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Abstract1

We study how the arboreal turtle ant (Cephalotes goniodontus) solves a fundamental computing2

problem: maintaining a trail network and finding alternative paths to route around broken links3

in the network. Turtle ants form a routing backbone of foraging trails linking several nests4

and temporary food sources. This species travels only in the trees, so their foraging trails are5

constrained to lie on a natural graph formed by overlapping branches and vines in the tangled6

canopy. Links between branches, however, can be ephemeral, easily destroyed by wind, rain, or7

animal movements. Here we report a biologically feasible distributed algorithm, parameterized8

using field data, that can plausibly describe how turtle ants maintain the routing backbone and9

find alternative paths to circumvent broken links in the backbone. We validate the ability of this10

probabilistic algorithm to circumvent simulated breaks in synthetic and real-world networks, and11

we derive an analytic explanation for why certain features are crucial to improve the algorithm’s12

success. Our proposed algorithm uses fewer computational resources than common distributed13

graph search algorithms, and thus may be useful in other domains, such as for swarm computing14

or for coordinating molecular robots.15

Introduction16

Distributed algorithms allow a collection of agents to efficiently solve computational problems with-17

out centralized control [1]. Recent research has uncovered such algorithms implemented by many18

biological systems, including slime molds during foraging [2] and neural circuits during develop-19

ment [3]. Ants are a diverse taxon of more than 14,000 species that have also evolved distributed20

algorithms to establish trail networks [4]. Investigating the algorithms used by biological systems21

can reveal novel solutions to engineering problems [5, 3].22

Here we present the first computational analysis, parameterized using data from field observa-23

tions, of trail networks of an arboreal ant species. The arboreal turtle ant C. goniodontus nests and24

forages in the trees in the tropical dry forest of western Mexico [6]. Because the ants never leave the25

trees, their foraging trails are constrained by a natural graph: branches and vines form the edges in26

the graph, and junctions at overlapping branches form the nodes (Figure 1A–C). Each colony has27
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several nests, located in dead tree branches, that are connected to each other in a circuit or network28

routing backbone [4, 7, 8]. Moving on the trails along this backbone, the ants distribute resources29

among the juveniles, workers, and reproductives in all of the nests, while additional temporary30

trails split from the backbone and lead to food sources. The backbone trail network can be large,31

often extending over 50 meters in circumference, and encompassing numerous trees [6]. The ants32

use many junctions in dense vegetation, so trails can be tortuous; each meter of linear distance33

typically requires ants to traverse approximately 2–5 meters of vegetation [6]. The colony thus34

chooses paths in the network from a myriad of potential routes, dictated by the graph structure of35

the vegetation. Ants lay trail pheromone as they move along the edges, and ants use pheromone36

when choosing edges.37

We present a distributed algorithm that can plausibly describe how turtle ants maintain and38

repair breaks to their routing backbone. Links between branches or vines can be ephemeral, often39

disrupted by wind, rain, or the movement of an animal through the vegetation. To re-establish con-40

nectivity of the routing backbone after a break, the ants must establish a new path that reconnects41

the two sides of the broken trail. This is an important problem in many network applications [9]42

and can be solved efficiently using numerous graph algorithms, such as Dijkstra’s algorithm or the43

Bellman-Ford algorithm [10]. However, these classic algorithms require significantly more com-44

putation and memory than is likely available to simple biological agents such as turtle ants, who45

regulate their behavior using local interactions rather than central control [11].46

Repairing breaks requires overcoming three challenges. First, the ants must succeed in finding47

an alternative path by exploring new edges that currently have no pheromone and avoiding dead-48

ends in the network. One hypothesis for how this could be achieved is to first generate many49

candidate alternative paths and then converge to one or a few of them over time — a process50

we call “pruning”. Such a strategy, also employed by slime molds [2] and neural circuits [3], has51

been shown to help quickly discover new paths in distributed settings, in which no agent is aware52

of the topology of the entire network. Second, all ants must converge to the same new path in53

order to optimally coordinate resource transport. Turtle ants travel in coherent trails that link54

nests and food sources [12]. After the vegetation supporting the trail is ruptured, the ants explore55

outside the previous path, and eventually commit again to a single path. Such convergence prevents56

ants from getting lost or separated from the rest of the colony. This is also an important goal in57

computer routing networks, where convergence to a single path ensures in-order delivery of data58

packets [13]. Third, it may be important to minimize the length of the new trail, which is also a59

standard measure of efficiency used when evaluating transport network design. However, data from60

field studies [6, 12] suggest that turtle ant paths are often not the shortest globally. It appears61

that the second objective, successful convergence, is more important than minimizing trail length,62

presumably because ants getting lost or separated has a higher cost than the energy spent in63

walking [12]. A common strategy to increase robustness to edge failures in a graph is to include64

loops in the path. Prior work [12] showed that loops do form in turtle ant trail networks; however,65

loops tend to get pruned over time, perhaps reducing the number of foragers needed to maintain66

the path.67

The distributed algorithm used to maintain and repair trail networks must be robust across68

varying planar network topologies. The forest canopy is highly complex and dynamic, and it is un-69

likely that turtle ants use different algorithms to accommodate different network structures. Thus,70

we seek an algorithm that, while likely not “optimal” for any single planar topology, performs71

well across different planar topologies. The algorithm must also use very limited memory of indi-72
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vidual agents, as ants are not capable of remembering many of their steps along the graph structure.73

74

Our work seeks to uncover a biologically plausible distributed algorithm that corresponds with75

field observations of turtle ant behavior in response to experimentally-induced edge breaks (Fig-76

ure 1B) [12]. We ask:77

1. What model is most likely to explain how turtle ants at a node select which edge to traverse78

next?79

2. How well can the algorithm repair broken trails in simulated breaks in synthetic and real-80

world network topologies when parameterized by the most biologically realistic parameter81

values?82

(a) Does the algorithm consistently converge to a single consensus path?83

(b) Does the algorithm find short paths?84

(c) Does bi-directional search, using ants from both sides of the broken path concurrently,85

improve the performance of the algorithm relative to uni-directional search?86

(d) How does allowing an ant to avoid going back to the node it previously visited (back-87

tracking), improve algorithm performance relative to performance when ants are not88

prevented from backtracking?89

(e) Can we provide any theoretical insights into why certain model features are necessary90

for any plausible turtle ant algorithm?91

3. Can the same algorithm used to repair breaks also be used to keep the established routing92

backbone intact in the absence of a break?93

4. Do turtle ants form multiple alternative paths and then prune some of them over time, as94

also observed in field studies?95

A model that performs well on all of these criteria can be considered a plausible model of turtle ant96

behavior. Our main contribution is to identify several plausible non-linear models; we also show97

why one common linear model is likely implausible despite succeeding on some of the criteria listed98

above.99

Related work100

To our knowledge, this is the first computational analysis of trail networks of an arboreal ant101

species, whose movements are constrained to a discrete graph structure rather than continuous102

space. Compared to previous work, we attempt to solve the network repair problem using different103

constraints and fewer assumptions about the computational abilities of individual ants.104

