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ABSTRACT 
 
Heart rate (HR) response to exercise, as defined by HR-increase upon exercise and HR-
recovery after exercise, is an important predictor of mortality and believed to be modulated 
by the autonomic nervous system. However, the mechanistic basis underlying inter-individual 
differences remains to be elucidated. To investigate this, we performed a large-scale 
genome wide analysis of HR-increase and HR-recovery in 58,818 individuals. A total of 25 
significant independent SNPs in 23 loci (P<8.3×10-9) were associated with HR-increase or 
HR-recovery, and 36 candidate causal genes were prioritized that were enriched for 
pathways related to neuron biology. There was no evidence of a causal relationship with 
mortality or cardiovascular diseases, however, a nominal association with parental lifespan 
was observed (5.5×10-4) that requires further study. In conclusion, our findings provide new 
biological and clinical insight into the mechanistic under-pinning of HR response to exercise, 
underscoring the role of the autonomous nervous system in HR-recovery. 
 
 
ABBREVIATIONS 
 
BMI – Body mass index 
ECG – Electrocardiography 
HR – Heart rate  
HRR – Heart rate recovery 
GWAS – Genome-wide association study 
LD – Linkage disequilibrium 
MAF – Minor allele frequency 
SE – Standard error 
CI – Confidence interval 
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INTRODUCTION 
 

Physical activity places an increased demand on the cardiovascular capabilities of a 
person, it relies heavily on the regulation by the autonomic nervous system and 
cardiovascular health status1. Electrocardiograms (ECG) of exercise tests are used to 
determine cardiac fitness and function, and offers unique insights into cardiac physiology 
compared to rest ECGs. The first data linking electrocardiographic changes in response to 
exercise with mortality was presented in 1975, indicating that a low peak heart rate (HR) 
response during exercise was associated with an increased risk of cardiac death2. It is now 
well accepted that chronotropic incompetence confers a worse prognosis for cardiac 
mortality and events3. Increased HR during exercise, and HR-recovery after exercise is 
specifically associated with sudden cardiac death and all cause mortality, in healthy 
individuals4–6 and it is observed in coronary and heart failure patients regardless of β-blocker 
usage7–9. The majority of the studies were focused on HR-recovery at 60 seconds, which is 
heritable at around 60%10. The hypothesis linking HR-recovery to mortality arose from the 
work that associated components of the autonomic nervous system with sudden cardiac 
death11 and studies of decreased vagal activity12,13. McCrory et al.14 recently expanded on 
this topic by adding additional evidence, linking baroreceptor dysfunction with mortality. The 
study also showed HR-recovery in the first 10 seconds after an orthostatic challenge to be 
most predictive of mortality. The immediate response of the cardiovascular system to 
exercise is an increased HR that is attributable to a decrease in vagal tone, followed by an 
increase in sympathetic outflow and, to some extent circulating hormones15. The mechanism 
to reduce HR after exercise follows the inverse mechanism, a gradient of parasympathetic 
nervous system reactivation and sympathetic withdrawal15. The effect of this reactivation is 
believed to be strongest in the first 30 seconds after termination of exercise16. However, the 
exact molecular mechanisms underlying inter-individual differences in HR-response to 
exercise, as defined by HR-increase and HR-recovery, are unknown. 

The UK Biobank includes a sub cohort of 96,567 participants that were invited for 
electrocardiographic exercise testing, which enabled for the first time in-depth genetic 
analyses of HR response to exercise. The aims of this study were (1.) to provide (shared) 
genetic heritability estimates among variables of the HR profile during exercise, (2.) to 
identify genetic determinants associated with HR-increase and HR-recovery at 10, 20, 30, 40 
and 50 seconds and underlying candidate causal genes, and (3.) to obtain insights into 
pleiotropy and clinical consequences of HR-increase and HR-recovery. 
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METHODS 
 

The UK Biobank cohort, ascertainment of the HR profile during exercise and quality 
control 

UK Biobank is a cohort of individuals with an age range of 40-69 years that were 
registered with a general practitioner of the UK National Health Service. In total 503,325 
individuals were included and provided informed consent between 2006 and 2010. The UK 
Biobank cohort was approved by the North West Multi-centre Research Ethics Committee. 
Detailed methods used by UK Biobank have been described elsewhere17.  

