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Abstract 

Motivation: Gene expression levels exhibit stochastic variations among genetically identical 

organisms under the same environmental conditions. In many recent transcriptome analyses 

based on RNA sequencing (RNA-seq), variations in gene expression levels among replicates 

were assumed to follow a negative binomial distribution although the physiological basis of 

this assumption remain unclear.  

Results: In this study, RNA-seq data were obtained from Arabidopsis thaliana under eight 

conditions (21–27 replicates), and the characteristics of gene-dependent distribution profiles 

of gene expression levels were analyzed. For A. thaliana and Saccharomyces cerevisiae, the 

distribution profiles could be described by a Gauss-power mixing distribution derived from a 

simple model of a stochastic transcriptional network containing a feedback loop. The 

distribution profiles of gene expression levels were roughly classified as Gaussian, power 

law-like containing a long tail, and mixed. The fitting function predicted that gene expression 

levels with long-tailed distributions would be strongly influenced by feedback regulation. 

Thus, the features of gene expression levels are correlated with their functions, with the 

levels of essential genes tending to follow a Gaussian distribution and those of genes 

encoding nucleic acid-binding proteins and transcription factors exhibiting long-tailed 

distributions. 

Availability: Fastq files of RNA-seq experiments were deposited into the DNA Data Bank of 

Japan Sequence Read Archive as accession no. DRA005887. Quantified expression data are 

available in supplementary information. 

Contact: awa@hiroshima-u.ac.jp  

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

 

 

1 Introduction 

Stochastic variations in gene expression—known as gene expression noise or phenotype 

fluctuation—have been observed among individuals in a genetically identical population 

under the same environmental conditions (Elowitz et al., 2002; Furusawa et al., 2005; 

Golding et al., 2005; Kaern et al., 2005; Newman et al., 2006; Chang et al., 2008; Konishi et 

al., 2008; Taniguchi et al., 2010; So et al., 2011; Silander et al., 2012; Woods, 2014). Such 

variations are thought to be important for maintaining the pluripotency of embryonic stem 

cells, cell fate decisions, and cellular differentiation in multicellular organisms (Mitsui et al., 
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2003; Kaneko, 2006; Kalmar et al., 2009; Ochiai et al., 2014). In rice, genes related to stress 

responses exhibited larger variations than those involved in other processes (Nagano et al., 

2012). Furthermore, recent studies in Escherichia coli, the budding yeast Saccharomyces 

cerevisiae, and Arabidopsis thaliana have reported that the magnitude of gene expression 

noise is positively correlated with plasticity—i.e., the variation in expression levels due to 

mutation or environmental change (Sato et al., 2003; Blake et al., 2003; Landry et al., 2007; 

Choi and Kim, 2008; Choi and Kim, 2009; Tirosh and Barkai, 2008; Lehner, 2010; Lehner 

and Kaneko, 2011; Bajic and Poyatos, 2012 ; Singh, 2013, Hirao et al., 2015). 

Recent gene expression analyses with sufficiently large replicates have shown that in 

organisms as diverse as E. coli and mammals, fluctuations in protein expression level for a 

given gene follow a log-normal distribution (Sato et al., 2003; Furusawa et al., 2005; Chang 

et al., 2008; Konishi et al., 2008). The closely related Frechet distribution was also proposed 

to describe variations in gene expression levels in E. coli and S. cerevisiae (Salmann et al., 

2012). On the other hand, mathematical modeling of protein expression in E. coli suggested 

that such variations were more closely approximated by a gamma distribution, which is often 

considered as log-normal (Friedman et al., 2006; Taniguchi et al., 2010). 