105

Species-specific modeling of ant behavior. Previous studies of ant trail networks have largely106

examined species that forage on a continuous 2D surface [14], including Pharaoh’s ants [15], Argen-107

tine ants [4, 16, 17], leaf-cutter ants [18], army ants [19], and red wood ants [20]. These species can108

define nodes and edges at any location on the surface, and form trails using techniques such as ran-109

dom amplification [21, 22, 19], or using their own bodies to form living bridges [23]. Experimental110
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work on these species sometimes uses discrete mazes or Y-junctions to impose a graph structure;111

however, these species have evolved to create graph structures in continuous space, not to solve112

problems on a fixed graph structure, as turtle ants have evolved to do. Turtle ant movements are113

entirely constrained by the vegetation in which they travel. They cannot form trails with nodes114

and edges at arbitrary locations; instead, they can use only the nodes and edges that are available115

to them.116

Further, to provide the simplest possible algorithm that is biologically realistic, we assume that117

turtle ants use only one type of pheromone. There are more than 14,000 species of ants, and they118

differ in their use of chemical cues. For example, Monomorium pharoensis uses several different119

trail pheromones [24, 25, 26, 27, 28]. There is, however, no evidence that turtle ants lay more than120

one type of trail pheromone.121

122

Ant colony optimization. Models of ant colony optimization (ACO), first proposed in 1991,123

loosely mimic ant behavior to solve combinatorial optimization problems, such as the traveling124

salesman problem [29, 30, 31]. In ACO, individual ants each use a heuristic to construct candidate125

solutions, and then use pheromone to lead other ants towards higher quality solutions. Recent126

advances improve ACO through techniques such as local search [32], cunning ants [33], and iterated127

ants [34]. ACO, however, provides simulated ants more computational power than turtle actually128

ants possess; in particular, ACO-simulated ants have sufficient memory to remember, retrace, and129

reinforce entire paths or solutions, and they can choose how much pheromone to lay in retrospect,130

based on the optimality of the solution.131

Prior work inspired by ants provides solutions to graph search problems [35, 36], such as the132

Hamiltonian path problem [37] or the Ants Nearby Treasure Search (ANTS) problem. The latter133

investigates how simulated ants collaboratively search the integer plane for a treasure source. These134

models afford the simulated ants various computational abilities, including searching exhaustively135

around a fixed radius [38], sending constant sized messages [39], or laying pheromone to mark an136

edge as explored [40]. Our work involves a similar model of distributed computation, but our prob-137

lem requires not only that the ants find an alternative path to a nest (a “treasure”), but also that138

all the ants commit to using the same alternative path. This requires a fundamentally different139

strategy from that required for just one ant to find a treasure.140

141

Graph algorithms and reinforced random walks. Common algorithms used to solve the142

general network search and repair problem, including Dijkstra’s algorithm, breadth-first search,143

depth-first search, and A* search [10], all require substantial communication or memory com-144

plexity. For example, agents must maintain a large routing table, store and query a list of all145

previously visited nodes, or pre-compute a topology-dependent heuristic to compute node-to-node146

distances [41]. These abilities are all unlikely for turtle ants.147

Distributed graph algorithms, in which nodes are treated as fixed agents capable of passing148

messages to neighbors, have also been proposed to find shortest paths in a graph [42, 43], to149

construct minimum spanning trees [44, 45], and to approximate various NP-hard problems [46, 47].150

In contrast, our work uses a more restrictive model of distributed computation, where agents151

communicate only through pheromone which does not have a specific targeted recipient.152

Finally, the limited assumptions about the memory of turtle ants invite comparison to a Markov153

process. Edge-reinforced random walks [48], first introduced by Diaconis and others [49, 50], proceed154

as follows: an agent, or random walker, traverses a graph by choosing amongst adjacent edges with155
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a probability proportional to their edge weight; then the agent augments the weight (or pheromone)156

of each edge chosen. Our model expands edge-reinforced random walks in two ways: first, we allow157

many agents to walk the graph concurrently, and second, we decrease edge weights over time.158

Our work is similar to previous models of the gliding behavior of myxobacteria [51] that consider159

synchronous, node (rather than edge)-reinforced, random walks with decay. These models seek160

to determine when bacteria aggregate on adjacent points or instead walk freely on the grid. By161

contrast, here we ask whether the random walkers converge to a single consensus path between two162

points on the grid that are not necessarily adjacent.163

Results164

Our goals are to find an algorithm that can simultaneously explain the movement patterns of turtle165

ants on a trail network and that can effectively solve the network repair problem. First, we describe166

a computational framework for evaluating the collective response of turtle ants to edge ruptures.167

We evaluate the response according to three objectives: the likelihood of finding an alternative path168

to repair the trail, how well the ants converge to the same new trail, and the capacity to minimize169

the length of the trail. Second, we derive multiple candidate distributed algorithms for network170

repair. We parameterize each algorithm using data from field experiments to determine how the171

model would predict which edge a turtle ant would choose to traverse next from a node, given only172

local information about adjacent edges and their edge weights. Third, we analyze via simulation173

how our algorithms perform on different planar network topologies, including simulated breaks on174

a European road transport network.175

A graph-theoretic framework for modeling network repair by turtle ants176

We start with a weighted, undirected graph G = (V,E,W ), where V is the node set, E is the edge177

set, and W are the edge weights, as well as two nest nodes u, v ∈ V , and a path P = (u, . . . , v)178

from u to v with pheromone along each edge in P . Edges are undirected since turtle ants can walk179

in both directions over edges. Edge weights correspond to the amount of pheromone on the edges,180

which can change over time. We mimic a break in the path by removing some edge in P . The181

challenge for the ants is to find an alternative path that reconnects u and v. The alternative path182

may build off the existing path, so that the initial and final path may share some edges.183

Communication among simulated ants is limited to chemical signals, analogous to pheromone,184

left on edges traversed. Field observations are consistent with the assumption that, like Argentine185

ants [52], turtle ants lay trail pheromone continuously as they walk [6, 12]. Though this has not186

been observed directly, we hypothesize that there are certain exceptional situations in which turtle187

ants discontinue laying pheromone (Methods). Each ant at a node senses the pheromone level on188

adjacent edges to inform its next movement. Observations suggest that a turtle ant tends to keep189

moving in the same direction, indicating that an ant is able to avoid the previous node it visited.190

We thus assume that simulated ants have one time-step of memory, used to avoid going back and191

forth along the same edge. As is characteristic of many species of ants [53, 54, 55], simulated ants192

have no unique identifiers and can use only local information.193

194

Parameters. Our algorithm uses three biological parameters: qadd, qdecay, and qexplore.195

The first parameter (qadd) determines how much pheromone is added when an ant traverses an
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edge. After each time step, each edge (v1, v2) traversed increases its edge weight as:

w(v1, v2)← w(v1, v2) + qadd. (1)

Without loss of generality, we fix qadd = 1, representing a unit of pheromone that an ant deposits196

on each edge traversed.197

The second parameter (qdecay) specifies how much pheromone evaporates on each edge in each
time step due to natural decay. We model pheromone decay as an exponential decrease in edge
weight [56, 57]; thus qdecay ∈ (0, 1), and at each time step, for each edge (v1, v2), its weight is
updated as:

w(v1, v2)← w(v1, v2)× (1− qdecay). (2)

Larger values of qdecay correspond to more rapid decay of pheromone on the edge.198

The third parameter (qexplore) specifies the probability that an ant takes an “explore step”. The199

definition of an “explore step” is algorithm-specific (see below), but intuitively, it involves choosing200

an edge with relatively less or no pheromone. Such deviation is clearly required by any network201

repair algorithm, since after the routing backbone is ruptured, edges not part of the existing path202

must be traversed to repair the break. Field observations show that even in the absence of a break,203

turtle ants explore edges off the main trail. This allows them to discover new food sources and204

incorporate them into the trail network [12].205

206

Performance metrics. After T time steps, we evaluate the outcome of the algorithm using the207

following measures (averaged over 50 repeat simulations):208

1. Success rate: The probability that the simulated ants succeeded in forming a new path from209

u to v that does not use the broken edge. In this new path, ants are not required to traverse210

edges of relatively low weight (Methods). Higher values are better; for example, a success211

rate of 70% means that in 70% of the simulations, the ants successfully formed an alternative212

path.213

2. Path entropy: An information-theoretic measure of how well the ants converge to a single214

consensus path, rather than creating multiple, potentially overlapping, u → v paths with215

pheromone. Lower values are better, indicating that subsequent ants using the same algorithm216

on the resulting network will all follow a common path, rather than dispersing along many217

different paths. This measure is computed only in the simulations in which an alternative218

path was successfully found. Field observations show that turtle ants consistently converge219

to a consensus path, and loops in the network are often pruned away over time [12]. This220

reduces the numbers of lost ants and the numbers of ants traveling in circles.221