In total 99,539 ECG-exercise records have been recorded in 96,567 participants that 
underwent a cardio assessment, 79,217 were recorded during the baseline visit (2006-2010), 
20,322 at the second follow-up visit (2012-13). Participants were asked to sit on a stationary 
bike, start cycling after 15 seconds of rest and then perform 6minutes of physical activity, 
after which exercise was terminated and participants sat down for about 1 minute without 
cycling. The exercise protocol was adapted according to risk factors of the participant, details 
can be found elsewhere18. For this study, participants were only included if they were allowed 
to cycle at 50% or 30% of their maximum workload (no risk - minimum risk), as described 
further under  “Statistical analyses (exclusions)”. The exercise was ended after reaching a 
pre-set maximum HR level of 75% of the age-predicted maximum HR.The Cardio 
assessment involved a 3 leads (lead I, II and III) ECG recording (AM-USB 6.5, Cardiosoft 
v6.51) at a frequency of 500 hertz. The ECG was recorded using 4 electrodes placed on the 
right and left antecubital fossa and wrist and stored in an xml-file of Cardiosoft. 

Of all available ECG-records, 77,190 contained full disclosure data that could be used 
to detect R waves; others contained an error relating to the ECG device used (“Error reading 
file C:\DOCUME~1\UKBBUser\LOCALS~1\Temp\ONL2F.tmp”). R waves were detected with 
the gqrs algorithm19 and further processed using Construe20 
(https://github.com/citiususc/construe) to detect individual Q-R-S waves. To obtain reliable 
RR intervals, following international recommendations 21, abnormal values (0,286 - 2 
seconds) were removed. Additional outliers were removed by the tsclean function, part of R-
package ‘forecast v7.3’ that incorporates the method described in Chen and Liu22 for 
automatic detection of outliers in time series. A total of 2,804 ECG's were excluded due to 
excess noise (identified by determining the standard deviation over a rolling standard 
deviation with a window length of 3 beats over RR intervals per ECG per phase and 
removing the 98th percentile of this distribution). In total we inspected about 10 thousand RR 
interval profiles or ECGs to evaluate the RR-interval detection and quality control. For each 
ECG, we estimated the mean resting HR, the standard deviation of RR intervals (SDNN, log2 
transformed) and the root mean square of successive differences between RR intervals 
(RMSSD, log2 transformed) from the RR intervals before exercise started. HR-increase was 
determined as the difference between peak HR during exercise and resting HR. HR recovery 
was defined as the difference between maximum HR during exercise and mean HR at 10±3, 
20±3, 30±3, 40± and 50±3 seconds after exercise cessation (HRR10-HRR50). HR-recovery 
at exactly 1 minute was not available; only 9 participants recovered for a duration ≥60 
seconds. Observations of the second follow-up visits were used when no baseline 
observation was available. Variables were inspected on normality and participants with 
extreme ECG exercise measurements (more than ±5 standard deviations from mean) were 
excluded on a per phenotype basis. By means of external validation, we estimated that 
resting-HR, SDNN and RMSSD were highly consistent with previous GWAS estimates23,24: 
β=1.085(se=0.029, P=3×10-309), β=1.145(se=0.051, P=1×10-108), and β= 1.0816(se=0.043, 
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P=2×10-139), respectively as estimated by linear regression of the HR-phenotype on the 
polygenic score (described below). HR-phenotypes were rank-based inverse normal 
transformed to increase the power to detect low-frequency variants and to allow for 
comparisons of beta coefficients between traits. Source code, example data and further 
descriptions of the methods are available at https://github.com/niekverw/E-ECG. 

Individual data on disease prevalence and incidence were derived from the 
Assessment Centre in-patient Health Episode Statistics (HES) and from self-reports during 
any of the visits through questionnaires and nurse-interviews as described previously25. 
Mothers, fathers and parental age of death was defined according to the study of Pilling et 
al.26, parental lifespan as a proxy for mortality was defined as the primary outcome variable.  
 

Genotyping and Imputation  
Genotyping, quality control and imputation to 3 reference panels (HRC v1.1,1000 

genome and UK10K) was performed by The Welcome Trust Centre for Human Genetics, as 
described in more detail elsewhere27. Sample outliers (based on heterozygosity or 
missingness) were excluded, as were 373 participants on the basis of gender mismatches. 
The analyses were restricted to HRC v1.1 SNPs with a MAF>1% and imputation quality 
score of >0.3.  
 

Statistical Analysis 
Covariates: Regression analyses of resting-HR, SDNN and RMSSD were adjusted for 

gender, age, gender-age interaction, body mass index (BMI), BMI*BMI and the first 30 
principal components and genotyping chip (Affymetrix UK Biobank Axiom or Affymetrix UK 
BiLEVE Axiom array). In addition, for HR increase and HR recovery the model also included 
exercise duration, exercise program (30 or 50% max load), maximum workload achieved and 
the interaction between the exercise program and maximum achieved workload to fully 
account for aerobic exercise capacity.  

