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 

Abstract—Ongoing developments in myoelectric prosthesis 

control have provided prosthesis users with an assortment of 

control strategies that vary in reliability and performance. Many 

studies have focused on improving performance by providing 

feedback to the user, but have overlooked the effect of this 

feedback on internal model development, which is key to 

improving long-term performance. In this work, the strength of 

internal models developed for two commonly used myoelectric 

control strategies: raw control with raw feedback (using a 

regression-based approach), and filtered control with filtered 

feedback (using a classifier-based approach), were evaluated using 

two psychometric measures: trial-by-trial adaptation and just-

noticeable-difference. The performance of both strategies was also 

evaluated using a Schmidt’s style target acquisition task. Results 

obtained from 24 able-bodied subjects showed that although 

filtered control with filtered feedback had better short-term 

performance in path efficiency (p < 0.05), raw control with raw 

feedback resulted in stronger internal model development (p < 

0.05), which may lead to better long-term performance. Despite 

inherent noise in the control signals of the regression controller, 

these findings suggest that rich feedback associated with 

regression control may be used to improve human understanding 

of the myoelectric control system. 

 
Index Terms— Prosthetics, electromyography, support vector 

machines, internal model, learning, performance, muscles, control 

systems, mathematical model, real-time systems, testing 

 

I. INTRODUCTION 

ECADES of advancements in myoelectric signal 

acquisition and processing have made myoelectric 

controlled prostheses a promising option for upper limb 

amputees [1]. Nevertheless, precise real-time decoding of 

movement intent from highly variable myoelectric signals and 

adequate methods of providing feedback to users remain a 

challenge [2]–[4]. Myoelectric signal variability can contribute 

to inconsistency in prosthesis control that results in unintended 

prosthesis movements [5]. Many research studies have tackled 

this issue by exploring feature extraction methods to obtain 

more useful and robust information from noisy myoelectric 

signals [6]. Time domain and frequency domain features are 

some of the most referenced of these features and are commonly 

used in conjunction with pattern recognition algorithms 
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implemented in myoelectric control systems [7], [8]. The 

current myoelectric control systems can be broadly categorized 

as on/off control, proportional control, classifier-based control, 

and regression-based control [9]. 

On/off control strategies are used for binary control of a 

device, whereas proportional control strategies facilitate control 

over the speed of the prosthesis movement [10]. Although these 

types of control strategies are considered robust and have found 

clinical acceptance, the direct controllable number of degrees-

of-freedom is limited by the number of usable independent 

control sites [11]. Classifier-based pattern recognition 

approaches are able to overcome this limitation, but are only 

capable of classifying movements sequentially [12], [13]. This 

drawback has more recently been overcome through 1) 

implementing various classifier “distributed topologies” by 

using singular classifiers to compare different combinations 

of classes and therefore enable simultaneous control [14], 

[15], but at the expense of accuracy and with limited control 

over speed and 2) use of regression-based myoelectric 

controllers [16], which enable simultaneous and independent 

speed control but at the expense of the robustness of single-

class classifier-based approaches to unintentional changes in 

contraction patterns. 

Feedback has also been shown to be of importance for robust 

control and in improving performance [17]. Feedback can be 

used for real-time regulation of control signals, as well as in the 

development of the user’s understanding of the system, known 

as their internal model [18]. Many researchers have explored 

the effect of feedback for real-time regulation on performance, 

but little work has explored its effect on internal model 

development (in part due to an inability to evaluate or quantify 

internal model strength) [19]. 

Quantifying this internal model enables the development of 

better control strategies by identifying which control strategies 

promote better understanding of the system and may therefore 

lead to better long-term performance. In a recent study [20], 

researchers investigated the effect of using two different 

myoelectric control strategies on user adaptation, which is one 

of the facets that can be used to estimate the strength of an 

internal model [21], [22]. Their results showed promising 

evidence that inherent feedback in myoelectric control 
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strategies influences adaptation, which should in turn influence 

the user’s corresponding internal model.  

In our work we sought to explicitly demonstrate that 

influence on a person’s internal models by measuring 

adaptation rate along with along with other factors, such as 

sensory noise and controller noise, which are necessary to 

calculate internal model strength. We used a recently developed 

psychophysical framework to assess the internal models 

developed using two myoelectric control strategies that differed 

in the feedback provided to the user during a multi degree-of-

freedom (DOF) target acquisition task. The underlying signal 

processing for both control strategies was done using the same 

pattern recognition algorithm to ensure that only the feedback 

effect impacted the internal model strength. The first strategy 

implemented feedback-rich but noisy (variable) regression-

based control, which we refer to here as raw controller with raw 

feedback (RCRF). The other control strategy was analogous to 

a classifier, which provided reduced (discretized) feedback but 

more forgiving control, and is referred to here as filtered 

controller with filtered feedback (FCFF). The psychometric 

test results detailed below support the hypothesis that the 

feedback-rich controller enables a low sensory uncertainty and 

strong internal model leading to a high adaptation rate. 

Conversely, performance test results indicate that the filtered 

classification-based controller yielded better short-term path 

efficiency and accuracy. 

II. METHODS 

A. Tested Control Strategies 

Many machine learning algorithms have been proposed to 

translate information in the myoelectric signals to either 

sequential or simultaneous control. Linear Discriminant 

Analysis (LDA) [23], Linear Regression (LR) [24], Support 

Vector Regression (SVR) [25], [26], and Artificial Neural 

Networks (ANN) [27] are some of the commonly used data-

driven approaches used to identify myoelectric signal patterns 

for the purpose of control. SVR, in particular, is based in 

support vector machine (SVM) theory and can be used for either 

classification or regression control tasks. In both cases, 

SVM/SVR has been shown to yield performance superior to 

that of LDA/LR [6], [28], [26]. When employed as a regressor, 

the output is a kernel-based weighted mixture of the inputs, 

supporting simultaneous activation of more than one DOF at a 

time.  This strategy is referred to here as RCRF due to the direct 

relationship between inputs and both control and feedback 

outputs. To approximate a classification output, while 

preserving the same decision space, the FCFF controller was 

achieved by gating all RCRF activations other than that of the 

DOF with highest level of activation (the classifier selected 

only the single most active DOF) (Fig. 1). 

 

B. Experimental Setup 

Subjects sat in a comfortable chair in an upright position with 

their line of sight perpendicular to a computer display screen. 

