]). Assuming that the
variance vy is 0, our test for a common transgressive evolution effect (H; vs Hy) is then
similar to the likelihood-based test for log 5 = 0 in |Jhwueng and O’Meara (2018). A
mixed-effect model is legitimate, although it might be more difficult to study theoretically,
and its inference can be more tricky. |[Jhwueng and O’Mearal (2018) indeed report some
numerical problems, and rather large sampling error for both log # and vy. Current
state-of-the-art methods to infer phylogenetic networks cannot handle more than 30 taxa
and no more than a handful of reticulation events (Hejase and Liu/[2016)). Hence, it might
not be surprising that estimating a variance vy for an event that is only observed two or
three times is indeed difficult. On data sets with few reticulations, we believe that our fixed
effect approach can be better suited. However, our approach adds a parameter for each

hybridization event, whereas the random-effect approach of |Jhwueng and O’Meara, (2018)
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63 maintains only two parameters (mean and variance). As the available networks are likely

36 to grow over the next few decades, this later approach might be preferable in the future.

637 Comparison with pedigrees

38  There is an extensive literature for the analysis of phenotypic traits on individuals with a
s known pedigree (see Thompson|2000, and references therein). Pedigrees are highly detailed
ss0  phylogenetic networks where nodes are individuals within a species. The ancestral state of
sa1  a trait corresponds to the breeding value of a given ancestor. Our model is similar to the
22 animal model for polygenic values. The correlation between the additive genetic (breeding)
s43 values of two individuals ¢ and j was shown to be proportional to A;;, defined as twice the
saa coefficient of kinship between ¢ and j (Crow and Kimura [1970). This coefficient is the

s probability that two homologous genes picked at random from ¢ and from j are identical by
sas  descent. The matrix A can be calculated recursively, taking individuals in the order in

v which they were born (preorder). Namely, if ¢ has parents a and b then

Ay =3A,+34,; forall1<j<i—1

Ai=1+1Aa0.

s Next, Var [X] = 02A can be expressed as a linear recursive model: if individual ¢ has

sa0  parents a and b, then

1

1
Xi: 5Xa+§Xb+€ WithENN(O,Tab02)7 (12)

0 where 7,5 = 1 — 0.25(A,q + Ap) (Henderson! [1976; Mrode 2014} section 2.3). For a founder
s individual, A; = 1 so X; is assumed to be normally distributed with variance 2. In our

2 framework, this model corresponds to Definition [1| on a network where each individual is a
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3 hybrid node, except for founders who act like roots with no parents. The network may

s« have polytomies if an individual has multiple children. Each parent-child relationship is

s represented by a hybrid edge from parent a to child ¢ with inheritance v = % and length

56 2 — Agq. Since A,, depends on the pedigree of a, branch lengths in the network need to be
s computed recursively and cannot be specified a priori. The recursion is equivalent to
658 for covariance C in our model, given the specific vs and branch lengths on the pedigree.
0 The calculation of A was first derived by Wright| (1922) using a path counting algorithm.
s0  We extend this algorithm to general networks in the Appendix, giving a path formula

1 similar but different from .

662 The developments above show that the two main equations defining our model (the
s63 recursive and path methods for the variance computation) have a counterpart in the

s pedigree literature. However, there are important differences, both from a mathematical

ss and a modeling point of view. Indeed, our model is more general than the pedigree model
ees in that hybrid edges can have any inheritance v not restricted to 1/2, tree edges can take
s7 any value to represent time ideally, and we can model transgressive evolution. In a

s pedigree network, branch lengths are such that the variance of all individuals is bounded
o by 202. Non-inbred individuals have variance o2, and inbred individuals have variance

e 02 A; = 0%(1 + f;) depending on their inbreeding coefficient f;. On a general phylogenetic
s network, the BM variance grows indefinitely with time, a fact well recognized when using
ez trees. This difference reflects their different biological justifications. The pedigree model

e3 was derived from a micro-evolutionary genetic mechanism within a population and one

ea  generation per edge, while the network model typically scales time in millions of years, and
o5 was developed from a heuristic model for macroevolution. Another major difference is data
ers availability: trait data are typically observed at most nodes in a pedigree, but only at the
e tips of a phylogenetic network (with important computational consequences). Future work

srs  should build on the rich literature on pedigrees for faster computations on general networks
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oo (e.g. to invert A), or for expectation-maximization or Markov-chain Monte Carlo

ss0 techniques.