Exclusions: Participants were excluded if they stopped exercising earlier than 
planned, experienced chest-pain or other discomfort, were at medium to high cardiovascular 
risk18 at the time of the test, or terminated exercise due to unknown reasons. The population 
was stratified by participants that reported taking sotalol medication, beta-blockers, anti-
depressants, atropine, glycosides or other anti-cholinergic drugs, or were diagnosed in 
history with a myocardial infarction, supraventricular tachycardia, bundle branch block, heart 
failure, cardiomyopathy or had a pacemaker or ICD implant in history. In a post-hoc 
sensitivity analysis the differences in beta estimates in these strata were assessed by a 
Chow test.  

Analyses: In total 58,818 participants were included in the GWAS. GWAS and 
heritability analyses were performed using BOLT-LMM28 and BOLT-REML29 respectively, 
employing a conjugate gradient-based iterative framework for fast mixed-model 
computations that is able to accurately take into account population structure and 
relatedness, assuming additive effects. BOLT was modeled using 509,255 genotyped SNPs 
that were extracted from the final imputation set (to ensure a 100% call rate per SNP), and 
after pruning (R2 >0.5, using plink ‘--indep-pairwise 50 5 0.5); LD scores, also used by BOLT, 
were estimated from 2000 randomly selected UK Biobank participants (after sample 
exclusions based on relatedness, missingness and heterozygosity). To control for 
relatedness among participants in linear- logistic or cox- regression analyses, we used 
cluster-robust standard errors using genetic family ID as clusters. A family ID was given to 
individuals that were 3th-degree or closer based on the kinship matrix provide by UK Biobank 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2017. ; https://doi.org/10.1101/194167doi: bioRxiv preprint 

https://doi.org/10.1101/194167
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

(kinship coefficient >0.0442). All statistical analyses other than the genome-wide analysis 
were carried out using R v3.3.2 or STATA/SE release 13. 

Statistical significance: Since this is by far the largest population based study of 
electrocardiographic exercise tests; independent cohorts that match this study in size and 
availability of variables (specific heart rate response variables and genetics) for replication 
are unavailable. Therefore, a conservative genome wide significant threshold of P<8.3×10-9 

was adopted accounting for 6 independent traits, in accordance with similar multi-phenotype 
studies of this scale30–34.  

Locus determination: Variants were considered to be independent if the pair-wise LD 
(r2) was less than 0.01. A locus was defined as a 1MB region surrounding the highest 
associated independent SNP. The strongest associated variant within a locus was assigned 
the ‘sentinel SNP’, however multiple ‘independent SNPs’ can be in one locus, which was 
confirmed by adjusting for the sentinel-SNP in the locus using linear regression.  
 

Pleiotropy analyses 
The GWAS catalog database (https://www.ebi.ac.uk/gwas/) was queried by searching 

for SNPs in a 1MB distance of the SNPs found in this study. LD was determined by 
calculating the r2 and D’ in UK Biobank between the GWAS catalog SNPs and the SNPs 
found in this study.  

To gain insights into pleiotropy among HR-variables, we performed linear regression 
analyses for all significantly associated SNPs with resting-HR, HR-variability (SDNN and 
RMSSD), HR-increase and HR-recovery and visualized the z-scores, aligned to the HR-
recovery increasing allele.    
 

Polygenic score 
Polygenic scores of HR-increase and HR-recovery were constructed by summing the 

number of alleles that increases HR-increase or HR-recovery, weighted (multiplied) for the 
corresponding beta-coefficients. The relationship between the polygenic score and clinical 
phenotypes were tested in 422,947 individuals that were not part of the discovery GWAS to 
avoid any potential bias or reverse confounding, using linear-, logistic- and cox -regression 
analyses. The statistical power for a case/control Mendelian randomization in UK Biobank 
(N=422,334) was calculated at alpha=0.05, as described previously35.  
 

Functional variants and candidate genes 
To search for evidence of functional effects of SNPs at the HR-loci we used multiple 

QTL databases: STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering 
Task)36, GTEX version 637, cis-eQTL datasets of Blood38–40 and cis-meQTLs41. Only 
eQTLS/meQTLs that achieved P<1x10−6 and were in LD (r2>0.8) with the queried GWAS 
SNP were considered significant. Multiple eQTLs were observed at the same SNPs in 
different tissues/studies, providing extra evidence for being a true eQTL.  