In many recent high-throughput RNA sequencing (RNA-seq) studies (Mortazavi et 
al., 2008; Nagalakshmi et al., 2010), variations in gene expression (transcription) levels 
among replicates were assumed to follow a negative binomial (NB) distribution (Marioni et 

al., 2008; Robinson et al, 2008; Rapaport et al., 2013; Gierlin’ski et al., 2015; Schurch et al., 

2016). An analysis of RNA-seq data from a two-condition, 48-replicate experiment using S. 

cerevisiae revealed that variations in expression levels for each gene conformed to both 

log-normal and NB distributions (Gierlin’ski et al., 2015). Beta-binomial and Benford 

distributions have been proposed for fitting gene expression data obtained by RNA-seq 

(Smith et al., 2016; Karthik et al., 2016). However, the physiological basis of these 

distributions and the significance of associated parameters remain unclear. Furthermore, it is 

not known whether such model distributions are applicable to any genes in any organism, 

especially multicellular organisms. 

Gene expression noise in plants has been investigated in rice and Arabidopsis 

(Nagano et al., 2012; Shen et al., 2012, Hirao et al., 2015). However, recent studies were 

based on transcriptome data from experiments with few replicates (Maruyama-Nakashita et 

al., 2005; Nemhauser et al., 2006; Kilian et al., 2007; Goda et al., 2008; Less and Galili, 

2008; Wittenberg et al., 2012), which limited the inferences that could be made regarding the 

distribution characteristics of gene expression levels. In the present study, we analyzed 

RNA-seq data for A. thaliana under eight conditions (21–26 replicates) to determine 
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distribution profiles of gene expression noise (phenotype fluctuation) among individuals in a 

homogeneous population. We fitted the distribution profiles with a novel distribution 

function that we termed the Gauss-power (G-P) mixing distribution, which was derived from 

a simple stochastic transcriptional network model containing a feedback loop. The expression 

of genes showing a long-tail distribution was strongly influenced by a feedback mechanism; 

moreover, variations in gene expression levels were correlated with average expression levels 

and gene function. 

 

2 Results 

2.1 Analysis of Arabidopsis RNA-seq data 

RNA-seq data from 7- and 22-day-old Arabidopsis shoots cultured under a 12:12-h light/dark 

cycle were obtained 1, 7, 13, and 19 h after the lights were turned on. There were 21 to 27 

replicates for each condition. In total, 189 individual plants were analyzed by RNA-seq. We 

obtained 8.4 million reads on average; 1 sample with fewer than 1 million reads mapped to 

genes was omitted from subsequent analyses. The expression level of each gene was defined 

as the number of reads mapped to each gene per 1 million reads (Table S1). For each 

condition, we examined the distribution profiles of expression levels of ~10,000 genes (Table 

1) whose expression levels could be regarded as stationary (see Materials and Methods). 

 

Table 1. Number of replicates in the RNA-seq experiment and number of analyzed genes for 

each condition of Arabidopsis 

Condition Age (days) Time after light (h) Replicate No. of analyzed genes 

7-1 7 1 21 10,499 

7-7 7 7 21 9287 

7-13 7 13 25 10,760 

7-19 7 19 24 10,735 

22-1 22 1 22 9619 

22-7 22 7 24 12,109 

22-13 22 13 24 12,810 

22-19 22 19 27 11,338 

 

2.2 Cluster analysis of rank-expression level distribution (RED) profiles of genes 

RED profiles were obtained for each gene under each condition (harvest time and age of 

plant) (Fig. 1). For most genes, the REDs showed typical profiles but were very noisy. 
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However, it is expected that groups of genes whose expression is similarly regulated would 

have similar RED profiles. We performed a cluster analysis to extract the essential properties 

of the RED profiles for each gene (see Materials and Methods). 

For each condition, 12–15 clusters were obtained from normalized RED profiles 

(Tables S2 and S3), representing the relationship between standardized expression levels for 

mean = 0 and standard deviation = 1 and rescaled rank from 0 to 1. The average values of 

standardized expression levels of genes belonging to the same cluster were expected to reflect 

the essential features of their RED profiles (Fig. 1). 