3. Path length: The length of the new path. Although turtle ants do not always find the globally222

shortest path [12], we include this measure because it is commonly used to evaluate routing223

algorithms. Lower values are better, indicating shorter paths. This measure is computed only224

in the simulations in which an alternative path was successfully found.225

A model of computation for individual ants. We assume that all ants are identical and have226

the following computational abilities:227
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• Each ant can avoid the node it immediately previously visited. It cannot, however, remember228

its entire path from the nest up to its current point. The ant may also keep track of a229

binary state variable that determines whether it is combing back from a dead end and should230

discontinue laying pheromone.231

• In field observations, ants appear to pause at nodes and inspect more than one edge before232

choosing an edge to take [12]. Thus, each ant can access all adjacent edge weights to decide233

which node to visit next. To choose its next edge, we allow ants to perform any Turing-234

computable computation, although we show that a simple, albeit non-linear, function will235

suffice.236

See Methods for full technical details of the model and performance metrics.237

Candidate distributed algorithms238

Below we introduce several biologically plausible algorithms that attempt to describe how a turtle239

ant at a node s chooses which edge to traverse next among possible neighboring edges t1, t2, ...tn.240

These algorithms build upon previous linear and non-linear models used to analyze ant trail for-241

mation in other species, such as Argentine ants [58, 59, 60] and pharaoh ants [61]. Let w(s, ti) be242

the current weight on edge (s, ti), and let uniform() be a random value drawn uniformly from [0, 1].243

244

In the Weighted random walk (Algorithm 1), each ant chooses the next edge to traverse with245

probability proportional to the amount of pheromone on that edge: the more pheromone on an246

edge, the more likely an ant is to traverse that edge. However, with probability qexplore, the ant247

takes an edge that has zero pheromone.248

Algorithm 1 Weighted random walk

1: X ← {ti : w(s, ti) > 0} # Explored edges
2: Y ← {ti : w(s, ti) = 0} # Unexplored edges
3: if uniform() < qexplore then
4: return ti ∈ Y with probability 1/|Y |
5: else
6: return ti ∈ X with probability w(s, ti)/

∑
j∈X w(s, tj)

7: end if

Note: The algorithm excludes the previously visited node from the sets of candidate edges. If all
neighboring edges have weight 0, the ant chooses a zero-weight edge with probability 1 rather than
probability qexplore. If none of the neighboring edges have weight 0, then the ant chooses an edge
with nonzero-weight with probability 1 rather than probability 1− qexplore.

In the RankEdge random walk (Algorithm 2), with probability 1 − qexplore, the ant chooses an249

edge with the highest weight (ties are broken at random). With probability qexplore, it bypasses250

the highest weighted edges and considers edges with the second highest weight. With probability251

qexplore(1 − qexplore), it chooses an edge with the second highest weight. With probability q2explore,252

it bypasses both the highest and second highest weighted edges and considers edges with the third253

highest weight, and so on.254

255
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Algorithm 2 RankEdge random walk

1: W ← [w1, w2, . . . , wk] # Sorted unique edge weights, in decreasing order
2: for i = 1 . . . k do
3: X ← {t : w(s, t) = W [i]}
4: if uniform() < (1− qexplore) then
5: return ti ∈ X with probability 1/|X|
6: end if
7: end for

Note: The algorithm excludes the previously visited node from the set of candidate edges. If all
neighboring edges are tied for the highest weight, then a maximally-weighted edge is chosen with
probability 1 rather than probability 1 − qexplore. If an ant keeps exploring until it gets to the
lowest weight, it takes one of the edges tied for the lowest weight with probability 1 rather than
probability 1− qexplore.

Each algorithm contains additional details inspired by field observations, including a queueing sys-256

tem so ants traverse edges one at a time, the ability to traverse and return from an edge on an257

explore step in one time-step, and the ability to discontinue laying pheromone on the way back258

from a dead-end. See Methods for full details.259

260

Other algorithms: We compared these two candidate distributed algorithms to several other non-261

linear algorithms (MaxEdgeA, MaxEdgeB, MaxEdgeC, MaxWeighted, and Deneubourg),262

as described in the Supplement. We also compared to a null model, called the Unweighted ran-263

dom walk. The null model uses no parameters; instead, the ants ignore edge weights and choose264

amongst candidate edges with equal probability.265

266

Summary of conclusions. Overall, we find that non-linear models perform the best at simulta-267

neously explaining field observations and providing a mechanism by which turtle ants could solve268

the network repair problem. While the linear (Weighted) algorithm does perform well at explaining269

some aspects of field observations, and it repairs breaks with high probability, it also produces a270

very high path entropy, with poor convergence to a consensus path. This departs strongly from271

field observations [12] that show that when repairing broken paths, the ants quickly converge to a272

single path.273

In particular, we find that: (A) RankEdge outperforms all other non-linear algorithms, except274

for MaxEdgeA, in the likelihood of explaining observed edge choices by turtle ants (Table 1). The275

log-likelihoods of RankEdge and MaxEdgeA were nearly identical. (B) When parameterized276

by field data, RankEdge outperforms all other non-linear algorithms in success rate (Table 2);277

and (C) RankEdge is equivalent to all other non-linear algorithms in path entropy (Table 3).278

Compared to the linear Weighted algorithm, RankEdge has a lower likelihood of explaining the279

observed edge choices and a lower success rate. However, RankEdge performs much better in280

path entropy, path length, and maintaining the trail in the absence of a break. We emphasize that281

the strong success rate of Weighted is because pheromone is left essentially on every edge in the282

graph. This guarantees high success but very poor convergence to a single path. Field experiments283

show that turtle ants converge strongly to a single path.284
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Q1. Field observations to determine the best algorithm and parameter values285

We first determined what parameter values best allow each algorithm to match the data from field286

observations. We then used these parameter values to test algorithm performance for the network287

repair problem.288

The performance of each candidate algorithm is sensitive to the values chosen for the two free289

parameters, qexplore and qdecay (as previously mentioned, we set qadd = 1). For example, with low290

values of qexplore, the ants may take a long time to explore enough new edges to find an alternative291

path; on the other hand, for high values of qexplore, the ants will scatter throughout the network and292

may not converge to a single path. Similarly, for high values of qdecay (pheromone decays rapidly),293

it may be difficult to build and reinforce a single path; for low values of qdecay, it may be hard for294

the colony to eliminate unnecessary edges and commit to one path. These two parameters also295

affect each other; for example, the higher the decay rate, the fewer edges with pheromone, and thus296

the more possible edges to explore.297

We used data from observations made in the field to evaluate the match between the choices298

of edges made by turtle ants and the choices predicted by a candidate algorithm (with parameters299

qexplore, qdecay). Observations were made at La Estacion Biologica de Chamela in Jalisco, Mex-300

ico [6, 12]. Ants were observed traversing a junction (node) along a foraging trail. We recorded301

the time at which an ant moved to or from that junction node, and the edge it chose to traverse302

(Figure 2A–B). Observations were made of six different colonies, with an average of 2.16 junctions303

per colony, over three days in June 2015 and one day in June 2016. We observed 13 different304

junctions for time periods ranging from 7 to 24 minutes (mean of 12.3 minutes per observation at305

a given colony on one day), for a total of 773 edge choices made by turtle ants.306

307

Maximum likelihood estimation. We determined which algorithm and parameter values best ex-308

plained the observed edge choices made by turtle ants using maximum likelihood estimation (MLE).309

The data were used to determine the likelihood that a given algorithm, with a given pair of param-310

eter values, would have produced the observed set of edge choices. Figure 2A–B shows an example311

likelihood calculation, and Figure 2C–D illustrates the results of the MLE for each algorithm over312

all pairs of parameter values.313

Overall, for RankEdge, the maximum likelihood parameter values that best explained the314

observed turtle ant behavior were: qexplore = 0.20, and qdecay = 0.02 (Table 1). For Weighted,315

the maximum likelihood parameter values were qexplore = 0.05 and qdecay = 0.01. Both candidate316

algorithms were more likely to explain the data than the null model (Table 1).317