Long range chromatin interaction in the 1 MB region at any of the sentinel SNPs were 
examined and visualized using HUGin42, only genes that showed a bonferonni significant 
association that showed a clear pattern of interaction between the sentinel SNP and the 
promoter region were prioritized.  

Candidate genes were prioritized: a) by proximity - the nearest gene or any gene 
within 10kb, b) by protein-coding gene variants in LD (r2>0.8) with the sentinel SNP, c) by 
eQTLs (described above) and d) by long range chromatin interactions (described above).  
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RESULTS  
 

Participants of UK Biobank exercised for approximately 350 (±44.9) seconds, the 
mean duration of the recovery phase was 52.6 (±1.7) seconds; overall characteristics are 
presented in Supplementary Table 1. All HR phenotypes were normally distributed prior to 
rank-based inverse normal transformation. 

To gain insights into the correlation among phenotypes of the HR profile during 
exercise, we first performed heritability analyses and genetic correlations across 9 HR 
phenotypes: the increase in HR from the resting level to the peak exercise level (HR 
increase); the decrease in rate from the peak exercise level to the level 10, 20, 30, 40 and 50 
seconds after termination of exercise (HRR10-HRR50). Resting-HR and HR-variability as 
defined by SDNN an RMSSD were included for comparisons. The highest heritability 
estimates were observed for HR-recovery and HR-increase (h2gSNP=0.22). HR variability was 
much less heritable, h2gSNP =0.12 and 0.14 for SDNN and RMSSD, based on SNP-heritability 
estimates by BOLT-REML (Fig. 1). All of the HR-variables were highly correlated with each 
other (Fig. 1), though HR-recovery and HR-increase were more correlated with each other 
(r=0.6 to 0.9) than with HR-variability (r=0.42 to 0.6) or resting-HR (r=-0.18 to -0.37). The 
genotypic correlations where slightly higher compared to the phenotypic correlations. All of 
the heritability and correlation estimates were highly significant (P<1×10-8). 

Genome wide association analyses were conducted of HR-increase and HRR10-
HRR50. Twenty-three genomic loci defined by 1 MB at either side of the highest associated 
SNP were genome wide significant (Table 1, Fig. 2 and Supplementary Table 2), 2 
additional independent signals in 2 loci were confirmed by conditional analyses 
(Supplementary Table 3). Rs6488162 in SYT10 was the most significant genetic variant for 
all phenotypes (P=3.1×10-30 for HR-increase, to P=5.3×10-66 for HRR10). Results of the 
sensitivity analyses are shown in Supplementary Table 4, indicating that the SNP 
associations are not biased by participants receiving medication or having diagnoses of heart 
disease in history. Supplementary Fig. 1 shows the regional association plots of each locus. 
To facilitate future studies we make available the methods and complete summary statistics 
of all genetic variants and traits at www.cardiomics.net and at open access repositories for 
GWAS summary statistics. 
 

Insights into biology 
A total of 36 candidate causal genes at the 23 loci were identified, 27 genes were 

prioritized by being near the sentinel SNP or within 10 kilobases, 3 genes were prioritized by 
coding variants in LD of r2>0.8 with a sentinel SNP (Supplementary Table 5), 10 genes 
were prioritized by eQTL analyses (Supplementary Table 6) and 11 genes were prioritized 
by long-range interaction analyses in Hi-C data (Supplementary Table 7 and 
Supplementary Fig. 3). Multiple lines of evidence could prioritize a gene (shown in Table 1), 
which may be helpful for prioritizing the most likely candidate genes and mechanisms at 
each locus. 

Pathway analyses were attempted with ‘DEPICT’43, a tool that prioritizes genes, 
pathways and tissues by using the genomic region surrounding SNPs as input, however 
there were no significant pathways or tissues after correcting for multiple testing. In turn, 
GeneNetwork (http://129.125.135.180:8080/GeneNetwork/pathway.html)44 was used, which 
employs the same underlying co-expression dataset (based on GEO data) but allows only 
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the 36 candidate genes as input. The candidate genes were enriched for terms related to 
neurons and axons (‘axon guidance’, ‘neuron recognition’, ‘peripheral nervous system 
neuron development’, ‘synapse’), gap-junctions (‘adherens junction organization’ and ‘gap 
junction’), but also included 'catecholamine transport' and ‘decreased dopamine level’, 
among others (Supplementary Table 8). Nerve tissue was also highly enriched compared to 
other tissues in a separate analysis based on the GTEx dataset (P<0.01, Supplementary 
Figure 4.).   
 