 

 
Figure 1. RED profiles of genes and average normalized RED profiles of their respective 

clusters. (Upper) RED profiles of indicated genes under specific conditions. As examples, 

results obtained from RNA-seq data at 13 h for 7-day-old Arabidopsis are shown. Similar 

RED profiles were grouped by cluster analysis. (Lower) Average normalized RED profiles 

for genes belonging to specific clusters. 
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2.3 Inferences on probability density distribution profiles of gene expression levels 

Since gene expression levels are non-negative, we analyzed normalized RED functions that 

were shifted such that the minimum value on the vertical axis was assumed to be 0 (referred 

to as shifted normalized RED function) instead of the previous normalized RED functions. 

The value of the vertical axis of this function represented the rescaled expression level. The 

inverse function of the shifted normalized RED function provided the probability distribution 

of rescaled expression levels (Fig. 2), whose derivative yielded the profiles of probability 

density distribution function of rescaled expression levels (PDL) for each cluster (Figs. 2 and 

S1–S8). The derivative of this function was estimated by differential approximation (see 

supplementary information S1). PDL profiles obtained from the clusters showed variable 

shape, including Gaussian and power law-like distributions. 

 

  

Figure 2. Examples of probability distributions and PDL profiles for indicated clusters. 

Examples of profiles of probability distribution of rescaled expression levels (left) and of 

PDL profiles (right) for three clusters. Red and blue represent curves fitted with the G-P and 
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NB distribution functions, respectively. Least square error was estimated for the fitting 

curves. 

 

2.4 G-P mixing distribution 

The distribution profiles of gene expression levels were systematically classified based on the 

following mathematical model. A novel distribution function, which we refer to as G-P 

distribution, is described by equation 1. 

 

𝑃 𝑥 = 𝐴
𝐾 + 𝑥
𝑓𝑥 𝑥

!!"!!!
!! 𝑒

! !
!!

!!!
! ! !!!! !!!

!

!                                             (1) 

 

This equation is a fitting function of the distribution function of expression level x of the gene 

of interest X; the parameter A is a normalized coefficient; and f, g, and K are constants whose 

physiological significance is described below. 

In general, gene expression levels are increased by activation and decreased by 

inhibition of upstream genes in a gene regulatory network. Furthermore, temporal changes in 

gene expression levels are directly or indirectly influenced by genes themselves, since the 

gene regulatory network includes many positive and negative feedback loops that are 

activated in a stochastic manner based on fluctuations in gene expression. Thus, a simplified 

model of the temporal change in the expression level x of gene X influenced by upstream 

genes and feedback regulation (Fig. 3) is given by equation 2: 

 

𝑑𝑥
𝑑𝑡 = 𝐺 + 𝑅 𝑡 +

𝐹𝑥
𝐾 + 𝑥 𝜂 𝑡 − 𝐶𝑥                              (2) 

where 𝑅(𝑡) and 𝜂(𝑡) are assumed to be Gaussian white noise with 𝑅(𝑡) = 𝜂(𝑡) = 0, 

𝑅(𝑡)𝑅(𝑡′) = 2𝐷𝛿(𝑡 − 𝑡!), and 𝜂(𝑡)𝜂(𝑡′) = 2𝛿(𝑡 − 𝑡!); the parameters G, K, F, and C 

are ~[average activation rate of X by upstream genes], ~[average expression level of X 

required to induce maximum expression of downstream genes], ~[magnitude of feedback 

effects], and [degradation rate of X], respectively; and P(x) is the steady-state probability 

distribution for simplified cases where 𝐷 → 0  where g = G/C and f = F/C (see 

supplementary information S2). 
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Figure 3. Illustration of a gene network model that fits a G-P distribution function. Gene X is 

regulated by upstream genes and by stochastic feedback. 

 

2.5 Fitting of PDL profiles with the G-P mixing distribution 

PDL profiles of each cluster under each condition were fitted with the G-P mixing 

distribution and (generalized) NB distribution according to equation 3: 

 

𝑁 𝑥 = 𝐵
Γ 𝑠𝑥 + 𝑘 + 1
Γ 𝑘 Γ 𝑠𝑥 + 1 𝑄!(1− 𝑄)!"                                          (3) 

 

where Γ 𝑟  is the gamma function and B, s, k, and Q are fitting parameters. Note that the 

parameter s—which is usually equal to 1—contributes to the generalization for various scales 

of x. 