The height of the chair was adjusted to ensure a comfortable 

posture and that the subjects’ right arm was fully relaxed in a 

restrainer. This restrainer consisted of a fixed foam-padded 

wrist support, an adjustable foam-padded elbow support, and a 

foam-padded hand slot that provided resistance to hand 

 
Fig. 2. Experimental Setup.  A subject performing the 

target familiarization block by controlling a cursor on the 

screen using myoelectric signals sensed by the UNB 

Smart Electrode System, which is placed on the subjects 

forearm, to acquire a target 

 
 

Fig.1. Example of control signals for 2 DOF task using 

Raw control and Filtered control. Raw control allows 

simultaneous activations of more than one DOF at a time. 

Filtered control selected only the single most active DOF.  
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movements while providing a comfortable setting during 

scheduled breaks between testing blocks. A UNB Smart 

Electrode System [29] was placed on the subject’s right forearm 

(Fig.2) and the real-time myoelectric signals extracted from 

muscles contractions were monitored using the Acquisition and 

Control Environment (ACE) software package [30] developed 

using MATLAB (Release 2007, The MathWorks, Inc., Natick, 

Massachusetts, United States).  

Using isometric muscle contractions of the wrist 

extension/flexion and abduction/adduction, subjects controlled 

a cursor on the computer screen to acquire targets in a custom 

program that we implemented within the ACE software 

package. Targets consisted of cross-hairs that appeared at 

randomly ordered pre-determined positions on the screen. 

Using a Schmidt’s style test paradigm [31], a shrinking red 

circle of 10 pixels radius surrounded each target. This circle 

shrank for a pre-specified amount of time, which was 

determined by the testing configuration, before disappearing to 

indicate the end of a trial and the beginning of the next trial. 

C. Subjects 

Twenty-four right-handed subjects with either normal or 

corrected-to-normal vision (13 male and 11 female, mean and 

SD of age: 25 ± 5 years) provided written consent to participate 

in a three-hour experimental session. These subjects were 

recruited primarily by word-of-mouth or the University of New 

Brunswick (UNB) public news and notices. Participants were 

informed of the overall purpose of the study, but were naive to 

the specific purpose and outcomes of the built-in testing blocks. 

The University of New Brunswick Research and Ethics Board 

approved this study and no compensation was provided for 

participation. 

Eighteen of those subjects were randomly assigned to either 

group 1 or group 2 (nine subjects each) and the remaining 

subjects were assigned in a follow up study to group 3. All 

subjects in this study completed the same testing blocks, but the 

order of the control strategy presentation depended on which 

group a subject was assigned to. Group 1 subjects tested the 

RCRF control strategy first and then the FCFF control strategy, 

leaving group 2 subjects to start with testing the FCFF control 

strategy and then the RCRF control strategy. 

To investigate any possible learning effect due to prolonged 

use of the myoelectric system, group 3 subjects acted as a 

control group for this study, testing the FCFF control strategy 

twice. 

D. Experiment Protocol 

After obtaining consent from the subjects, they were asked, 

on a scale from 0 to 2, to rate their myoelectric control 

experience between no experience and moderate experience. 

Before placing the UNB Smart Electrode System on the 

subject’s right hand, the skin over their forearm was cleaned 

using an alcohol wipe. A couple of minutes were allowed for 

the real-time myoelectric signal amplitudes to settle below 1 

micro-volt after which the controller model training block 

started. In this training, subjects were asked to follow the 

position of a cursor on the screen using isometric muscle 

contractions of the wrist for extension/flexion DOF and 

adduction/abduction DOF, twice for each DOF, and their 

myoelectric signals were recorded. An SVR pattern recognition 

algorithm used time-domain features extracted from these 

recorded signals to form the base model of the controllers used 

in this study. For each controller tested, subjects completed four 

blocks in the following order: 

1) Control practice and target familiarization 

This block consisted of three mini tasks. For the first task, 

subjects were asked to ‘paint the screen’ by controlling a brush 

on the computer screen and trying to cover the maximum 

achievable area on the screen in one minute. This task was used 

to determine and optimize the cursor velocity mapping for each 

subject (20 pixels/s). Afterwards, subjects were given time to 

learn how to use the controller by instructing them to freely 

control a cursor on an empty screen starting with mild 

contractions in one DOF at a time and then exploring the 

different muscle contraction combinations and their effect on 

the controlled cursor for two minutes. 

The last mini task consisted of three sets of 16 targets. Each 

target in those sets appeared at a random position from 1 of 8 

predetermined positions on the screen and subjects were 

prompted to reach that target in 12 seconds or less. If a target 

was acquired in less than the indicated time, a motivational 

“Successful” green text appeared on the screen, the screen was 

cleared, and a 3 seconds count down started before another 

target appeared. Conversely, if the target was not acquired in 

the indicated time, a red “Time Out” text appeared on the 

screen, before beginning the countdown for the next target. 

Subjects were allowed to proceed to test blocks when they 

successfully acquired at least 75% of these targets. 

2) Adaptation rate test 

Subjects were instructed to acquire a single target on the 

horizontal axis over a set of 80 trials. A trial started when the 

target appeared on the screen and ended after 2 seconds. 

Subjects were allowed 1 second to relax the contracted muscles 

between trials. If the target was acquired, the trial ended before 

the 2 seconds elapsed and provided the subject with a 

motivational “Successful” text, otherwise the trial terminated 

after the 2-second mark. Subjects were instructed to hold the 

cursor within a shrinking target for 200 msec for this target to 

be rated as successfully acquired. 

3) Just-noticeable-difference (JND) test 

The JND is a measurement of sensory thresholds related to 

the estimation of specific points of the psychometric function 

underlying the perception of sensory stimuli [32]. In the 

experimental design of the JND test, the subject was forced to 

select between two alternative choices presented, with one of 

the choices having a specific stimulus added. This method is 

known as two-alternative forced-choice (2AFC) task, and the 

stimulus used was computed using an adaptive staircase [32]. 
This adaptive staircase quickly converges to the JND by 

adapting the stimulus amplitude of each trial according to the 

following equation: 

 

𝐶(𝑛+1) = 𝐶𝑛 −
𝑆

𝑛𝑅𝑒𝑣+1
 × (𝑍𝑛 − 𝜙),      (1) 

 

where 𝐶 is the stimulus, 𝑛 is the trial number, 𝑆 is the step size, 

𝑛𝑅𝑒𝑣 is the number of reversals between the correct and 

incorrect states, 𝑍 is a binary quantity that depends on the 

response at the 𝑛𝑡ℎ trial as follows: 𝑍 is equal to 1 in case of 

success and 0 in case of failure, and 𝜙 is the accuracy (set to 
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0.84) [33]. For this block, subjects were asked to reach a single 

target twice in 2 seconds and then identify which of the two 

trials had the added stimulus. Subjects were not given feedback 

on their response. 