Insights into pleiotropy and clinical relevancy 
To increase our understanding of potentially mediating mechanisms at the genetic 

variant level we searched the literature and the GWAS-catalog for previously reported 
variants. Of the 23 loci, eleven are in high LD (r2>0.6) with previously identified SNPs for 
resting heart rate24,45 or heart rate variability23 (Supplementary Table 9). A wider search in 
the GWAS-catalog revealed that SNPs in high LD (r2>0.6) with rs61765646 (NEGR1) were 
reported for the association with obesity; rs17362588 (CCDC141/TTN, but not the 
independent SNP rs35596070) and rs12906962 (MCTP2) with diastolic blood pressure, 
rs7072737 (PAX2) with systolic blood pressure; rs4963772 (BCAT1) with PR-interval and 
rs1997571 (CAV1) with atrial fibrillation and PR interval (Supplementary Table 10). The 
majority, fifteen of 23 loci, has not been previously identified in any genome wide associated 
study.  

Because a large proportion of the loci were already reported for their association with 
other HR-phenotypes, we examined SNP association with the different HR traits in the 
current study, in order to entangle the effects and identify SNPs that are primarily driven by 
HR-increase and HR-recovery. Linear regression analyses were performed across all 
associated SNPs and traits, and adjusted the associations for (1.) resting-HR, (2.) resting-HR 
and HR-variability (3.) resting-HR, HR-variability and HR-increase (Supplementary Table 11 
and visualized in Fig. 3). Fig. 3 illustrates rs17362588 (TTN/CCDC141) to be primarily 
associated with resting-HR and highlights the following loci for HR-variability: rs17180489 
(RGS6), rs12974440 (NDUFA11) and to a lesser degree rs180238 (GNG11, GNGT1, TFPI2) 
as the associations with HR-recovery and HR-increase were diminished significantly upon 
extra adjustments of SDNN and RMSSD. The analyses also indicated that rs272564 
(RNF220), rs4836027 (SNCAIP/PRDM6), rs4963772 (BCAT1), rs12906962 (MCTP2) and 
rs12986417 (POP4) were primarily associated with HR-increase following extra adjustments 
of HR-increase. In total sixteen SNPs remained independently associated with HR-recovery, 
including the most significant locus SYT10.  

To explore potential clinical relevancy, polygenic scores were constructed based on 
the genome wide significant SNPs. The primary outcome variable was parental age as proxy 
for cardiovascular- and all-cause mortality14,46. The choice of disease outcomes and 
phenotypes was based on the previous studies of HR-response to exercise in relation to 
ventricular arrhythmia (sudden death4), atrial fibrillation47, diabetes48, cancer49, or the 
importance of autonomic (dys)function in blood pressure14, reaction time, fluid intelligence50 
and depression51. A higher polygenic score was consistently associated with an increased 
parental age of death (P=5.5×10-4). Upon further inspection, only a significant association 
was found with the father’s age of death (P=5.5×10-4 N=217,722), but not with the mother’s 
age at death (P=0.202, N=179,281). The association with increased parental lifespan may 
hint towards a potential association with all-cause mortality, which was not significant in UK 
Biobank (HR=0.924(0.055), P=0.186, Ncases=10,717 (3.0%); cox survival model) but power is 
limited compared to parental age of death.  
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The polygenic score also strongly associated with lower diastolic blood pressure 
(P=2.0×10-25) and with lower odds of hypertension (P=2.3×10-4). The association with 
hypertension was dependent of diastolic blood pressure, as the association was abolished 
after introducing diastolic blood pressure into the model. We hypothesized that the strong 
association of the polygenic score with diastolic blood pressure may in fact be due to resting-
HR because of its direct influence on diastolic blood pressure via peripheral resistance, 
considering the high genetic correlation of resting-HR with HR-increase and HR-recovery. 
After adjusting for resting-HR, the association with diastolic blood pressure was also 
abolished (P=0.126). No convincing associations were found between the polygenic score 
and atrial fibrillation, coronary artery disease, ventricular arrhythmia, diabetes or cancer. The 
results are shown in Table 2, Supplementary Table 12 describes trait specific effects and 
Supplementary Fig. 5 statistical power.  
 