318

Consistency of the maximum likelihood estimation across colonies and days. The maximum likeli-319

hood parameter values were similar across colonies and days for the 13 junctions (Figure S2). This320

suggests that across six colonies, there are similar chemical properties in the pheromone (related to321

qdecay), and that a similar search strategy is used for choosing which edge to traverse next (related322

to qexplore).323

Q2. Algorithm performance on synthetic and real-world planar networks324

Our goal here is to test how well each algorithm solves the network repair problem on simulated325

and real-world networks. We were particularly interested in how well each algorithm performed326

when its parameters were set to the maximum likelihood values derived from observations of turtle327
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ants. Our main result is that the maximum likelihood parameters for the RankEdge performed328

well in simulations for network repair across six networks (Figure 3; the black rectangle in both329

panels shows that the parameter values that best explain the turtle ants’ behavior also perform330

best for solving the network repair problem.) The latter result is substantiated below.331

332

Simulation setup. For all simulations, we ran each algorithm for T = 1000 steps using N = 100333

ants, and repeated each simulation 50 times. To initialize each simulation, we placed each of the334

N ants at a random node in the original path. This means that at the start of the simulation there335

were likely ants at nodes on both sides of the rupture in the path. No ants were placed at nodes336

not part of the original path. Each ant was randomly assigned to walk in search of one of the two337

nests. All edges that were part of the initial path were initialized with 10 units of pheromone. All338

other edges were initialized to 0 units of pheromone. When an ant reached its destination nest,339

it attempted to return to the other nest, and repeated this, going back and forth between nests,340

for T time-steps. The ants walk synchronously for T time-steps; this is a common assumption in341

distributed computing problems.342

343

Our first performance metric, called the success rate, measures how well the ants succeed in finding344

an alternative path to repair the break. We simulated breaks under six planar network structures,345

which have an increasingly complex topology with varying numbers of possible paths. In each346

evaluation below (Figure 4), we show three panels: the initial network with a break, the final347

network at the end of the simulation, which is generated using the MLE parameter values, and a348

heatmap showing the success rate for pairs of parameter values (qexplore, qdecay) close to the MLE349

range. In each synthetic network, a only single link is broken (shown as the ‘X’ mark in Figure 4);350

in the Supplement, we describe cases where multiple links are broken.351

We analyzed all algorithms but show results only for RankEdge in the main text because352

Weighted rarely converged onto a single path, thus it did not satisfy our second performance353

metric. It also did not maintain trails in the absence of a break. These results are described in354

detail below. Also, see Table 2 and Supplement for analysis of the additional non-linear algorithms.355

356

Minimal graph (Figure 4A). Here we find that RankEdge can solve a basic repair problem in a357

minimal working example, in which the break causes the existing path to lead to a dead end that358

should be avoided in favor of a single alternative path to the nest. To favor the alternative path,359

the simulated ants must largely eliminate the pheromone on the edge leading to the dead end, a360

process which we call ‘pruning’. To favor the alternative path instead of the existing path, the ants361

should put more pheromone on the edge leading upwards to the alternative route, even though this362

edge initially had no pheromone.363

We find that the RankEdge algorithm succeeds in this task 100% of the time, as long as the364

ants do not leave pheromone on the way back returning from the dead-end (Methods and Q4).365

366

Simple graph (Figure 4B). Here we increased the complexity of the graph to offer two alternative367

paths, instead of one in the Minimal graph. We found that RankEdge not only prunes the dead-368

end, but it can find and commit to one of the two alternatives with a 98% success rate.369

370

Medium graph (Figure 4C). Here we further increased the complexity of the Minimal graph to offer371

six alternative paths and found that RankEdge not only prunes the dead-end, but can find and372
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commit to one of the six alternatives with a 84% success rate.373

374

Full grid (Figure 4D). The Full grid presents a different computational challenge: there is no dead-375

end to prune and the shortest alternative path requires only 3 additional edges. However, the total376

number of possible new paths is extremely large, which makes it difficult to find and commit to377

a single path. The Full grid is also a standard benchmark used in the ANTS problem (Related378

work), in which ants search the integer plane [38, 39, 40].379

We found that the highest success rate (70%) occurred for low values of qdecay, which closely380

matches the observed best decay value estimated using maximum likelihood. This highlights an381

inherent trade-off in the turtle ant algorithm. Low decay rates help preserve the initial path and382

bias the turtle ants toward finding an alternative route that re-uses as much of the previous path383

as possible; that is, with low decay rates, repair starts as close to the break as possible. However,384

low decay rates also limit the capacity to search for other paths that may be shorter even though385

they re-use less of the previous path. An alternative would be to use higher values of qexplore to386

search for other paths that do not re-use the initial path, but this would make it more difficult for387

the ants to converge to a single new path.388

389

Spanning grid (Figure 4E). In contrast to the Full grid, the Spanning grid is sparser and requires390

that the ants go back at least one node from the break to find an alternative path.391

We found that the maximum likelihood parameters produced a moderate success rate (54%).392

As above, the highest success rate occurred for low values of qdecay and moderate values of qexplore.393

These values achieve a good trade-off between searching sufficiently far from the break to find an394

alternative path, and largely preserving the previous path. The performance on the Spanning grid395

demonstrates that the algorithm is flexible enough to search locally around a break point for new396

paths, while still maintaining most of the old path.397

The results from the Full grid and the Spanning grid together suggest that the algorithm per-398

forms best when it preserves as much of the previous path as possible, even if it can not re-use399

all of the original path. This is consistent with field observations that showed that turtle ants400

sought alternative paths in a “greedy” manner, by going back up to 1 or 2 nodes from the break401

point, even though going back more nodes may have resulted in a path with fewer nodes overall [12].402

403

European road transportation network (Figure 5). To demonstrate the utility of this algorithm in a404

real-world scenario, we applied the RankEdge algorithm to repair networks in a human-designed405

transport network. We downloaded the network depicting the major roads (edges) connecting in-406

tersections (nodes) in the international E-Road in Europe [62] (Methods). We removed an edge407

from an existing path between two nodes and ran the RankEdge algorithm to repair the simulated408

closure. The RankEdge algorithm achieved a success rate of 70%, indicating that the turtle ant409

algorithm can also repair breaks in real-world topologies. This shows how distributed solutions may410

be useful for new application domains, such as for swarm robotics or molecular robots [63, 64, 65, 66]411

in remote environments, when centralized or global positioning systems may not be as effective.412

413

We also compared the algorithms on Erdos-Renyi random networks and small-world networks and414

found similar gains in performance for RankEdge (Supplement).415

416

Q2a. Converging onto a single consensus path (Table 3). Our second performance metric,417
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called path entropy, measures how well foragers commit to a single alternative path.418

We find that the RankEdge algorithm consistently achieves a path entropy near 0, indicating419

that on the final network all ants follow the same path when not taking explore steps (Table 3).420

This is particularly challenging for the Full and Spanning grids because both contain a large num-421

ber of possible paths, and thus a large possible path entropy if the simulated ants exploit many422

paths. Thus, when the algorithm succeeds in repairing the path, RankEdge satisfies our second423

performance criterion.424

More generally, one advantage of non-linear algorithms such as RankEdge is that all simu-425

lated ants, by simply following the maximal edge (the adjacent edge with the highest pheromone),426

can travel from one nest to the other using the same path, thereby achieving a path entropy of 0.427

On the other hand, linear algorithms such as Weighted do succeed in finding a path; however,428

Weighted is unable to commit to only one path, and thus has very high path entropy (Figure 6).429