Following the (modified standard, standard) method design 

discussed in [34], the stimulus used was restricted to a counter-

clock wise rotation of the control signal (Fig. 3). Data collected 

from three subjects in a pilot study was used to obtain an 

estimate of the initial stimulus to be used in this study. Only the 

target lying on the positive x-axis was explored and the test 

block terminated when the number of reversals reached 23 [35]. 

4) Performance test 

To assess the performance of each controller, subjects were 

asked to complete three challenging target sets. Each target set 

consisted of 16 targets which appeared at a random position 

drawn from 1 of 8 predetermined positions on the screen. For 

the first set of targets, subjects were instructed to acquire each 

target within 2 seconds. This time constraint was further 

reduced to 1.7 seconds for the second target set. The last 

challenge required subjects to acquire targets in 1.4 seconds or 

less per target. A short description of the tasks required in each 

block is listed in Table I. 

E. Outcome Measures 

The main goal of this study was to assess the developed 

internal model strength and the performance of two commonly 

used myoelectric controllers. To accomplish this goal, a novel 

framework is used to assess internal model strength. This 

framework models a positioning task as a function of three 

variables: the sensory uncertainty (R), the control uncertainty 

(Q), and the internal model uncertainty (Pparam). For any 

experiment, these three variables interact to affect 

performance and decision, but as we show in supplementary 

material, their individual contributions may be extracted by 

collecting data for a particular set of psychophysical 

experiments, including 1) a trial-by-trial adaption rate test and 

2) a two-alternative forced-choice test to evaluate JND. The 

supplementary material explains the math behind this 

extraction. The particular parameter of interest in this study is 

Pparam, which is a direct measure of the user’s confidence in 

their internal model.  

1) Trial-by-trial adaptation 

Adaptation rate is a measure of how much the nervous 

system changes or modifies an internal model for a given task 

[36]. This rate is extracted by quantifying the rate of 

feedforward modification of the unfiltered control signal 

from one trial to the next based on error feedback from the 

last trial [37]. Following the same procedure used to compute 

the adaptation rate in [38], the following equation was used 

to extract this rate 

 

𝑒𝑟𝑟𝑜𝑟𝑛+1 − 𝑒𝑟𝑟𝑜𝑟𝑛 = 𝛽1 × 𝑒𝑟𝑟𝑜𝑟𝑛 + 𝛽0,    (2) 

 

where 𝑒𝑟𝑟𝑜𝑟 is the angle formed between the horizontal axis 

and the initial cursor trajectory, 𝑛 is the trial number, 𝛽0 is 

the linear regression constant, and −𝛽1 is the adaptation rate. 

 

2) JND 

This parameter is a measure of the minimum perceivable 

stimulus in degrees identified by the subject when using each 

control strategy and was identified after the termination 

condition for the JND test has been satisfied. This parameter 

was used to quantify the amount of controller noise and 

sensory noise for each controller on a per subject basis [39]. 

 

3) Internal model uncertainty Pparam 

A novel framework was introduced to quantify 

uncertainties in the internal model parameters given 

controller noise and sensory noise parameters (see 

supplementary material). These uncertainties are represented 

in the Pparam parameter. The lower the value of this parameter, 

the higher the strength of the internal model developed. 

 

4) Performance 

An experimental protocol was designed with which the 

short-term performance of the control strategies could be 

objectively evaluated using the following indicators. 

a. Path efficiency 

 
 

Fig. 3.  Example of a stimulus added to control signal 

activating cursor movement. The blue line shows actual 

control signal and the green line shows the perturbed control 

signal. 

TABLE I 

SUMMARY OF THE TEST BLOCKS 

Block DESCRIPTION 

Control Practice  Control a cursor on an empty screen for 2 minutes  

Target 

Familiarization 

Acquire 48 targets in less than 12 seconds per target. 

Targets appeared at random positions on the screen 

Adaptation rate 

test 

Acquire a single target on the horizontal axis in less 

than 2 seconds 80 times 

JND test Attempt to acquire a single target on the horizontal 

axis in less than 2 seconds twice 

Performance test Acquire 16 targets that appeared at random positions 

on the screen in less than 2, 1.7, and 1.4 seconds 
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Paths taken to reach targets within a given time 

constraint during the performance test block were 

compared against the optimal paths [3] i.e., path 

optimizing distance covered, to compute efficiency. 

 

𝜂𝑝 = (1 −
𝑃−𝑃∗

𝑃∗  ) × 100 ,      (3) 

where 𝜂𝑝 is the path efficiency in percent, 𝑃 is the actual 

path taken, and 𝑃∗ is the computed optimal path. To 

ensure consistency of this measure, the optimal path for 

the RCRF, which enables 2-DOF simultaneous control, 

was computed as the shortest radial path between the 

cursor’s starting point and the final point where the 

cursor landed when the trial was terminated. For the 

FCFF, which allows for the activation of only one DOF 

at a time, the optimal path was computed as the L1 norm 

(Manhattan) distance (total distance travelled in X axis 

added to the total distance travelled in Y axis) covered 

to reach the final point where the cursor landed. 

b. Accuracy 

The accuracy was defined as how closely a target is 

reached given the time constraint. As with the technique 

used to ensure consistency in assessing path efficiency, 

the radial error was defined as the distance between the 

center point of a target and the actual final point reached 

for RCRF tests. This error was calculated as 

𝑅𝐸 = √(𝑡𝑥 − 𝑐𝑥)2 + (𝑡𝑦 − 𝑐𝑦)
2
,   (4) 

 

where 𝑅𝐸 is the radial error, 𝑡 is the target Cartesian 

coordinates and 𝑐 is the final cursor position in 

Cartesian coordinates. The distance error for the FCFF 

tests was computed as 

 

𝐶𝐸 = (|𝑡𝑥 − 𝑐𝑥|) + (|𝑡𝑦 − 𝑐𝑦|).     (5) 

 

The ratio between 𝑅𝐸 and the shortest radial path from 

the starting point to the center of a target was used to 

compute the accuracy for the RCRF control strategy as 

 

𝜂𝑎 = (1 −
𝑅𝐸

𝑃∗  ) × 100,         (6) 

 

and the ratio between 𝐶𝐸 and the L1 norm (Manhattan) 

distance path from the starting point to the center of a 

target was used to compute the accuracy for the FCFF 

control strategy as 

𝜂𝑎 = (1 −
𝐶𝐸

𝑃∗  ) × 100,         (7) 

   where 𝜂𝑎 is the accuracy in percent. 