 
 
DISCUSSION 
 

In this large-scale genetic study of HR-increase and HR-recovery in 58,818 
participants, we identified 25 independent genome wide significant signals in 23 genetic loci. 
HR-increase and HR-recovery were found to be highly heritable and the majority of the loci 
were independently associated with HR-recovery. The polygenic score was not convincingly 
associated with mortality or disease.  

The major finding was that a large proportion of candidate genes are involved in 
neuron biology, particularly at loci that are specific for HR-recovery. This, together with our 
pathway analyses, provides a new line of evidence that the autonomic nervous system is a 
major player in the regulation of HR recovery. Heart rate response to exercise, in particular 
HR-recovery, is largely dependent on parasympathetic reactivation and decrease of 
sympathetic activity in a gradual manner. These processes are orchestrated by neuronal 
signal transduction involving the brain (central command), periphery (chemoreflex, 
baroreflex, exercise pressor reflex), adrenal medulla and the actual nerves connecting 
them15.  

The highest associated variant, rs6488162 in SYT10, encodes a Ca2+ sensor 
Synaptotagmin 10 that triggers IGF-1 exocytosis, protecting neurons from degeneration52. 
Other loci include the ACHE gene, the function of which can be strongly linked to neuronal 
function as it encodes the enzyme that catalyzes the breakdown of acetylcholine. NEGR1, 
Neuronal Growth Regulator 1, is essential for neuronal morphology. It has been shown by in-
vitro and in-vivo experiments that NEGR1 over- and under-expression is tightly associated 
with the number of synapses and proper development of neurite arborization and dendritic 
spines53. GRIK2 (also named GluR6) encodes a subunit of a kainite glutamate receptor that 
is broadly expressed in the central nervous system where it plays a major role in nerve 
excitation54. CHRM2 encodes M2 mAChR, which is the predominant form of muscarine 
cholinergic receptors in the heart. This gene fits very well with the specific association of 
rs17168815 (near CHRM2) with HR-recovery since this receptor specifically initiates 
negative chronotropic and inotropic effects upon binding with acetylcholine released by the 
postganglionic parasympathetic nerves, which are slowing down heart rate55. The gene 
C19orf12 has an unknown function and is thought to encode a mitochondrial protein, there 
are several reports on mutations of C19orf12 causing neurodegeneration56. The function of 
MED13L is also unclear, but is believed to encode a subunit that functions as a 
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transcriptional coactivator for most RNA polymerase II-transcribed genes. MED13L 
knockdown in zebrafish causes abnormal effects on early migration of neural crest cells 
resulting in improper development of branchyal and pharyngeal arche, resembling key 
characteristics of MED13L mutations in humans57. MED13L mutations in humans are 
associated with intellectual disability, developmental delay and craniofacial anomalies, and 
resemble other common neurodevelopmental disorders58. KCNH8 encodes a voltage gated 
potassium channel that is primarily expressed in components of the human central nervous 
system59 and is part of the Elk (ether-à-g-o go-like k) family of potassium channels that 
regulate neuronal excitation59–61. CNTN3 (contactin-3) is a gene belonging to a group of 
glycosylphosphatidyl-anchored cell adhesion molecules that is thought to be closely involved 
in wiring of the nervous system and found predominantly in neurons62,63. In light of these 
findings, even CCDC141 and not TTN (the main component of cardiac muscle), may be a 
plausible candidate gene, as it plays a crucial role during neuronal development64.  

We observed that resting-HR, HR-variability, HR-recovery and HR-increase are highly 
correlated with each other on the genetic and phenotypic level. By jointly analyzing different 
HR-traits, instead of treating them as separate entities as has been done traditionally, it is 
possible to obtain additional insights into the mechanistic basis of HR phenotypes. On the 
phenotypic level, this helped us explain the strong association that was observed between 
the polygenic score and diastolic blood pressure; it was originating from resting-HR, which is 
more plausible since resting-HR is directly related to peripheral-resistance. On the genetic 
variant level, we observed a large proportion of genetic variants that are specifically 
associated with HR-recovery to contain neuronal genes as candidate genes. Previous 
GWAS studies of resting-HR have found genes predominantly enriched for terms related to 
cardiac structure24 and GWAS of HR-variability found genes involved in the sinoatrial node to 
be enriched23. In our analysis, the sinoatrial node genes GNG11 and RGS6 that were both 
previously associated with HR-variability23, were chiefly associated with HR-variability in this 
study as well. This emphasizes the importance for future follow-up studies to focus on 
extracting even more different HR phenotypes before, during and after exercise; so that they 
can be jointly analyzed to increase the resolution of SNP-phenotype of HR specific 
associations even further.  