661 Ezxtensions and perspectives

ss2 ' The BM model we presented here can be extended in many ways in order to account for
ss3 various biological assumptions and mechanisms. First, keeping the vanilla BM, it could be
ses interesting to look into other merging rules at reticulation points. For instance, instead of
s taking a weighted average, one could draw either one of the two parents’ trait for the

s hybrid, with probabilities defined by the weights ~, and ~, of the parents. If such a rule

se7 could be justified from a modelling point of view, further work would be needed to derive
sss the induced distribution of the trait at the tips of the network.

689 Easy extensions could allow for rate variation. Following (O’Meara et al.| (2006) on
s00 trees, we could allow for rate variation across clades (or across separate parts of the

s network) by stretching or shrinking the edges in the same rate category by a common

2 factor. One could then estimate the rate in each part of the phylogeny and then test if

03 rates differ significantly. Extensions for rate variation over time could involve standard

s« methods that rescale branch lengths, such as Pagel’s x or § as mentioned earlier. The early
s0s burst transformation (EB, Harmon et al.[|2010) would be particularly valuable for studying
s adaptive radiation, to accommodate acceleration (or deceleration) of trait evolution

sov (Blomberg et al|2003]), where the rate of evolution increases (or decreases) exponentially
es through time as o2e™, with r < 0 for early bursts followed by a slow down. Like Pagel’s 6,
s0o the EB model can be implemented via a transformation of node ages. A node of age a is
70 given a new age of (¢’* — 1)/r under the EB model, so a branch of length ¢ starting at this
o node is rescaled to €™ (e — 1) /r. Such transformations require a time-consistent network,

72 in which the age of every node is well defined.
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The Ornstein-Uhlenbeck (OU) process is popular to model trait evolution for the
study of stabilizing selection, regime shifts, and convergent evolution (e.g. [Hansen|1997;
Butler and King|[2004; |Beaulieu et al.[2012; |[Khabbazian et al.|2016; |[Bastide et al. [2018]).
The OU process has extra parameters compared to the BM: a primary optimum ¢
representing an adaptive peak, and a rubber band parameter « that controls how fast the
trait is pulled toward its optimum. Extending our network model to an OU process is
complicated because the mean of the OU process, not just the variance, changes over time
along each lineage. After evolving for time ¢, the trait X, of the OU process has a mean
that depends on both the ancestral value X, and the primary optimum:
e~ X, + (1 — e 2)f. What trait value would be biologically realistic at reticulation
points? For an OU with one single optimum 6 over the whole tree, the ancestral trait at
the root can be assumed to be centered on #, such that the mean trait value is 0 at all
nodes. In this case, the weighted average merging rule could be adopted. But how should
transgressive evolution be modeled? With the OU process, shifts have been traditionally
considered on its parameters (like 6) rather that directly on the trait itself X, as we did for
the BM (Butler and King|2004; Beaulieu et al.[2012)). If a transgressive evolution shift is
allowed on the optimum value, this would result in several optima on different regions of
the network, which might not capture biological realism. A related problem is to find a
realistic merging rule for reticulations between two species evolving in two different
phylogenetic groups with different optima.