The characteristics of PDL profiles for some clusters can be extracted from plots with 

a linear scale axis; however, it is more difficult to extract those of profiles with much larger 

maximum values and exhibit power law-like profiles, for which log-log plots seem more 

suitable when the maximum PDL value is greater than 3. In order to extract their detailed 

characteristics, PDL profiles were fitted using a typical least squares method for maximum 

PDL values < 3; PDL fitting parameters were chosen so as to minimize the sum of squared 

errors between log[PDL] and log[fitting functions] when the maximum PDL value was > 3. 

The results suggest that the G-P distribution has a least square error that is equal to or smaller 

than that of the NB distribution for PDL profiles of most clusters (Fig. 2 and Table S3). 

Therefore, in subsequent analyses the PDL profiles were classified according to a G-P 

distribution. 

 

2.6 Classification of PDL profiles 

When PDL profiles of each cluster were fitted to the G-P distribution function, some had K = 

0, indicating that they were Gaussian, while others had K >> g, indicating that they were 

closer to a power law distribution. PDL profiles were classified as one of three types: 

Gaussian (K = 0), power law-like (K >> g), or mixed (K ≈ g) (Table S3). Here, f >> g was 
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also obtained when K >> g, indicating that when the influence of feedback effects are large 

relative to the other mechanisms regulating gene expression, gene expression levels exhibit a 

long-tailed power law-like distribution. 

Even for the same gene, PDL profiles varied depending on plant age and harvest time 

(Table S2). The ratio of occurrence of Gaussian, mixed, and power law-like distributions at 

four time points in younger plants (7 days old) was ~ 3:3:4, while that of older plants (22 

days old) was ~45:29:26. High average expression levels were more frequently associated 

with a Gaussian as compared to a power law-like distribution; average expression levels and 

peak value of the frequency distribution were higher for the former than for the latter (Fig. 4). 

Gene function was also correlated with PDL profiles (Tables 2 and S4). For example, 

More than half of “essential genes” (Meinke et al., 2008)showed Gaussian PDL distribution 

at four time points of young plants and old plants. Furthermore, genes encoding important 

intracellular components and organelles and those associated with electron transport in 

metabolic pathways tended to show Gaussian PDL distributions. On the other hand, genes 

encoding transcription factors and nucleic acid-binding proteins mostly exhibited power 

law-like and mixed PDL distributions. 

 

 

Figure 4. Frequency distributions of average log gene expression levels of gene groups 

exhibiting distinct PDL profiles. Frequency distributions of average log gene expression 

levels in cases of Gaussian (blue), mixed (black), and power law-like (red) distributions in 

7-day-old (left) and 22-day-old (right) Arabidopsis. Differences in average log gene 

expression levels between Gaussian and mixed, and between mixed and power law-like 

distributions were significant (P < 0.01, t test) at both plant ages. 
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Table 2. Relationships between gene groups classified according to function and ratio of 

occurrences of PDL profiles 

 

 

3 Discussion 

More than 20 replicates of A. thaliana gene expression data at four harvest times of 7- and 

22-day-old shoots were obtained and the PDL profiles of each gene were analyzed. Most 

profiles could be fitted by the G-P distribution. There were three typical PDL profiles; 

namely, Gaussian, power law-like, and mixed. 

The G-P distribution suggested that the various types of PDL profile were highly 

influenced by network topology, particularly a feedback loop regulating gene expression; for 

instance, gene groups showing a power law-like distribution were frequently influenced by a 

feedback mechanism, while this was rare for those exhibiting a Gaussian distribution. 

Furthermore, the PDL profiles of genes were correlated with their average expression levels 

and functions; gene groups classified as being essential for survival tended to exhibit 

Gaussian distributions, whereas those encoding transcription factors and nucleic acid-binding 

proteins mostly followed a non-Gaussian (i.e., power law-like or mixed) distribution. 