430

Q2b. Finding short paths (Table 4). Our third performance metric measures the path length431

of the final trail network. We found that RankEdge consistently finds paths of lengths that are432

close to, though slightly larger than, the globally shortest path lengths. For every network, we433

compared the average path lengths of RankEdge versus every other algorithm using Welch’s un-434

paired T-test. RankEdge finds significantly shorter paths than Weighted and Unweighted on435

the Full grid, Spanning grid, and European roads (p < 0.05); RankEdge is not significantly differ-436

ent from the other non-linear algorithms (Table 4). The improved performance over Unweighted437

demonstrates the value of using pheromone to solve the network repair problem collectively, instead438

of using independent search.439

440

Q2c. The power of bi-directional search (Figure S3). We find that a bi-directional search,441

in which simulated ants attempt to create an alternative path concurrently from both sides of the442

break, allows the algorithm to perform significantly better than a uni-directional search using ants443

from only one side of the break. We tested this on the Full grid, and found that for the MLE444

parameter values for RankEdge, the success rate was on average 70% for a bi-directional search445

versus 14% for uni-directional search.446

One might predict that uni-directional search would perform as well as the bi-directional search,447

while simply taking longer. However, we found this not to be true: using a bi-directional search448

means that once ants from side A of the break reach side B of the break, the rest of their search is449

directed by the pheromone trail laid by ants that started on side B. In the uni-directional search,450

even if ants from side A reach side B, they must still find a path from scratch connecting the dead451

end on side B to the nest on side B. Although uni-directional search has rarely been observed to452

occur in turtle ant networks, we tested it here to compare it with bi-directional search, which is453

often used to improve the performance of search algorithms.454

455

Q2d. The power of avoiding backtracking (Figure S4). We find that providing simulated456

ants the ability to avoid backtracking, i.e., visiting the same node visited in the previous time-step457

(Methods) allows for a significant improvement in algorithm performance. In contrast, ants that458

are not given this ability could keep going back and forth along the same edge.459

In particular, ants that used the RankEdge algorithm and avoided backtracking produced a460

success rate of 70% on the Full grid, compared to 0% when an ant was not prevented from po-461

tentially returning to the previous node it visited (Figure S4). Thus, providing ants with a basic462
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node-to-node sense of direction led to a significant improvement in performance.463

464

Q2e. Critical features for the success of a plausible algorithm. We find that there are465

two important features for non-linear algorithms to perform well in simulation: (1) Simulated ants466

do not lay pheromone on the way back from a dead end, and (2) simulated ants queue at nodes467

(Methods). In the Supplement, we provide theoretical analysis for why these two components are468

critical for any non-linear algorithm to circumvent a dead end. Without either of these two features,469

the time to circumvent a dead end rises dramatically. In the Supplement, we also confirm these470

theoretical observations via simulation.471

Q3. Maintaining a trail in the absence of a break472

Here we consider whether the same algorithm used to repair a path can also keep a path intact473

when it is not broken. This is important because if different algorithms were used to maintain474

trails versus repair trails, then the turtle ants would need some signal to toggle between different475

methods for choosing among candidate edges, depending on the context. We found that a single476

algorithm, RankEdge, is capable of maintaining trails and responding to breaks.477

In particular, we ran the RankEdge algorithm on the Spanning grid without breaking the478

original path and found that the trail was preserved without any modification to the algorithm or479

its parameters (Figure 7). In contrast, the Weighted algorithm performed very poorly on this480

task. In particular, for RankEdge, the path entropy using the MLE parameter values from turtle481

ant data was optimal (0.00). For Weighted, however, the path entropy for the MLE parameter482

values was much higher (5.38), indicating poor maintenance of the original path.483

Q4. Pruning as a general principle for discovering alternative paths484

Field observations show that turtle ants engage in pruning (Figure 8). In our simulations, we also485

observed that ants explored multiple alternative paths, and then most of these paths were pruned486

as the colony converged to a single alternative path. Further, the paths tended to become shorter487

over time. We quantified how many paths were pruned during the simulation using a measure488

called path elimination (Methods). We also quantified how the lengths of the remaining paths489

changed over time using a measure called path length pruning (Methods). All of the non-linear490

algorithms exhibit some path elimination and pruning, and thus could plausibly be used to explain491

the observed pruning in observed turtle ants. RankEdge prunes fewer paths than the other492

algorithms (Table 5) because RankEdge does not form as many initial paths as other algorithms.493

However, of the paths that are pruned, RankEdge tends to prune more nodes from the paths494

(Table 6).495

For every network, we compared the average path elimination and path length pruning of496

RankEdge versus every other algorithm using Welch’s unpaired T-test. For path elimination,497

RankEdge does not reduce the number of paths more than other algorithms (p < 0.05), as we498

described above. However, for path length pruning, RankEdge reduces path lengths significantly499

more than all other algorithms on the Spanning grid and European roads (p < 0.05). On the Full500

grid, RankEdge is significantly better than Weighted (p < 0.05), is not significantly different501

from Deneubourg or MaxEdgeB, and is significantly worse than MaxEdgeA, MaxEdgeC, and502

MaxWeighted. No statistical difference is observed for the Simple and Medium graphs, likely due503

to their relatively simple topology. These pruning results suggest that RankEdge explores fewer504
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paths initially but is better at selecting the shortest of the paths it explores. RankEdge tends to505

prune fewer paths (path elimination), but of the paths it does explore, RankEdge converges to506

the shorter paths (path length reduction).507

Field observations [12] also showed that when ruptured trails are repaired, new nodes are added508

to the network, and in subsequent days, some of the nodes are pruned. Such pruning of nodes509

also led to global pruning of paths (Figure 8). Such an “explore-exploit” strategy may help turtle510

ants quickly find a solution that re-connects a rupture in a trail, and may also help the colony to511

optimize the coherence of the trail, by minimizing the number of junctions at which ants could get512

lost.513

Interestingly, using pruning-based strategies to discover the most appropriate edges or paths514

to keep is a common strategy used by biological systems. In particular, during the development515

of neural circuits in the brain, synapses are massively over-produced and then pruned-back over516

time [3]. This strategy is thought to help neural circuits explore possibly topologies and then517

converge to the most appropriate topology based on environment-dependent feedback. A similar518

process occurs during the development of vascular (blood flow) networks in the body [67]. Thus,519

pruning may be a common biological strategy of network design when multiple topologies need to520

be explored in a distributed manner.521

522

Discussion523

Our primary contribution is to address an engineering problem (maintaining a trail network and524

finding alternative paths to route around broken links in the network) using biologically feasible525

parameters and models motivated by how turtle ants may solve this problem in the field. Successful526

performance by the algorithm in simulation, using realistic parameter values, indicates that the527

algorithm is a plausible candidate to describe how the ants create their networks. The RankEdge528

algorithm achieved a better maximum likelihood estimate (Figures 2–3) than every other non-linear529

model except for MaxEdgeA. When parameterized by data from field observations, RankEdge530

was better able to find a single, short path with high probability compared to other algorithms531

(Tables 2,3, 4). From this, we conclude that non-linear models, in particular RankEdge and532