Observational studies have shown strong associations of HR-recovery and HR-
increase with sudden cardiac death, all-cause death, cardiovascular death4,5,46 and even 
cancer49. These studies all suggested that autonomic impairment, the imbalance of vagal and 
adrenergic tone, increases the susceptibility to disease and mortality, and (although never 
shown) life-threatening arrhythmias. In this study, we observed that a genetically increased 
HR-recovery and HR-increase was significantly associated with higher parental age, but not 
with ventricular arrhythmia, atrial fibrillation or other diseases and phenotypes. Since the 
polygenic risk score was not significantly associated with the mother’s age of death, we could 
not reliably establish a true positive association with parental age. Although, the notion that 
life-threatening arrhythmia’s occur more often in men than in women could explain this 
discrepancy65. Regardless whether the association is a true-positive one, it is possible to 
conclude from our results that HR-response to exercise may not be as important for human 
life span compared to other more established risk factors like blood pressure, lipids, BMI or 
educational attainment26. The association with parental age should be followed-up in 
independent cohorts, but statistical power may be difficult realize given the exceptionally 
large sample size of this study. Future Mendelian randomization studies should be 
conducted in even larger cohorts and with other disease outcomes such as fatal arrhythmias, 
to provide a better understanding of the clinical consequences. 
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In conclusion, this is the first well-powered genetic study of HR-recovery and HR-
increase, identifying 25 genetic signals in 23 loci to be genome wide associated. This study 
adds a new line of evidence for the fact that components of the autonomic nervous system 
are underlying inter-individual differences in HR-recovery.   
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Table 1. The GWAS identified 25 genome wide significant SNPs in 23 loci for HR-increase or HR-recovery. More detailed information can be 
found in Supplementary Table 2 and 3.  

Region SNPs 
EFAL(Freq)/ 

NEFAL Beta (se) P Candidate gene 
Primary 

Trait 
1p35.2 rs11589125 T(0.06)/C 0.075(0.0128) 6.60×10-09 SERINC2n,c HRR50 
1p34.1 rs272564 A(0.71)/C 0.046(0.0065) 1.40×10-12 RNF220n,h HRR50 
1p31.1 rs61765646 A(0.19)/T 0.056(0.0075) 1.10×10-13 NEGR1n HRR10 
2p16.1 rs1899492 T(0.47)/C 0.040(0.0059) 1.70×10-11 Gene desert HRR40 
2q31.2 rs17362588 G(0.92)/A 0.062(0.0105) 3.10×10-09 CCDC141n,c,TTNh HRR10 
2q31.2 rs35596070 C(0.86)/A 0.060(0.0083) 4.20×10-13 CCDC141n,c,TTNh HRR10 
3p24.3 rs73043051 C(0.22)/T 0.041(0.0070) 7.80×10-09 KCNH8n HRR50 
3p12.3 rs34310778 C(0.43)/T 0.036(0.0059) 1.00×10-09 CNTN3n,e HRR30 
5q23.2 rs4836027 T(0.68)/C 0.050(0.0063) 1.70×10-15 SNCAIPn,PRDM6n,h HRinc 
5q23.2 rs151283 C(0.72)/A 0.042(0.0065) 1.60×10-10 PRDM6nh HRR50 
6q16.3 rs2224202 A(0.19)/G 0.043(0.0074) 5.80×10-09 GRIK2n,h HRR20 
7p15.2 rs2158712 A(0.52)/T 0.045(0.0062) 2.80×10-13 SKAPn,h HRR10 
7q21.3 rs180238 T(0.65)/C 0.043(0.0061) 2.20×10-12 GNG11n,GNGT1n,e,TFPI2n,e HRR40 
7q22.1 rs3757868 G(0.82)/A 0.077(0.0076) 5.60×10-24 SRRTn,e,ACHEn,e,TRIP6e,C7orf43n,e,UFSP1n HRR40 
7q31.2 rs1997571 A(0.58)/G 0.042(0.0059) 1.70×10-12 CAV1n,h,CAV2n,e,h HRR20 
7q33 rs17168815 G(0.84)/T 0.062(0.0080) 1.10×10-14 CHRM2n HRR50 

10q24.31 rs7072737 A(0.11)/G 0.079(0.0093) 1.10×10-17 PAX2n HRR40 
11q13.4 rs7130652 T(0.07)/G 0.076(0.0114) 3.40×10-11 CLPBn,h,INPPL1n,e HRR10 
12p12.1 rs4963772 A(0.15)/G 0.090(0.0081) 1.20×10-28 BCAT1n HRR40 
12p11.1 rs6488162 C(0.58)/T 0.103(0.0060) 2.60×10-66 SYT10n,ALG10h HRR10 