        

F. Data Analysis 

Myoelectric signals, controller activation, and the cursor path 

were recorded for each trial in the test blocks. For the trial-by-

trial adaptation rate, error angles were computed for the first 

300–500 msec of each trial to capture the subject’s feedforward 

intent without incorporating feedback for real-time regulation. 

Only the successfully acquired target trials in the adaptation rate 

test were used to assess the path efficiency. Subject responses 

and the stimuli used in the JND test were recorded. All error 

bars shown in the figures were based on the standard error of 

the mean (SEM) to reflect its dependency on the sample size 

[40]. 

G. Statistical Analysis 

The outcome measures presented in the previous section 

were analyzed using two sample t-tests (equal sample size) in 

MATLAB and the Statistics Toolbox (Release 2014a, The 

MathWorks, Inc., Natick, Massachusetts, United States) to 

investigate the effect of controller type on each of these 

outcome measures. The Statistical Package for the Social 

Science software SPSS (IBM Corp, Released 2016, IBM SPSS 

Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp) 

was used to conduct an ANOVA to investigate the effect of 

controller testing order on the performance and the internal 

model uncertainty Pparam. Finally, an ANOVA with repeated 

measures was used to compute the intraclass correlation 

coefficient of the adaptation rates, JNDs, internal model 

uncertainty, and path efficiency of group 3 subjects using a two-

way mixed effects model with absolute agreement at a 95% 

confidence interval to investigate learning effects [41]. All 

analyses used a significance criterion of 𝛼 = 0.05 and Leven’s 

test in SPSS was used to investigate homogeneity in variances 

of the data being analyzed to ensure that parametric test 

assumptions were satisfied. If they were not satisfied, 

nonparametric Mann-Whitney U test was used. 

III. RESULTS 

The main goal in this study was to investigate the effect of 

using two commonly used myoelectric control strategies on the 

strength of the internal model developed for a reaching task. 

The first control strategy, RCRF, represents a regression control 

strategy that allows for simultaneous control in more than 1 

DOF at a time and is rich in feedback, but has comparably noisy 

control signals. The other control strategy, FCFF, has less 

variable control signals, but has reduced feedback and only 

allows for activation of only 1 DOF at a time. In this work the 

short-term performance and the strength of the internal model 

developed were assessed when using these control strategies. 

To further expand on this work, short-term performance in a 

target acquisition task was also evaluated when using both 

control strategies. 

 

Adaptation rate test. From equation 2, −𝛽1 = 1 indicates 

perfect adaptation; lower values indicate lower adaptation; and 

a value higher than 1 indicates overcompensation. All subjects 

achieved high adaptation rates when using the feedback-rich 

RCRF control strategy, regardless of the order of presentation 

of the controllers (Fig. 4). In contrast, the order of presentation 

had a significant effect on the adaptation rate of subjects using 

FCFF after being exposed to RCRF and subjects using FCFF 

before being exposed to RCRF (two-sample t-test, p < 0.001). 

Upon performing t-tests on the adaptation rate data for groups 

1 and 2, a significant difference was found between subjects 

testing RCRF in both groups 1 and 2 and subjects testing FCFF 

in group 2, who were not exposed to RCRF (two-sample t-test, 

p < 0.001). No significant difference was found between 

adaptation rate data of subjects using RCRF and subjects using 

FCFF after being exposed to RCRF. Exposure to the RCRF 
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control strategy enabled subjects to adapt more when using the 

FCFF control strategy. This effect could be a result of either a 

translation of the internal model developed for RCRF to FCFF 

in group 1 subjects or a ramification of prolonged use of the 

myoelectric system, which was further investigated in more 

details using group 3 subjects’ results. 

 

 JND test. The perception threshold for each controller was 

measured using the 2AFC procedure, in which an adaptive 

staircase was used to determine the stimulus to be added. The 

lower the threshold a subject was able to identify, the better 

ability to detect and adjust for smaller changes in the control 

system they had. In this test, subjects were able to identify a 

lower threshold when using RCRF than when using FCFF, 

regardless of the order of presentation (Fig. 5). Likewise, there 

was no significant effect due to the order of controller 

presentation on JND values when using FCFF. Results show 

that, on average, subjects were able to identify a stimulus that 

was at least 15∘ lower when using RCRF than when using 

FCFF (Fig. 6). In fact, subjects using RCRF in group 2 had a 

significantly lower JND value than subjects using FCFF in both 

groups (two-sample t-test, p < 0.05). Even though subjects 

using RCRF in group 1 obtained lower JND values than when 

using FCFF in the same group, this difference was not 

significant (two-sample t-test, p = 0.07). These JND values 

were, however, significantly lower than the values obtained by 

subjects using FCFF before being exposed to RCRF (two-

sample t-test, p < 0.05). These results indicate that RCRF may 

enable users to identify smaller perturbations or changes in the 

controller by providing them with more detailed feedback. 

 

Internal model. Psychophysical parameters extracted from 

tests conducted in this study were used to quantify uncertainty 

in the internal model parameters developed in response to a 

control strategy. Quantifying this uncertainty allows for the 

identification of the control strategy that enables the 

development of a stronger internal model by indicating the one 

that enables lower internal model parameter uncertainty. 

Fig. 7 shows results for internal model uncertainty for the 

feedback-rich RCRF control strategy and the reduced feedback 

FCFF control strategy. These results show that subjects who 

used FCFF before being exposed to RCRF had significantly 

higher internal model uncertainty than subjects who used RCRF 

in group 1 (Mann-Whitney U test, p < 0.05) and RCRF in group 

 
 

Fig. 4. Trial-by-trial adaptation to self-generated error 

results across control strategies tested by subjects in 

groups 1 and 2. Horizontal bars indicate significant 

difference. 

 
 

Fig. 5. Overall JND results across control strategies for 

groups 1 and 2. Subjects using the RCRF control strategy 

were able to obtain lower JND than subjects using FCFF 

control strategy. Horizontal bars indicate significant 

difference. 

 
Fig. 6. Sample data for a subject in group 1 showing the 

stimulus amplitude adjusted according to an adaptive 

staircase with a termination condition of 23 reversals and 

targeting 84% detection threshold. 