MaxEdgeA, represent the two best plausible models of turtle ant behavior.533

By testing performance across six different networks, we found that the turtle ants appear to534

have evolved an algorithm that may not be optimal for any particular planar network but is robust535

to some variation in the topology. Further, non-linear algorithms exhibited pruning, which also536

occurred in field observations [12] (Table 6, Figure 8).537

There are several features of our algorithm that are critical for success in repairing breaks to538

the routing backbone. First, to minimize path entropy it is essential to have a stronger-than-539

linear bias towards choosing the highest-weighted edge (RankEdge), rather than choosing edges540

proportional to their edge weight (Weighted). This helps constrain the search space and leads to541

better convergence to a single consensus path. We emphasize that Weighted has a strong success542

rate because pheromone is left on every edge in the graph (see e.g., Figure 6A–B). This guarantees543

that there exists some path with positive probability. However, Weighted does not commit to a544

single path as effectively as an algorithm with a strong, non-linear bias toward the highest-weighted545

edge, such as RankEdge. The path entropy of Weighted is high because essentially every path in546

the graph has high probability, and the average path length is high because the algorithm does little547
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to eliminate long paths and commit to short paths. Second, to repair breaks it is essential to use548

bi-directional search and avoid backtracking. Observations show that when turtle ants encounter549

a break, ants from both sides of the break attempt to repair the trail [12]. When ants from both550

sides meet, they each encounter a trail that is already strongly reinforced and guided towards the551

other nest. In addition, the ability to avoid backtracking allows ants to avoid going back and forth552

along the same edge. Third, we showed theoretically that the time needed to find an alternative553

path decreases significantly if turtle ants reaching a dead-end in their trail do not leave pheromone554

while returning back from the dead-end.555

The RankEdge algorithm is parsimonious, capable of both maintaining trails and repairing556

breaks to trails using the same underlying logic. Observed ants encounter diverse situations analo-557

gous to breaks in the ongoing maintenance of trails. We find that a single algorithm can solve two558

diverse problems without requiring the additional complexity of a signal that distinguishes such559

situations from a rupture in the trail. How each path is established originally is an interesting yet560

distinct question. Paths are not always the shortest globally, and the physical structure of edges in561

the canopy appears to affect how these paths are selected.562

The algorithm can be extended to improve performance, though this may involve sacrificing563

biological realism. One possible extension would allow ants to “toggle” between different parameter564

values or algorithms in different situations. For example, an ant could use RankEdge, but if it565

encounters a dead-end or massive crowding (determined for example by a large increase in the566

frequency of antennal contacts with other ants [68, 18]), then it increases its probability of exploring567

new edges. This would be similar to a distributed version of simulated annealing, with the value568

of qexplore corresponding to the decreasing value of the temperature parameter. A second possible569

extension would be to use multiple types of pheromone [69]. Ants could use negative pheromone to570

signal to other ants not to select a certain edge, for example, towards a dead-end. Further work is571

needed to measure the computational abilities of turtle ants to determine whether such extensions572

depart from biological realism.573

There are some differences between our synthetic networks and the environment of the observed574

turtle ants. First, turtle ant trail networks in the canopy are 3D planar networks, whereas here,575

to begin the investigation of arboreal ant trail networks, we used 2D planar networks. The ideal576

test case would be a suite of synthetic networks that are isomorphic to some portion of the turtle577

ant canopy. In lieu of this, we describe five synthetic networks, some of which have been used by578

prior work, that each collectively test the ability of different algorithms to solve the network repair579

problem. These five networks comprise a necessary (if not exhaustive) set of test cases. Second,580

in the tropical forest, many edges are physically difficult to traverse, which may provide natural581

inhibition for selecting certain edges. Third, in the canopy, edges are not all of the same length. In582

future work that includes variability in edge lengths, synchronous walks will need to be modified583

since longer edges require more time-steps to traverse. More generally, further work is needed to584

determine the physical properties of junctions and branches in the canopy and how these properties585

influence the likelihood of traversing an edge.586

Finally, the probabilistic RankEdge algorithm is biologically feasible, requiring less compu-587

tational complexity and assuming fewer memory requirements than many other distributed graph588

algorithms commonly used in computer science. This suggests that a biological algorithm evolved589

to deal with the constraints of the tropical forest canopy may be useful in other applications, such590

as in swarm robotics or molecular robots [63, 64, 65, 66]. For such applications, the best algorithm591

to choose depends on the requirements of the problem. We find evidence that RankEdge is the592
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best algorithm to achieve relatively high success rate and low path entropy. If agents do not need593

to adhere to a single path, then the Weighted algorithm performs better, though the length of the594

path may be long. It appears that turtle ants use an algorithm that finds a single short path [12], as595

RankEdge provides. For trivial graphs with only one alternative path, both algorithms perform596

similarly.597

Overall, our work contributes to the growing intersection of distributed algorithms used by598

natural biological processes [70, 11].599
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Methods600

Maximum likelihood estimation of parameter values601

For each candidate algorithm, we varied qdecay, qexplore ∈ (0, 1) and evaluated the likelihood that602

the algorithm with a specific set of parameter values would have generated the choices made by603

turtle ants observed in the field. The edges traversed by the turtle ants, and times the edges were604

traversed, were used to compute how much pheromone had been added to and had decayed from605

each edge, to give the amount of pheromone on each edge at any time. In modeling pheromone606

decay, we treat qdecay as the rate of decay per second. When computing the amount of decay607

between two consecutive ant choices, we decay all of the edges in proportion to the number of608

seconds elapsed between the two choices. For each candidate algorithm, if we know all of the edge609

weights at a given time and the value of qexplore, we can compute the likelihood of a given choice.610

Figure 2A–B provides an example of a calculation of the likelihood of a choice for each candidate611

algorithm.612

For a given combination of qdecay, qexplore we performed this likelihood computation for every613

observed choice in each of the 13 junctions. We updated the edge weights based on the choice and614

the amount of time that passed between successive choices, and then repeated this process on the615

next choice made by the next ant. For each junction of observations at a given node on a given616

day, we computed the maximum likelihood estimate (MLE) for each parameter value pair. We then617

added the log-likelihoods for all the 13 junctions.618

As we formalize in the Supplement, the exponential rate of pheromone decay means that the619

most recent ant choices have the largest effect on the current edge weights at a junction. Pheromone620

added far in the past will have largely decayed and will not contribute much to the current weights.621

Thus, we do not need an extensive history of the choices to perform accurate modeling. It is not622

currently possible to measure or manipulate pheromone levels on the branches in the canopy.623

Additional technical details624

Each algorithm includes the following constraints motivated by field observations:625

1. Observations suggest that turtle ants tend not to backtrack, but instead tend to keep moving626

along the trail in the same direction, indicating that turtle ants have at least enough sense627

of direction to avoid going back and forth over the same edge. Our simulations include three628

exceptions to this. First, because our simulations include two nests with ants going back and629

forth, upon reaching the nest, an ant is allowed to backtrack along the same edge it used to630

reach the nest. Second, if a simulated ant reaches a dead-end node that has no outgoing edges631

other than the previously traversed edge, it is allowed to backtrack. However, the ant does632

not lay pheromone on the way back until it reaches a node with two edges, excluding the edge633

it previously traversed. In field experiments, it is difficult to determine whether a turtle ant634

is laying pheromone; however, it is known that Lasius niger ants down-regulate pheromone635

deposition at dead-ends to avoid recruitment during crowding [71, 69, 69]. It is possible that636

turtle ants similarly down-regulate pheromone in response to dead-ends. In the Supplement,637

we also provide a probabilistic argument for why it is critical that ants do not lay pheromone638

when returning from a dead-end to repair the break. Thus, in addition to the ability to avoid639

backtracking, each ant requires one binary state variable that is 0 or 1 depending on whether640

the ant is coming back from a dead end.641
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2. Turtle ants queue at a node and leave in a first-in first-out manner. In other words, if more642

than one ant is at the same node, only one ant chooses an edge in each time-step. In the field,643

turtle ants walk along narrow branches, almost always one ant at a time in each direction.644

We find that queueing increases the success rate of the algorithm (Supplement).645

3. When turtle ants take an “explore step”, they often traverse an edge for a short distance,646

and then return to the original node [12]. This builds a slight extension off the primary path,647

which can be extended by subsequent ants. In all algorithms, if a simulated ant takes an648

explore step, it goes across the edge and comes back in one time-step. Thus, two units of649

pheromone are left on the edge, and the ant is back at the node it started from. (R3-27) An650

explore step is defined as any choice that cannot occur unless qexplore > 0. For Weighted,651

this involves taking an edge with zero weight; for RankEdge, this involves taking an edge652

that does not have the highest weight. For Unweighted, there is no explore step, because653

ants are not inherently biased towards following any particular pheromone trail.654