PCMs rely on two fundamental components: the species relationship model (tree or
network), and the model of trait evolution. Here, we showed how a network could be used
instead of a tree. Our study sets up a rigorous and flexible theoretical framework for PCMs
on phylogenies with reticulations. Taking the simplest model for continuous trait evolution
— the BM with fixed variance — we showed how some standard tools, such as phylogenetic

regression or test of phylogenetic signal, can be extended to take reticulation into account.
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We also discussed issues that are specific to networks and offered new tools to deal with
them, such as tests for transgressive evolution. The numerous improvements that have
been developed for PCMs on trees should be adapted to phylogenetic networks, starting
with support for measurement error or intra-specific variation (as in, e.g. |Lynch|/1991} [Ives
et al.|[2007} Felsenstein [2008; |Goolsby et al.|2017)); multivariate processes (Felsenstein| 1985}
Bartoszek et al.|2012; (Clavel et al.|2015) and developments mentioned above. Unexplored
and more challenging questions will be to analyze geographical traits (biogeography) or to
correlate trait evolution with diversification, when the phylogeny has reticulations. A
salient point to be careful about will be the merging rule one might adopt for all these
processes. Our work opens a door for much needed future work for trait evolution on

phylogenetic networks.
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PROOF OF THE VARIANCE FORMULA AND ALGORITHM

019 We prove here both formula for the BM variance matrix and Proposition

w0 giving an efficient algorithm to calculate this matrix. We do so by induction on the number
o1 of nodes in the network: N = n 4+ m. When the network is made of a single node ¢ = 1,

o2 equation and Proposition [1| are obviously correct. We now assume that these results are

w3 correct for any phylogenetic network with up to N — 1 nodes, and we consider a network
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with N nodes. When these nodes are sorted in preorder, the last node ¢+ = NV is necessarily
a tip (with no descendants), so removing it and its parent edges from the original network
gives a valid phylogenetic network with N — 1 nodes. Using the same notations as in the
main text, we can focus on the case ¢ = N. Because of the preorder, there is no directed
path from i to j for any j < i. We use here the formulas of Definition [1} and assume 2 = 1

without loss of generality.

e If i is a hybrid node, then X; = (7o, Xo + Ve, Xb) + (Ven €a + Vey€0), With €, ~ N (0, Le, ),
and ¢, independent of the all values X in the subnetwork (j < ¢) for k = a and

k = b. Because of the preorder, a < ¢ and b < i. Then:

(

Ve. Cov [ X3 Xj] 4+ e, Cov [ Xp; X if j <

Cov [Xi; Xj] = 992 (Cov [Xo; Xo] + Le,) + 72 (Cov [Xp; X + Lo,
ifj=i.

+ 29, Ve, Cov [X o5 X

This proves in Proposition . Next, we focus on proving . Note that it is valid
by induction for all nodes in the subnetwork, and we just need to prove it for : = N

and any j < ¢. By induction, holds for a, b, and any j < i. Then, because a and b
are the only parents of ¢, any path p; from the root to ¢ must go through a and e,, or

through b and e, (and not both). In other words:

Pi = {(Pas €a) : Pa € Pa} U{(pr, ) : pp € Po} .

Now considering node j < ¢ and a path p; from the root to j, p; cannot go through i
so it cannot go through e, or e;,. Therefore, the shared edges between p; and
Pi = (Pas €q) are exactly the same edges as those shared between p; and p,, and the

shared edges between p; and p; = (ps, €p) are also the same as those shared between
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0a2 p; and py. For j < ¢, we get:

s (1)1 x

pi€P; \ e€p; ecp; e€p;iNp;
P;€P;

= > (Hv)v(ﬂv) Soote+ > (H%)%b<ﬂve> P2

Pa€Pa \ €€pa e€p; e€pap; PbEPy \ e€py e€p; e€pyp;
P;€P; P;€P;
= e, Cov [X4; X;] + e, Cov [ Xp; X|] by induction
= Cov [X;; X]] from above,
043 proving for i = N and j <. For j =i = N, we similarly decompose the set of
944 paths P; into two sets, either going through a or through b:

s (1)(1) 3.