 

 
 

Fig. 7. Internal model uncertainty results across control 

strategies for groups 1 and 2. RCRF control strategy allows 

for the development of a less uncertain internal model 

parameters than the FCFF control strategy.  
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2 (Mann-Whitney U test, p < 0.01), which suggest that a 

feedback-rich control strategy may enable the formation of a 

stronger internal model. 

In addition, subjects who used FCFF before being exposed to 

RCRF had significantly higher internal model uncertainty than 

subjects who used FCFF in group 2 (Mann-Whitney U test, p < 

0.05). This result suggests not only that using a RCRF control 

strategy aids in the development of a less uncertain internal 

model, but also the possibility of translation of the internal 

model i.e., no significant difference between internal model 

uncertainty for subjects using FCFF after being exposed to 

RCRF and subjects using RCRF in both groups 1 and 2. 

Performance. The short-term performance of each control 

strategy was evaluated by determining how accurately and 

efficiently the task was achieved using endpoint accuracy and 

path efficiency. In the performance test, subjects were asked to 

acquire targets that were either on-axis, which optimally 

required the activation of 1 DOF, or off-axis, which optimally 

required the activation of 2 DOF simultaneously. 

 Results for the on-axis targets accuracy show that there was 

no significant difference between the control types, however the 

exposure to any controller had a significant effect on improving 

accuracy of the second controller tested. A controller that was 

tested in the second block outperformed the controller that was 

tested in the first block (two-sample t-test, p < 0.01) (Fig. 8. a), 

regardless of controller. 

Interestingly, subjects using RCRF after being exposed to 

FCFF had significantly lower accuracy for off-axis targets than 

subjects using FCFF in both groups 1 and 2 (two-sample t-test, 

p < 0.01) and subjects using RCRF before being exposed to 

FCFF (two-sample t-test, p < 0.01), which suggests that 

subjects were influenced by the technique they used to reach 

off-axis targets using the sequential FCFF control strategy and 

therefore didn’t make use of the RCRF ability to do 

simultaneous movements. 

 The second performance assessment tool used here was path 

efficiency (fig. 9). Equation 3 was used to compute path 

efficiency for the control strategies tested in the performance 

test. On-axis targets path efficiency results show that for a 

simple 1 DOF task there was no significant difference between 

subjects who used RCRF first and FCFF first, however there 

was a significant increase in the path efficiency when retesting 

(a) On-axis targets (b) Off axis targets 

   

 

Fig. 8. Results for accuracy normalized by the optimal distance between the starting point and the center of a target computed 

for each control strategy. (a) On-axis targets accuracy results show that subjects testing RCRF in group 1 achieved the lowest 

accuracy, but subjects in group 2 testing the same controller achieved the highest accuracy. (b) Off-axis targets accuracy 

results show a significant drop in the accuracy for subjects using RCRF in group 2 and all other controllers. 

(a) On-axis targets (b) Off axis targets 

   

 

Fig. 9. Results for path efficiency calculated with respect to the optimal path between the starting point and the final point 

reached computed for each control strategy. Numbers on bars show average acquired targets (maximum 8). (a) On-axis 

targets path efficiency results show that subjects testing RCRF in group 2 achieved the highest path efficiency and the highest 

success count for acquiring targets, but subjects in group 1 testing the same controller acquired the lowest success count for 

acquiring targets. (b) Off-axis targets path efficiency results show a significant increase in path efficiency for group 1 

subjects testing FCFF after being exposed to RCRF.  
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using any controller (two-sample t-test, p < 0.01). This 

observation may be a result of subjects exploring effective 

techniques that can be implemented using both control 

strategies. It is also worth noting the increase in the successfully 

acquired target count when retesting a controller. In particular, 

the successfully acquired target count when using RCRF after 

being exposed to FCFF was 5 times higher than the count for 

RCRF before being exposed to FCFF. This result suggests that 

there is a possible improvement in achieving 1 DOF tasks using 

the RCRF if the subject was exposed to a 1 DOF sequential 

control strategy. 

 For the off-axis target path efficiency, results show a 

significant improvement when using FCFF after being exposed 

to RCRF (two-sample t-test, p < 0.05), which may support the 

claim that using FCFF could be improved for a 2 DOF task if 

the subject was first exposed to a simultaneous control strategy 

like the RCRF. In addition, results show a drop in the 

successfully acquired target count of about 3 times when using 

RCRF after being exposed to FCFF. 

Group 3 results. For this group, a test-retest experiment was 

conducted using only the FCFF control strategy. Table II 

summarizes the statistical analysis for the results obtained from 

this group. These results show that there was no significant 

difference in internal model assessment parameters or 

performance measures when testing FCFF twice. In fact, test 

results for adaptation rate, JND, and internal model uncertainty 

showed no significant within-subject effect of retesting FCFF 

with good reliability (ICC > 0.6). Similarly, performance 

measure test results for both on-axis and off-axis targets 

indicated no significant difference between block 1 and block 

2. 

IV.  DISCUSSION 

Research efforts in the field of myoelectric control have 

provided many solutions to improve control and performance. 

Classifiers, as represented here by FCFF, and regression 

control, as represented as RCRF, are two of the more commonly 

used emerging solutions. Despite differences in feedback and 

control signals, each of these control strategies has been found 

to overcome the limitations of conventional myocontrol [6], 

[11], [42], however their effect on the developed internal model 

strength, which affects user’s adaptation and the long-term 

performance, had not been explored. In this study, not only the 

short-term performance, but also the internal model strength 

were assessed using psychophysical and performance tests for 

a multi-DOF virtual target acquisition task. 

Psychophysical test results showed that RCRF enabled 

significantly higher adaptation to self-generated errors and the 

achievement of significantly lower perception threshold than 

FCFF. These parameters were reflected in the internal model 

strength, where it was also found that subjects who used RCRF 

developed an internal model that was significantly less 

uncertain (more confident) than subjects using FCFF. These 

results support our hypothesis that feedback-rich control 

strategies like RCRF enable the development of a stronger 

internal model than reduced-feedback control strategies like 

FCFF. Conversely, performance test results show that subjects 

had slightly better path efficiency and accuracy when using 

FCFF than with RCRF, which prompts a question about how 

much feedback is most useful for the development of a strong 

internal model without sacrificing the short-term performance. 