Furthermore, the expression levels of many genes classified as “unknown” exhibited power 

law-like distributions (Table S4), suggesting that their expression is predominantly 

modulated by feedback loops. 

PDL profiles of gene expression levels were inferred from publicly available 

RNA-seq data derived from 48-replicate experiments of S. cerevisiae (Gierlin’ski et al., 2015) 

in the same manner as in the present study. The G-P as well as the NB distribution function 

fit the PDL profiles of S. cerevisiae (Fig. S9). However, long-tailed power law-like PDL 
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profiles were not observed, unlike for Arabidopsis genes. 

Even when the analysis was performed using 24-replicate data randomly selected 

from the 48-replicate dataset, the results were qualitatively similar to those described above, 

except that the number of clusters differed (Fig. S10). Although the number of replicates in 

the present study was smaller than that used in the earlier report, our results reflect the 

essential properties of the PDL profiles of Arabidopsis genes and are expected to apply to a 

larger number of replicates. 

This study mainly focused on the steady-state probability distributions of gene 

expression levels. However, many Arabidopsis genes are regulated by circadian rhythm. 

Future studies must therefore address the extent to which the present model can be 

generalized to dynamic situations. Furthermore, intermittent temporal changes were observed 

in the expression of genes following a power law-like distribution, suggesting a 

transcriptional burst mechanism (Taniguchi et al., 2010; So et al., 2011; Munsky et al., 2012; 

Sanchez et al., 2013; Jones et al., 2014; Fujita et al., 2016) for genes whose expression is 

predominantly influenced by feedback. Such dynamic features of gene expression warrant 

more detailed analysis. 

 

4 Materials and Methods 

4.1 Plant growth conditions and RNA-seq 

Seeds of A. thaliana (accession Col-0) were sown on Murashige and Skoog medium with 

0.5% gellan gum. After incubation for 2 days at 4°C in dark, the seeds were cultivated at 

22°C on a 12:12-h light/dark cycle. The whole aerial part of plants 7 or 22 days after 

germination was collected 1, 7, 13, and 19 h after the start of light period and immediately 

frozen in liquid nitrogen and stored on −20°C until RNA extraction. Each individual plant 

was used as a sample for RNA-seq. Total RNA was extracted with the Maxwell 16 LEV 

Plant RNA kit (Promega, Madison, WI, USA). RNA-seq library preparation was performed 

as previously described (Nagano et al., 2015); seven lanes of single-end 50-bp sequencing of 

the library were analyzed using the Hiseq2000 and HiSeq2500 systems (Illumina, San Diego, 

CA, USA). Sequences were pre-processed, mapped, and quantified according to a previously 

described pipeline (Kamitani et al., 2016). Fastq files were deposited into the DNA Data 

Bank of Japan Sequence Read Archive as accession no. DRA005887. 

 

4.2 Analysis of gene expression level variation bias 

Owing to technical limitations, there was a time lag of several to 10 min during the 

harvesting of Arabidopsis leaf samples, potentially introducing a bias in the expression levels 
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of some genes with respect to harvest time. In order to evaluate the variation bias in gene 

expression levels under each condition, we calculated the average gene expression levels 

from half of the samples harvested at early time points and half harvested at late time points. 

Gene expression level was regarded as stationary (unbiased) if the P value in the t test was > 

0.2. 

 

4.3 Cluster analysis 

k-Means cluster analysis using R software (http://www.r-project.org) was performed for 

normalized RED profiles. The number of clusters was selected so as to minimize the 

Bayesian information criterion. 

 

4.4 Data sources for gene classification 

To classify each gene, the Gene Ontology Slim classification list was obtained from TAIR 

(http://www.arabidopsis.org). Data on essential genes were obtained from the SeedGenes 

Project (http://www.seedgenes.org/GeneList) (Meinke et al., 2008). 
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