p1€EP; \ e€p1 eEp2 e€p1Mp2
p2EP;
- (Hg%a(m)%a(( 5 ee)w%)
P1€Pa \ e€p1 e€p2 e€p1Mp2
pQEPa
S (H%)%Q(H%)%b S
P1€Pa \ €€p1 eEp2 e€p1Mp2
p2€Py
+ > (H%) %b(H’ye> 'yeb<( > &) +€eb>
P1EP, \ e€p1 eE€p2 e€p1Np2
P2€Py

=72 (Cov [Xa; Xa] + Ca) + 2%e, Ve, Cov [ X5 Xp] + 72 (Cov [Xp; Xp] + )

= Cov [X; Xi] by induction, and from above.
o5 Where we used the equality ZpePi (Heep 76) =1 to go from the first to the second
046 line. This completes the proof of , for 7+ = j, and for the last case when 7 is a

047 hybrid node.
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e If i is a tree node, then X; = X, + ¢,, with ¢, ~ N(0,£,,), €, independent of the
values X in the subnetwork (j < 7). A tree node can be seen as a particular case of a
hybrid node by taking ., = 1, and creating an imaginary edge e, from b = a to @
parallel to e, (for instance), with ., = 0. This allows us to write
Xi = (Veu Xa + Veu Xb) + (Ve €a + Ve, €0) as before. Equation (3) in Proposition [1] then
follows directly as a limit case. Equation also follows from the same derivation as
for a hybrid node, because all the paths going through the new edge e; contribute

nothing due to 7., = 0.

VARIANCE REDUCTION

Here, we prove Formula . As in the main text, consider a time-consistent
network. For tip 7, let t; be the length of any path from the root to i. If the history of tip ¢
involves one or more reticulations then take any two paths p; and ¢; in P;. We have:
> eeping be S D eep, le = i, with a strict inequality if and only if p; and ¢; are different
paths. Seeing ), = Hegp,- ve as the probability associated with the path p; (with

Zpie’P,- Ty, = 1), we get from Equation ([1)):

Cii S Z Wpiﬂqiti S tiv

Pi,qi €P;

with the equality fulfilled if and only if there is a unique path from the root to taxon i, i.e.

if 7 has no hybrid ancestry.

PAGEL’S A VARIANCE

Proof of Proposition[J. In Equation [I} the first equation is straightforward, because all the

edges shared by the paths to ¢ and to j are internal edges, whose lengths are multiplied by
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A. Now take a tip node ¢. The first step of the transformation ensures that i is a tree node.
Let a be its parent node, and parent branch e,. From the recursive formula given in

Proposition [I} the variance at node i is proportional to:

C“()\) - C()\)aa + gea()\) - )\C(m + )\gea ‘|— (1 — )\)tz — )\Cn + (1 — )\)751 y

hence the announced formulas. O

SHIFTED BM MODEL WITH THE DESCENDENCE MATRIX

Proof of Formula . The shifts are fixed, so they do not impact the variance structure of
the traits, and we only need to show that E[Y] = TA. Here, we prove a slightly more
general formula on the complete vector of trait values at all the nodes, that is:
E [X] = UA. The original equality is easily derived from this one by keeping the tip values
only.

We show this equality recursively. Assume that the nodes are numbered in preorder.
Denote by U? the i** row-vector of U. Node i = 1 is the root, which is the descendant of no

other node than itself, so

E[X)=p=A =UA.

We now assume that E[X;] = U’A for all nodes j < ¢, and we seek to prove that this

property is also true for node ;.

e If i is a tree node, then denote by a its unique parent and by e, the edge from a to i.

For any node k # i, Pr—yi = {(Pas €a) : Pa € Pr—a}. Since e, is a tree edge with
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985 Ye. = 1, we get from definition [3 that:

Use Vi
1 ifk=1i,

086 hence

E[X,]=E[X.]+A =U'A+A; =UA .