The exposure to a feedback-rich control strategy enabled 

subjects to adapt more when using a reduced-feedback control 

strategy afterwards. It was found that this effect was a result of 

a translation of the internal model developed by the feedback-

rich controller to the reduced feedback one and not a 

ramification of prolonged use of the myoelectric system. This 

phenomenon has been observed in earlier studies as structural 

learning [43], [44]. Test results from group 3 subjects who 

tested the reduced feedback control strategy twice indicated that 

the prolonged use of this controller did not improve 

performance or internal model strength.  

To be able to compare performance results of the 2 DOF 

simultaneous RCRF control strategy with the 1 DOF sequential 

FCFF control strategy, the performance metrics for each control 

strategy were defined differently. Manhattan distances (L1 

norm) were used to compute path efficiency and accuracy for 

the FCFF control strategy and radial (L2 norm Euclidean) 

distances were used to compute path efficiency and accuracy 

for the RCRF control strategy. This approach was used to 

reduce bias in the performance metrics. 

Results from this study demonstrate that there was a 

significant improvement in the on-axis targets path efficiency 

and accuracy when using FCFF after being exposed to RCRF. 

Since the task of reaching on-axis targets only requires a simple 

activation of 1 DOF, the improvement in both accuracy and 

path efficiency may be a result of subjects using the 

understanding of how to effectively control the cursor in 1 DOF 

when they were exposed to the 2 DOF feedback-rich RCRF 

control strategy first and therefore informing their choice of the 

technique to be used to acquire targets when using FCFF. It 

should be noted that the exposure to any controller had a 

significant effect on improving accuracy of the second 

controller tested. From this, it may be surmised that previous 

experience, i.e., effective control technique developed and used 

for a control strategy, may be translated from one control 

strategy to another. 

TABLE II 

SUMMARY OF GROUP 3 TEST RESULTS 

Outcome 

metric 

ANOVA 

REPEATED 

MEASURE P 
ICC SEM 

ADAPTATION 

rate 
0.67 0.74 0.074 

JND 

 

0.43 0.65 10 

Internal model 

uncertainty 
0.47 0.81 0.071 

Path efficiency 

On-axis targets 
0.26 0.72 1.8 

Path efficiency 

Off-axis targets 
0.79 0.85 1.9 

Accuracy    

On-axis targets 
0.81 0.64 3.2 

Accuracy    

Off-axis targets 
0.44 0.74 5.7 
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In contrast to our findings, Hahne et al. [20] found that 

classifier-based control yielded worse path efficiency than 

regression (they reported classifier path efficiencies of 

0.27±0.12). We found similarly poor results during a 

preliminary investigation using LDA/LR approaches, and 

subsequently transitioned to SVM/SVR approaches, which 

have been shown to have superior performance and are equally 

clinically viable [16], [26]. Also in contrast to [20], which 

employed a position control paradigm, we used a velocity 

control paradigm (EMG was mapped to cursor velocity rather 

than position) as it is less noisy and much more commonly used 

in clinical practice [45], [46]. These two differences likely 

account for the difference in performance found between the 

two studies. The substantially better performance seen in this 

work, coupled with a more clinically relevant control paradigm 

likely enabled us to more accurately isolate the effects of 

feedback as they pertain to internal model strength. 

For a grasp and lift task, researchers have investigated the 

effect of feedback on performance and found that feedback 

improved control signals [47] even after the feedback was 

removed [48], which was credited to the use of internal models 

[49]–[51]. However, these internal models were found to be 

unstable over time [48]. We hypothesize that this finding could 

be due to weakness (high uncertainty) of the internal models 

developed for the myoelectric controller used. Other 

researchers have employed psycho-physiological 

measurements to assess cognitive effort with and without 

sensory substitution methods when controlling a robot hand and 

found that augmenting vision with other sensory feedback 

reduced attentional demand [52]. We hypothesize that this 

reduction in attention may be due to the use of augmented 

feedback (feedback-rich) to build strong internal models, which 

are used for feedforward control and therefore enabling users to 

rely less on feedback for real-time regulation. The framework, 

psychophysical tests, and outcome measures presented here 

may be used to further investigate these hypotheses. 

An obvious extension of this work could be using the 

psychophysical tests and outcome measures implemented here 

for a grasp-and-lift task [49] using a prosthetic hand. The 

assessment tools used in this work could be used in the 

development of new myoelectric control strategies that enable 

strong internal model and better performance. 

In conclusion, despite classifiers such as FCFF enabling 

better short-term performance, regression approaches such as 

RCRF enabled the development of a stronger internal model 

,which may lead to better long-term performance [53]. With this 

conclusion in mind, future contributions to training and use of 

myoelectric prosthesis devices could be enabled by allowing 

users to train using feedback-rich controllers to develop a strong 

internal model and therefore improve long-term performance 

when using other controllers. 

ACKNOWLEDGMENT 

Many thanks to Dan Blustein, Satinder Gill, Rob Smith, and 

Jason Robertson for thoughtful discussions. We thank Adam 

Wilson for continuous maintenance of the UNB Smart 

Electrode System. 

REFERENCES 

[1] R. F. ff. Weir and J. W. Sensinger, “Design of Artificial Arms and 
Hands for Prosthetic Applications,” in Biomedical Engineering and 

Design Handbook, 2nd ed., vol. 2, M. Kutz, Ed. New York: 

McGraw-Hill, 2009, pp. 537–598. 

[2] J. a Doeringer and N. Hogan, “Performance of above elbow body-

powered prostheses in visually guided unconstrained motion tasks.,” 

IEEE Trans. Biomed. Eng., vol. 42, no. 6, pp. 621–631, 1995. 

[3] A. M. Simon, L. J. Hargrove, B. A. Lock, and T. A. Kuiken, “Target 

Achievement Control Test: evaluating real-time myoelectric pattern-

recognition control of multifunctional upper-limb prostheses.,” J. 
Rehabil. Res. Dev., vol. 48, no. 6, pp. 619–27, 2011. 

[4] C. W. Antuvan, F. Bisio, F. Marini, S.-C. Yen, E. Cambria, and L. 

Masia, “Role of Muscle Synergies in Real-Time Classification of 
Upper Limb Motions using Extreme Learning Machines,” J. 

Neuroeng. Rehabil., vol. 13, no. 1, p. 76, Aug. 2016. 

[5] P. Parker, K. Englehart, and B. Hudgins, “Myoelectric signal 
processing for control of powered limb prostheses,” J. 

Electromyogr. Kinesiol., vol. 16, no. 6, pp. 541–548, 2006. 