4. Because pheromone decays exponentially, theoretically once an ant lays pheromone on an655

edge, that edge’s weight will never decay to absolute 0. In practice, if the edge weight stays656

unchanged even after multiplying by the decay rate (due to numerical computation error,657

occurring at roughly 10−300), then we reset the weight of that edge to absolute 0. Another658

possible approach would be to introduce a pheromone detection threshold parameter. If659

an edge had pheromone below this threshold, the ant would treat the edge as if it had no660

pheromone. We avoided this approach because it would introduce another parameter to661

optimize and compare.662

5. All edges are assumed to have the same length, and it takes exactly one time step for an ant663

to cross an edge.664

Performance metrics665

Below we formally describe the three performance metrics used to evaluate each algorithm, after it666

ran for T time-steps. Intuitively, the simulated ants have successfully found a path if they can reach667

one nest from the other without taking any “explore steps”. We thus measure the performance668

of each algorithm assuming qexplore = 0, and consider all paths that may be taken with positive669

probability under this constraint. For RankEdge and other non-linear algorithms, ants travel670

from one nest to the other by following the highest-weighted edges. For Weighted, ants travel671

from one nest to the other using only edges of positive weight.672

Formally, let the pheromone subgraph be the subgraph induced by the two nest nodes, all edges673

with a nonzero weight, and all nodes adjacent to edges with non-zero weight. Let G be a pheromone674

subgraph and P = (v1, v2, . . . vn) be a path in G, with nests v1 and vn. For a node vi6=1 ∈ P , define675

the candidate edges CP (vi) = {(vi, u) ∈ E(G) : u 6= vi−1}, i.e., the edges that the ant could take676

from vi without backtracking to its previous node. Let vi, vi+1 ∈ P be consecutive nodes in the677

path; we say edge (vi, vi+1) is maximal with respect to P if w(vi, vi+1) = maxu∈CP (vi)w(vi, u). The678

path P is a maximal path if for every pair of consecutive nodes vi, vi+1 ∈ P , the edge (vi, vi+1) is679

maximal with respect to P . An ant taking a maximal path always takes an edge with the highest680

weight; thus, a maximal path allows an ant using one of the non-linear algorithms to commute681

between two nests with positive probability even if qexplore = 0.682
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Next, define a pheromone path to be a path in which all edges have positive weight. Such a683

path allows an ant following the Weighted algorithm to commute between two nests with positive684

probability even when qexplore = 0.685

For a given algorithm, define a solution path to be a path that can be traversed with positive686

probability under that algorithm when qexplore = 0. For all the non-linear algorithms discussed687

here, solution paths are equivalent to maximal paths. For the Weighted algorithm, a solution688

path is equivalent to a pheromone path.689

Let p̂ = (p1, p2, . . . ),
∑

i pi = 1 be a probability distribution. Define the entropy of the distri-690

bution to be: S(p̂) = −
∑

i pi log(pi).691

At the end of the simulation, we evaluate the pheromone subgraph of each algorithm by com-692

puting the following measures:693

• Success rate (higher is better): The probability that the ants form a solution path. This694

is defined empirically by computing the percentage of the N simulations where a solution695

path is formed in the final graph.696

• Path entropy (lower is better): An information-theoretic measure of how well the ants697

converge onto a single solution path.698

– Let M1,M2, . . . ,Mn be the set of all n solution paths in the final graph.699

– Let p1, p2, . . . , pn be the probabilities of taking each solution path with qexplore = 0. The700

probabilities p̂ = (p1, p2, . . . , pn) form a probability distribution.701

– The path entropy is then: S(p̂).702

• Average path length (lower is better): The average length of the solution paths in the703

final graph. Path length is defined to be the number of nodes in a path.704

To compute the pruning metrics, we first define a chosen path as the sequence of nodes v1, v2, . . . , vn,705

after removing cycles, that an ant takes to successfully walk from one nest to another. Figure S1706

illustrates why removing cycles is necessary when comparing chosen paths.707

Over the course of the simulation, we track all chosen paths for all ants that successfully walk708

from one nest to the other. This includes the number of times each path was chosen — and thus709

the distribution over the chosen paths — and the lengths of these paths.710

• Path elimination: An information-theoretic measure of the degree to which paths from one711

nest to the other are eliminated over time.712

– Let St = S(p̂t) be the entropy over the distribution of chosen paths p̂ that have been713

completed at or before time t.714

– Let Smax = max
1≤t≤T

St be the maximum chosen-path entropy over the entire simulation.715

– The path elimination is then the maximum entropy minus the entropy at the end of the716

simulation: Smax − ST .717

• Path length pruning: A measure of the degree to which ants reduce the lengths of the718

paths they take over time.719
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– Suppose at time t the ants have taken chosen paths p1, p2, . . . , pn with frequencies720

c1, c2, . . . , cn. Let l(pi) be the length of path pi. We define the weighted-mean cho-721

sen path length at time t to be: Lt =

∑
i ci · l(pi)∑

i ci
.722

– Let Lmax = max
1≤t≤T

Lt be the maximum weighted mean chosen path length over the entire723

simulation.724

– The path length pruning is then: Lmax − LT .725

Robustness across network topologies. To determine which parameter values performed well726

across all the planar topologies tested, we defined the robustness of a set of parameter values727

(qexplore, qdecay) to be the geometric mean of the success rates for those parameter values on all six728

networks. We use the geometric mean because it penalizes parameter values that perform poorly729

on any one particular graph; for a set of parameter values to have a high geometric mean, it must730

perform well on every graph. When computing robustness, we weight the success rates over all731

networks equally. This is done for two reasons: first, this highlights algorithms that perform well732

under a variety of distinct but equal conditions; and second, we do not currently have complete733

data on which topologies are more or less likely to occur in the canopy, and thus it is not clear how734

weighting factors should be selected.735

736

Application to the European road network. We sampled a portion of the European road737

network. This sample contained the same number of nodes as the Full grid (11× 11 = 121 nodes).738

Sampling was done by selecting a random node and performing a breadth-first search until 121739

nodes were visited. The network contained these 121 nodes and all the edges adjacent to these740

nodes. We then randomly selected two nodes and removed a randomly-chosen edge in the shortest741

path between those nodes. If removing this edge disconnected the two nodes, we discarded the pair742

of nodes and picked a new randomly chosen pair of nodes. We then applied our algorithm to repair743

the trail.744
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Algorithm qexplore qdecay log-likelihood

Unweighted N/A N/A −744.25
Weighted 0.05± 0.06 0.01± 0.10 −345.05
RankEdge 0.20± 0.04 0.02± 0.08 −405.42
MaxEdgeA 0.20± 0.04 0.02± 0.08 −402.63
MaxEdgeB 0.42± 0.04 0.01± 0.09 −424.61
MaxEdgeC 0.23± 0.01 0.02± 0.09 −586.87
MaxWeighted 0.22± 0.01 0.01± 0.09 −568.70
Deneubourg 0.78± 0.10 0.01± 0.03 −518.18

Table 1: Maximum likelihood estimates for each algorithm. For each algorithm, we show
the values of qexplore and qdecay that maximize the likelihood of producing the observed choices made
by turtle ants in the field. Standard deviation is computed across 13 junctions, each corresponding
to field observations of one junction on a given day. All models are significantly more likely to
explain the data than the null model (Unweighted).