087 e If 7 is a hybrid, then denote by a and b its two parents, by e, and ¢, the

088 corresponding edges, with coefficients 7., and 7,,. Then for any node k # ¢, we have:

989 Pk—n' = {(pm ea) “Da € Pk—m} U {(pb, eb) "Dy € Pk—>b}7 and U-Sing definition :

Vea Uak + Ves Ubk vk 7£ [
Ui =

1 ithk=1.

990 Since no shift can occur on the hybrid branches, A; = 0 by convention and:

]E' [Xl] = ’YeaE [Xa] + 'Veb]E [Xb] = ,}/eaUaA + ’yeanA - UZA .

901 This ends the recursion, and the proof of . n

w2 Note that this proof also gives an efficient recursive way to compute the descendence

903 matrix U.

wa  Mized model formulation.— The transgressive evolution model and the phylogenetic
o5 linear regression have a residual term with variance C' structured by the network. In
ws the same way as phylogenetic regression on trees (Lynch/|1991), (5)) can be seen as a linear

o7 mixed model. It is straightforward to prove by induction that model written for the
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ws entire network is equivalent to
X =UA+cUb=U(A +o0b) (13)

%0 where b is a random vector with independent entries b; ~ N (0, L;); and L; = £, if i is a
w0 tree node with parent branch e, L; = %2,/6& + 7§b€eb if 2 is a hybrid node with parent

ot branches e, and e, and L, is 0 if the root p has a fixed trait value, and 1 if the root is
w2 taken random with variance 0. Besides giving an alternative statistical form to (7)) (and
1003 more generally), this reformulation allows us to prove an alternative path formula for

w04 the variance matrix:

N
=3 Y ( 11 %) 1)
k=1 pFePy; \ecpfuph
p;?elpk—)j
wos  where Pi_,; is as in Definition , and where we chose by convention that ], epi Ve = 1. To

ws  prove ([14)), we use to write Var [X] = 0?ULU” where L is the diagonal matrix with

wor  entries the L; defined above. Hence, for any nodes ¢ and j:

%cov[xi;x] [ULUT; ZLkUkujk—ZLk > 11 > I

pEeEPy_y; ecpl PhEPyj ecph

1008 Note that this formulation has both fixed and random effects, but lacks an

s additional residual error term E (with independent entries) to match the phylogenetic

10 mixed model (Lynch|[1991)). This error term could represent other sources of variation, such
11 as intra-specific variation or measurement error. Including this term was proven to be

o2 crucial in PCM analyses on trees (Silvestro et al.|2015), and including it on networks

113 should be the focus of future work.

F TEST FOR TRANSGRESSIVE EVOLUTION
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1015 The F statistics used in Section [Iransgressive Evolution| have the following

1016 expression:

||Y — PI‘OjR Y||?Ctip)71 - ||Y PI'OJ YH (Ctir)—1 n— T[R N]

Fip = ' i
||Y—PI'OJRN]YH Ctip)fl T[R N] — TR

HY PrOJ[R N]YH (Ctip)—1 ||Y PTOJRN]YH (ctiny-1 T — TR N|

Fy = — -
HY — Projr N YH(CHP)_1 TR N] — TR N]
w17 where Projy; denotes the projection onto the linear space spanned by the columns of
s matrix M, with respect to the metric defined by CUP: HXH?Ctip)_l = X7 (C'P)~1X. In other

w0 words, for any vector X:

Projy X = Uarsgmélr\l/l) |IX — U|| (Ctiny-1 = M (M (CP)~1M)~'MT (CHP)~1X .
€dSpan

1020 These statistics follow a noncentral F distribution as given in @ and of the main text,

w21 where
A2)(R,N,C%) = ||(I - Projg)N||’ (Ctiv)-
A3, (d,R,N,N,C"™) = ||(I - Projg N])NdH(Cﬁprl :

w2  When studying the power of the test H; vs Hs, we took d = dd“, so that the noncentral