[6] E. Scheme and K. Englehart, “Electromyogram pattern recognition 
for control of powered upper-limb prostheses: State of the art and 

challenges for clinical use,” J. Rehabil. Res. Dev., vol. 48, no. 6, pp. 

643–659, 2011. 

[7] R. N. Khushaba, A. H. Al-timemy, A. Al-ani, and A. Al-jumaily, “A 

Framework of Temporal - Spatial Descriptors based Feature 

Extraction for Improved Myoelectric Pattern Recognition,” vol. 
4320, no. c, 2017. 

[8] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “Feature 

reduction and selection for EMG signal classification,” Expert Syst. 
Appl., vol. 39, no. 8, pp. 7420–7431, 2012. 

[9] P. Geethanjali, “Myoelectric control of prosthetic hands : state-of-

the-art review,” Med. Devices Evid. Res., vol. 9, pp. 247–255, 2016. 

[10] C. K. Battye,  a Nightingale, and J. Whillis, “The use of myo-

electric currents in the operation of prostheses.,” J. Bone Joint Surg. 

Br., vol. 37–B, pp. 506–510, 1955. 

[11] M. Asghari Oskoei and H. Hu, “Myoelectric control systems-A 

survey,” Biomed. Signal Process. Control, vol. 2, no. 4, pp. 275–

294, 2007. 

[12] A. Roche, H. Rehbaum, D. Farina, and O. Aszmann, “Prosthetic 

Myoelectric Control Strategies: A Clinical Perspective,” Curr. Surg. 

Reports, vol. 2, no. 3, pp. 1–11, 2014. 

[13] T. A. Kuiken et al., “Targeted Muscle Reinnervation for Real-time 

Myoelectric Control of Multifunction Artificial Arms,” J. Am. Med. 

Assoc., vol. 301, no. 6, pp. 619–628, 2009. 

[14] M. Ortiz-Catalan, B. Hakansson, and R. Branemark, “Real-time and 

simultaneous control of artificial limbs based on pattern recognition 

algorithms,” IEEE Trans Neural Syst Rehabil Eng, vol. 22, no. 4, 
pp. 756–764, 2014. 

[15] N. Jiang, K. B. Englehart, and P. A. Parker, “Extracting 

Simultaneous and Proportional Neural Control Information for 
Multiple-DOF Prostheses From the Surface Electromyographic 

Signal,” IEEE Trans. Biomed. Eng., vol. 56, no. 4, pp. 1070–1080, 
2009. 

[16] E. Scheme and K. Englehart, “Electromyogram pattern recognition 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 3, 2018. ; https://doi.org/10.1101/194225doi: bioRxiv preprint 

https://doi.org/10.1101/194225
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

for control of powered upper-limb prostheses: State of the art and 

challenges for clinical use,” J. Rehabil. Res. Dev., vol. 48, no. 6, pp. 
643–659, 2011. 

[17] C. Antfolk et al., “Artificial redirection of sensation from prosthetic 

fingers to the phantom hand map on transradial amputees: 
Vibrotactile versus mechanotactile sensory feedback,” IEEE Trans. 

Neural Syst. Rehabil. Eng., vol. 21, no. 1, pp. 112–120, 2013. 

[18] P. Cisek, “Internal Models,” Encyclopedia of Neuroscience. 2009. 

[19] C. Antfolk, M. D’Alonzo, B. Rosén, G. Lundborg, F. Sebelius, and 

C. Cipriani, “Sensory feedback in upper limb prosthetics.,” Expert 

Rev. Med. Devices, vol. 10, no. 1, pp. 45–54, 2013. 

[20] J. M. Hahne, M. Markovic, and D. Farina, “User adaptation in 

Myoelectric Man-Machine Interfaces,” Sci. Rep., pp. 1–10, 2017. 

[21] K. A. Thoroughman and R. Shadmehr, “Electromyographic 
Correlates of Learning an Internal Model of Reaching Movements,” 

vol. 19, no. 19, pp. 8573–8588, 1999. 

[22] R. E. Johnson, K. P. Kording, L. J. Hargrove, and J. W. Sensinger, 
“Adaptation to random and systematic errors : Comparison of 

amputee and non-amputee control interfaces with varying levels of 

process noise,” PLoS One, pp. 1–19, 2017. 

[23] L. Hargrove, K. Englehart, and B. Hudgins, “A comparison of 

surface and intramuscular myoelectric signal classification,” IEEE 

Trans. Biomed. Eng., vol. 54, no. 5, pp. 847–853, 2007. 

[24] L. H. Smith, T. A. Kuiken, and L. J. Hargrove, “Evaluation of linear 

regression simultaneous myoelectric control using intramuscular 

EMG,” IEEE Trans. Biomed. Eng., vol. 63, no. 4, pp. 737–746, 
2016. 

[25] E. J. Scheme, K. B. Englehart, and B. S. Hudgins, “Selective 

Classification for Improved Robustness of Myoelectric Control 

Under Nonideal Conditions,” vol. 58, no. 6, pp. 1698–1705, 2011. 

[26] A. Ameri, E. N. Kamavuako, E. J. Scheme, K. B. Englehart, and P. 
A. Parker, “Support vector regression for improved real-time, 

simultaneous myoelectric control,” IEEE Trans. Neural Syst. 

Rehabil. Eng., vol. 22, no. 6, pp. 1198–1209, 2014. 

[27] F. Tenore, A. Ramos, A. Fahmy, S. Acharya, R. Etienne-

Cummings, and N. V Thakor, “Towards the control of individual 

fingers of a prosthetic hand using surface EMG signals.,” Conf. 
Proc. IEEE Eng. Med. Biol. Soc., vol. 2007, pp. 6146–6149, 2007. 

[28] C. Castellini, E. Gruppioni, A. Davalli, and G. Sandini, “Fine 

detection of grasp force and posture by amputees via surface 
electromyography,” J. Physiol. Paris, vol. 103, no. 3–5, pp. 255–

262, 2009. 

[29] A. W. Wilson, Y. G. Losier, P. A. Parker, and D. F. Lovely, “A 
Bus-Based Smart Myoelectric Electrode / Amplifier — System 

Requirements,” Ieee Trans. Instrum. Meas., vol. 60, no. 10, pp. 1–

10, 2011. 

[30] E. Scheme and K. Englehart, “A flexible user interface for rapid 

prototyping of advanced real-time myoelectric control schemes,” in 

Myoelectric Control Symposium2, 2008. 