12q24.21 rs61928421 C(0.93)/T 0.090(0.0115) 4.30×10-15 MED13Ln HRR40 
14q24.2 rs17180489 C(0.14)/G 0.055(0.0083) 2.50×10-11 RGS6n,h HRinc 
15q26.2 rs12906962 T(0.67)/C 0.048(0.0063) 2.70×10-14 MCTP2n HRinc 
19p13.3 rs12974440 G(0.92)/A 0.067(0.0105) 2.40×10-10 FUT5n, NDUFA11n,c HRR10 
19q12 rs12986417 G(0.65)/A 0.037(0.0061) 1.00×10-09 POP4n,C19orf12h HRinc 

Abbreviations: HRinc=HR-increase, HRRx=HR-recovery at x seconds, EA=effect allele, NEA=Non-effect allele.  
Superscripts: n=nearest gene or any other gene in 10kb, c=coding variant gene, e=eQTL gene, h=Hi-C long range interaction 
gene. 
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Table 2 The effect of the polygenic score of heart rate (HR) response to exercise on 
cardiovascular and non-cardiovascular phenotypes in the UK Biobank cohort, performed in 
participants that were not part of the discovery GWAS. Effect sizes are shown as the 
incremental change in phenotype for continuous phenotypes, or as odds ratio for binary 
traits, for one unit change in polygenic score. Every unit change in polygenic risk 
corresponds to one standard deviation change in HR-response to exercise. Supplementary 
Table 12 shows the effect estimates per phenotype of HR-response. 
 

 Trait or disease 
Sample size  
(% cases) 

Effect size 
or odds 

ratio se / 95%CI P 
Anthropometric      
Height (cm) 420,910 -0.1680 0.0612 0.006 
Weight (kg) 420,697 -0.0644 0.1361 0.636 

BMI (kg/m2) 420,623 0.0326 0.0459 0.477 

Cardiovascular risk factors      
DBP (mmHg) 421,799 -0.8240 0.0791 2.0×10-25 
SBP (mmHg) 421,797 0.0760 0.1560 0.626 
Pulse pressure 421,797 0.9000 0.1140 3.0×10-15 
Mean arterial pressure 421,797 -0.5240 0.0969 6.4×10-8 
Hypertension 422,334(33.85%) 0.925 0.888-0.964 2.3×10-4 
Coronary artery disease 422,334(7.48%) 1.022 0.950-1.100 0.554 
Atrial fibrillation 422,334(3.71%) 1.071 0.969-1.184 0.178 
Ventricular arrhythmia 422,334(0.56%) 0.868 0.674-1.117 0.271 
Diabetes Mellitus 422,334(7.04%) 1.072 0.996-1.155 0.064 

Other 
     

Cancer (malignant) 422,334(15.35%) 0.983 0.932-1.036 0.512 
Depression 422,334(14.35%) 1.041 0.986-1.098 0.144 
Reaction time (ms) 417,771 -0.7016 1.0544 0.506 
Fluid intelligence score 105,348 -0.0645 0.0398 0.106 
Parental lifespan 158,649 0.0792 0.0229 5.5×10-4 
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Figure 1. Genetic correlations (shared heritability), are shown above the diagonal, 
phenotypically observed correlations are below the diagonal. Heritability estimates of each 
trait are between brackets at the y-axis. All of the estimates shown here were highly 
significant (P<10-8). Correlations are based on the residual variance after adjustments for 
age, sex and BMI, exercise specific variables and genetic specific variables (only for the 
genetic correlations). 
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Figure 2 Manhattan plot of the GWAS of HR-increase and recovery, the smallest P-values per SNP across all of the 6 studied traits are 
shown, as depicted on the y axis, the x axis shows their chromosomal (chr) positions. Red dots represent genome wide significant loci 
(P<8.3×10-9).  
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Figure 3. Pleiotropic effects of the 25 independent genetic signals on heart rate (HR) phenotypes. Four heat plots depict Z-scores o
SNP association with resting-HR (RHR), HR-variability (RMSSD and SDNN), HR-increase (HRinc) or HR-recovery (HRR10-50) in 1
and 3 multivariable models (as described below each heat plot). Only Bonferonni P<0.05 significant associations are shown, Z-scor
aligned to the allele that increases HR-recovery. Nearby genes are shown between brackets. 
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