1023 coeflicient is:
—1 A2 N.N, C!P) = —d2 —P )N
o2 21(d7R7 JER) ) - o2 H I'OJ[R N] d, H (Ctir)—

w4 and, as the networks are fixed, it only varies with the heterogeneity coefficient d.
1025 Note that a third statistic, F5y, can be defined in a similar way to test Ho vs Hy

w6 directly. We first re-write the linear model as:

Y =RB+ N+ 0E, ENN(Onvctip)’


https://doi.org/10.1101/194050
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/194050; this version posted April 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1027 where there are no constraints on coefficients . Then the F statistic can be written as:

. 2 . 2
1Y — PrOJRYH(C“p)‘1 B HY — Projir YH(ctip)fl n — TR N

F20 = - 3 .
HY o PrOJ[R N] YH(ctip)—l "RN] TR

s In the same way, it follows under H, a noncentral F distribution:
1 2 tip
FQO ~F TR N — TR, — TR N}7;A2O(duR7N’C ) )

1020 with

A% (0, R,N,C") = [|(I - ProjR)Né”?Ctip)—l :

w0 Thanks to the flexible framework provided by the GLM ftest function, all these tests are

s readily implemented, as long as one can fit the three models (Hg, Hi, and Hs).

w2 Comparison with independent species.— We compared the power of our test for

w3 phylogenetically correlated species, to a situation where all the species would be

10 independent. With independent units and for parameters in Figure [, we get

w0 A2) = ny(n —ny)/n, where n = 32 is the total number of species, and n;, € {1,2,4, 8} is the
s number of species with a hybrid ancestry. The effect size b is the mean difference between

w7 species with a hybrid ancestry, and species with no hybrid ancestry, assuming variance

w03 02 = 1 within groups. This allows us to compute the power to detect a shift (group

03 difference) at various values of b. This power can then be compared to that obtained under
wwo  phylogenetic correlation. The network structure tends to degrade the power when there are
e more than 4 species impacted by the shift (Fig. . Even for independent species, the small
w2 group sizes make for generally quite low power. In the most favorable situation, the power
s to detect an effect of size b = 0.8 is only 0.47 (Fig. , right-most panel, dashed curve). In

i the more standard situation where the two groups each have 30 individuals, an effect of
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size b = 0.8 would be detected with power 0.86, which would typically be considered as
sufficient. Interestingly, in the two networks on the left where only one or two species are
impacted by transgressive evolution, the network structure actually improves the power. In
these networks, the species with hybrid ancestry have very close sister clades, which
provide information about the ancestral trait just before the transgressive shift. The high

correlation between the recent hybrid and its sisters improves the power to detect the shift.

hinta

1.004

0.754

0.504

theoretical power

0.254

0.004

Figure 8: Theoretical power of the shared transgressive evolution test Hy vs Hi, as in
Figure[5] for alevel of 0.05. The solid curve shows the actual test on the network. The dashed
curve shows the power if the species were all independent, and if the traditional F test (or
Student T test) were used to detect a shift affecting the species with hybrid ancestry. Under
independence, the power is highly dependent on sample sizes, with more balance providing
higher power. The network structure degrades the power compared to the independent
case, except when the hybridization is recent, in which case the dependence structure helps.
Under phylogenetic correlation, power is affected by the age of the hybridization and by the
imbalance in group sizes (with opposing effects here).


https://doi.org/10.1101/194050
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/194050; this version posted April 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1051 LINK WITH PEDIGREES

1052 We first note that pedigrees may contain individuals with a single known parent, a
1053 case omitted from the main text for conciseness. This case is easily modeled in the network
s+ by including a node for the unknown parent, considering it as a founder individual. We