[31] R. a Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, and J. T. Quinn, 

“Motor-output variability: a theory for the accuracy of rapid motor 

acts.,” Psychol. Rev., vol. 47, no. 5, pp. 415–451, 1979. 

[32] L. Faes et al., “Small-sample characterization of stochastic 

approximation staircases in forced-choice adaptive threshold 

estimation,” Percept. {&} Psychophys., vol. 69, no. 2, pp. 254–262, 

2007. 

[33] M. O. Ernst and M. S. Banks, “Humans integrate visual and haptic 

information in a statistically optimal fashion.,” Nature, vol. 415, no. 

6870, pp. 429–433, 2002. 

[34] K. O. Johnson, “Sensory discrimination - decision-process,” J. 

Neurophysiol., vol. 43, no. 6, pp. 1771–1792, 1980. 

[35] M. a García-Pérez and M. A. Garcia-Perez, “Forced-choice 
staircases with fixed step sizes asymptotic and small-sample 

properties,” Vision Res., vol. 38, no. 12, pp. 1861–1881, 1998. 

[36] M. A. Conditt, F. Gandolfo, and F. A. Mussa-ivaldi, “The Motor 
System Does Not Learn the Dynamics of the Arm by Rote 

Memorization of Past Experience The Motor System Does Not 

Learn the Dynamics of the Arm by Rote Memorization of Past 
Experience,” pp. 554–560, 2012. 

[37] A. J. Bastian, “Understanding sensorimotor adaptation and learning 

for rehabilitation,” Curr. Opin. Neurol., vol. 21, no. 6, pp. 628–633, 
2008. 

[38] A. W. Shehata, E. J. Scheme, and J. W. Sensinger, “The effect of 

myoelectric prosthesis control strategies and feedback level on 
adaptation rate for a target acquisition task,” 2017 International 

Conference on Rehabilitation Robotics (ICORR). pp. 200–204, 

2017. 

[39] R. Shadmehr and S. Mussa-Ivaldi, Biological Learning and 

Control: How the Brain Builds Representations, Predicts Events, 

and Makes Decisions. MIT Press, 2012. 

[40] M. Krzywinski and N. Altman, “Error bars,” Nat. Publ. Gr., vol. 10, 

no. 10, pp. 921–922, 2013. 

[41] J. P. Weir, “Quantifying Test-Retest Reliability Using the Intraclass 

Correlation Coefficient and the Sem,” J. Strength Cond. Res., vol. 

19, no. 1, pp. 231–240, 2005. 

[42] P. A. Parker, K. Englehart, and B. S. Hudgins, “Myoelectric signal 

processing for control of powered limb prostheses,” J. 

Electromyogr. Kinesiol., vol. 16, no. 6, pp. 541–548, 2006. 

[43] D. A. Braun, A. Aertsen, D. M. Wolpert, and C. Mehring, “Motor 

Task Variation Induces Structural Learning,” Curr. Biol., vol. 19, 

no. 4, pp. 352–357, 2009. 

[44] D. A. Braun, C. Mehring, and D. M. Wolpert, “Structure learning in 

action,” Behav. Brain Res., vol. 206, no. 2, pp. 157–165, 2010. 

[45] K. Englehart and B. Hudgins, “A robust, real-time control scheme 
for multifunction myoelectric control,” IEEE Trans. Biomed. Eng., 

vol. 50, no. 7, pp. 848–854, 2003. 

[46] A. Fougner, O. Stavdahl, P. J. Kyberd, Y. G. Losier, and P. A. 
Parker, “Control of upper limb prostheses: terminology and 

proportional myoelectric control-a review,” IEEE Trans. Neural 

Syst. Rehabil. Eng., vol. 20, no. 5, pp. 663–677, 2012. 

[47] D. L. Weeks, S. A. Wallace, and J. T. Noteboom, “Precision-grip 

force changes in the anatomical and prosthetic limb during 

predictable load increases,” Exp. Brain Res., vol. 132, no. 3, pp. 
404–410, 2000. 

[48] S. Dosen et al., “Building an internal model of a myoelectric 

prosthesis via closed-loop control for consistent and routine 
grasping,” Exp. Brain Res., 2015. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 3, 2018. ; https://doi.org/10.1101/194225doi: bioRxiv preprint 

https://doi.org/10.1101/194225
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

[49] P. S. Lum, I. Black, R. J. Holley, J. Barth, and A. W. Dromerick, 

“Internal models of upper limb prosthesis users when grasping and 
lifting a fragile object with their prosthetic limb,” Exp. Brain Res., 

vol. 232, no. 12, pp. 3785–3795, 2014. 

[50] F. Clemente, S. Dosen, L. Lonini, M. Markovic, D. Farina, and C. 
Cipriani, “Humans Can Integrate Augmented Reality Feedback in 

Their Sensorimotor Control of a Robotic Hand,” IEEE Trans. 

HUMAN-MACHINE Syst. Tech., pp. 1–7, 2016. 

[51] B. A. Philip and S. H. Frey, “Preserved grip selection planning in 

chronic unilateral upper extremity amputees,” Exp. Brain Res., vol. 

214, no. 3, pp. 437–452, 2011. 

[52] J. Gonzalez, H. Soma, M. Sekine, and W. Yu, “Psycho-

physiological assessment of a prosthetic hand sensory feedback 

system based on an auditory display: a preliminary study.,” J. 
Neuroeng. Rehabil., vol. 9, no. 1, p. 33, 2012. 

[53] M. Štrbac et al., “Short-and long-term learning of feedforward 

control of a myoelectric prosthesis with sensory feedback by 
amputees,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 11, 

pp. 2133–2145, 2017. 

 

V. APPENDIX 

 

TABLE III 

SUMMARY OF STATISTICAL TEST RESULTS FOR SUBJECTS USING RAW 

CONTROL RAW FEEDBACK IN GROUP 1 AND SUBJECTS USING FILTERED 

CONTROL FILTERED FEEDBACK IN GROUP 2 

Outcome metric TWO-SAMPLE T-TEST 

ADAPTATION 

rate 
t (16) = -4.194, p= 0.001 

JND 

 

t (16) = -2.8, p= 0.007 

Path efficiency On-axis targets t (16) = -2.205, p= 0.044 

Path efficiency Off-axis targets t (16) = -0.563, p= 0.581 

Accuracy    On-axis targets t (16) = -1.68, p= 0.112 

Accuracy    Off-axis targets t (16) = -1.46, p= 0.164 
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