1055 also note that in many reference publications, is stated with 7, simplified to 1/2

ss  ((Thompson! [2000; [ Thompson and Shaw{|1990, e.g.). This simplified model is correct only if

ws7  the pedigree contains no inbred individuals.

wss  Path formula.— We present here a path formula that is analogous to the path counting
19 method on pedigrees from Wright| (1922) (equation (3.1) in [Thompson 2000), generalized

e to phylogenetic networks. For any i # j, we show below that:

N
Cij = chk Z ( H ’Ye) (15)
k=1 (PF PE)EPL—i 5 \ ecpiupk

s where Py, ; is the set of pairs of directed paths (pf,p}) such that pf goes from & to u and
we2 such that pf and pé‘? are disjoint, in the sense that they do not share any node other than &
1063 (hence they do not share any edge). When applied to a pedigree, the last term Heepfu;;;v Ve
e simplifies to 2717 PP where |E(p)| is the number of edges in path p. Unlike and ([14),
1065 says nothing about Cj;. Like , is applicable to networks with multiple roots.

wes Proof. We prove by induction. For a network with a single node, there is nothing to
wer  prove. For a network with N nodes, we preorder the nodes. By induction, holds for

ss  the subnetwork made of nodes {1,..., N — 1}. Next, we need to prove that holds for

weo any ¢ < N and for j = N.

1070 e If IV is a tree node with parent a, then C;y = Cj, for any i # N, from . If, further,
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1071 1 7é a then

N-1

Cin=Cia = Z Chi Z ( H ’Ve>
k=1 (PF PE)EPEi,a N e€PFUPE
N
SV S

k=1 (05 PR )EPrin N\ e€pFupk;
1072 thus proving . The last line comes from the fact that any path pk; is the union of
1073 one path p* with the edge connecting a to N, which has v = 1, and p¥; is disjoint
1074 with p¥ if and only if p¥ is disjoint with p¥. Also, the contribution of node k = N is 0
1075 because the set of paths from k = N to 7 is empty.
1076 If © = a, then holds again because it simplifies to C,,: the only node k£ with a
1077 non-empty pair Py, n is k = a, for which there is a single pair (pf, p%) where p* has
1078 node a only (no edges), and p% has a and N (and a single edge). For this pair, the
1079 contribution is v = 1.

1080 e If N is a hybrid node with parents a and b, then C;ny = v,Cio + 1Cip for i # N from
1081 (). Further, if i # a and i # b, then we can apply to (i,a) and (7,b) to get:

Cin= = %J:Z__;ICM > < 11 ’ye>+%NZ_:lek >, ( 11 %)

(P PE)EPr—sia \ e€pFUpl k=1 (PFPE)EPr—ip \ e€PFUPE
N
Sy ¥ (11

k=1 (05 PR )EPryin N\ e€pFuphk;
1082 thus proving . The last line comes from the fact that any path p%; is the union of
1083 one path p* with the edge connecting a to N, which has v = ,, or the union of one
1084 path p} with the edge connecting b to N, which has v = ~,. Also, p& is disjoint with
1085 pF if and only if p* (resp. pf) is disjoint with p¥. Also, like before, the contribution of

1086 k = N is 0 because the set of paths from k£ = N to 7 is empty.
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1087 Next, if 2 = a, then holds again:
N-1
C’aN = ’Vacaa + ’chab = /YaCaa + M Z Ckk Z H Ve

k=1 (Pk.PF)EPK—ap \ e€pEUPE

= g(]kk > IT

(P PR )EPLa, N \ eEPEUPE;

1088 because if (p¥, p&) is in Pj_qn and if k # a, then pF is required to be disjoint from

1089 pk, so p% must be the union of a path p} with the edge from b to N (with v = ),

1090 and p% is disjoint from p¥ exactly if pf is disjoint from p*. Also, the contribution of
1001 k= ais 0in Cgy, and 7,C,, on the last line. The argument for ¢ = b is analogous to
1002 the case i = a.
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