Algorithm Minimal Simple Medium Full Spanning Grid Europe Robustness

Unweighted 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Weighted 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RankEdge 1.00 0.98 0.84 0.70 0.54 0.70 0.78
MaxEdgeA 1.00 0.78 0.74 0.48 0.36 0.62 0.63
MaxEdgeB 0.76 0.60 0.64 0.64 0.44 0.70 0.62
MaxEdgeC 1.00 1.00 0.84 0.48 0.44 0.48 0.66
MaxWeighted 1.00 0.88 0.72 0.63 0.38 0.68 0.68
Deneubourg 1.00 1.00 0.94 0.44 0.67 0.52 0.72

Table 2: Success rates for each algorithm. For each algorithm, we show the success rate on
each simulated network. The last column summarizes the robustness of each method across all
networks. Of the non-linear algorithms, RankEdge performs the best.
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Algorithm Minimal Simple Medium Full Spanning Grid

Unweighted 0.00 0.69 1.79 13.75 7.24
Weighted 0.00± 0.00 0.23± 0.25 1.52± 0.20 12.38± 0.22 5.94± 0.15
RankEdge 0.00 0.00 0.00 0.00 0.00
MaxEdgeA 0.00 0.00 0.00 0.00 0.00
MaxEdgeB 0.00 0.00 0.00 0.00 0.00
MaxEdgeC 0.00 0.00 0.00 0.00 0.00
MaxWeighted 0.00 0.00 0.00 0.00 0.00
Deneubourg 0.00 0.00 0.00 0.00 0.00

Table 3: Path entropy for each algorithm. For each algorithm, we show the path entropy
on each simulated network. Lower values indicate convergence to fewer paths. All non-linear
algorithms achieve the optimal path entropy. The standard deviation of the entropy for all non-
linear models is 0. We do not report an interval for Unweighted because it does not depend on
pheromone amount and thus has the same limiting behavior in all cases.

Algorithm Minimal Simple Medium Full Grid Spanning Grid

Unweighted 12.00± 0.00 12.90± 1.00 13.16± 3.00 26.04± 6.56 20.05± 7.24
Weighted 12.00± 0.00 12.97± 0.85 13.04± 0.64 18.36± 0.18 16.93± 0.24
RankEdge 12.00± 0.00 12.98± 1.01 10.95± 1.01 13.06± 0.34 14.56± 3.97
MaxEdgeA 12.00± 0.00 12.87± 1.00 11.29± 0.97 13.17± 0.56 15.56± 4.38
MaxEdgeB 12.00± 0.00 13.30± 0.96 10.77± 0.99 13.06± 0.35 15.09± 4.07
MaxEdgeC 12.00± 0.00 13.02± 1.01 11.00± 1.01 13.16± 0.56 15.45± 3.54
MaxWeighted 12.00± 0.00 12.87± 0.99 10.89± 1.03 13.06± 0.58 14.46± 3.07
Deneubourg 12.00± 0.00 13.16± 1.00 11.06± 1.30 14.18± 3.47 13.94± 2.51

Optimal 12.00 12.00 10.00 13.00 13.00

Table 4: Average path length for each algorithm. For each algorithm, we show the average
path length of the final graph, measured as the number of nodes in the path. RankEdge performed
much better than the null model (Unweighted) and close to the globally shortest path length
(Optimal).

Algorithm Simple Medium Full Grid Spanning Grid European Roads

Weighted 0.94± 0.58 0.48± 0.32 0.00± 0.00 0.001± 0.002 0.14± 0.30
RankEdge 0.18± 0.26 0.25± 0.29 0.14± 0.20 0.15± 0.18 0.10± 0.16
MaxEdgeA 0.54± 0.84 0.69± 1.14 0.26± 0.49 0.78± 1.37 0.01± 0.01
MaxEdgeB 0.25± 0.61 0.66± 1.06 0.29± 0.56 0.84± 1.73 1.18± 2.44
MaxEdgeC 0.40± 0.78 1.29± 1.40 0.48± 0.92 1.03± 1.58 0.04± 0.07
MaxWeighted 0.44± 0.78 1.04± 1.23 0.68± 1.43 1.36± 2.93 0.38± 0.46
Deneubourg 0.43± 0.56 1.60± 0.96 0.55± 1.45 1.40± 2.36 1.47± 2.95

Table 5: Path elimination: For each algorithm, we show the average reduction in entropy over
chosen paths over time (Methods). We omit the Minimal graph, because there is only one possible
path from one nest to the other, and thus no path elimination is possible.
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Algorithm Simple Medium Full Grid Spanning Grid European Roads

Weighted 0.94± 0.58 0.48± 0.32 0.00± 0.00 0.001± 0.002 0.14± 0.30
RankEdge 0.30± 0.58 0.39± 0.58 0.04± 0.14 0.97± 2.59 0.35± 0.50
MaxEdgeA 0.30± 0.27 0.28± 0.30 0.11± 0.17 0.15± 0.20 0.05± 0.10
MaxEdgeB 0.14± 0.23 0.15± 0.23 0.06± 0.10 0.11± 0.16 0.08± 0.14
MaxEdgeC 0.31± 0.29 0.50± 0.36 0.12± 0.17 0.13± 0.21 0.08± 0.13
MaxWeighted 0.29± 0.30 0.39± 0.33 0.15± 0.23 0.19± 0.24 0.17± 0.23
Deneubourg 0.46± 0.17 0.42± 0.28 0.001± 0.003 0.04± 0.09 0.02± 0.09

Table 6: Path length pruning: For each algorithm we show the average reduction in lengths of
chosen paths over time (Methods) observed. We omit the Minimal graph, because there is only one
possible path from one nest to the other, and thus no pruning is possible.
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Figure Legends745

Figure 1: Turtle ant habitat and trail network. A) The photograph shows the highly tangled
forest canopy in which turtle ants forage. B) Experiments were performed in which an edge in the
path was cut, to observe how the ants respond and repair the break [12]. C) Modeling the trail
network as a graph, with junctions as nodes and connecting branches and twigs as edges. The
diagram on the right from [12] shows a detailed depiction of a large portion of the trail network.
Each days path is shown in a different color (see legend), and additional repair paths are shown in
a distinct color. Solid lines connect two nodes that are on the same plant (e.g. node 36 and node
A are on the same plant). Dashed lines connect two nodes that are on a different plant (e.g. nodes
B and C are on different plants).

Figure 2: Maximum likelihood computation. A–B) Example node junction and edge choices
for turtle ants. All ants arrive at node 1 from a different node that is not shown. In the example, we
assume pheromone has been deposited at previous time-points, and we now compute the likelihood
of the next ant choice. Under the RankEdge algorithm, the likelihood of choosing edges 1→ 3 or
1→ 2 is (1− qexplore)(1/2); the likelihood of edge 1→ 4 is qexplore(1− qexplore); and the likelihood
of 1 → 5 is q2explore. Under the Weighted algorithm, the likelihood of choosing edge 1 → 5 is
qexplore; the likelihood of edge 1 → 4 is (1 − qexplore)(1/(1 + 2 + 2)); and the likelihood of edges
1→ 2 or 1→ 3 is (1− qexplore)(2/(1 + 2 + 2). Under the Unweighted algorithm, the edge weights
are disregarded, and the likelihood of taking any one of the four edges is (1/4). C–D) For each
combination of qexplore (x-axis) and qdecay (y-axis) values, we determined the pair’s likelihood of
producing the choices observed in turtle ants. Each heatmap shows the likelihood for each algorithm
with a zoom-in below around the highest likelihood region. The optimal parameter values for each
algorithm, depicted in white, are shown in Table 1.

Figure 3: The maximum likelihood parameters closely match the best simulation pa-
rameters: A) The color of each square in the heatmap corresponds to the robustness (Methods) of
the success rates for the RankEdge algorithm for each combination of qexplore (x-axis) and qdecay
(y-axis) values. Results are aggregated over the six simulated and real-world networks presented in
Figures 4 and 5. B) The maximum likelihood parameter estimates for RankEdge from observa-
tions of turtle ants. The black rectangle in both panels shows that the parameter values that best
explain the turtle ants’ behavior also perform best for solving the network repair problem.
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Figure 4: Success rates for each network. A–E) For each network we show the initial graph
(left), an example of the final graph after running the RankEdge algorithm using the maximum
likelihood parameters (middle), and the algorithm’s success rate for each parameter combination
(right). In each panel, black dots indicate nodes in the network, and solid lines indicate edges that
may be traversed. If two adjacent nodes are not connected by an edge, there is a space between
them. In the initial graphs, the ‘X’ marks the edge that is broken. The x-axis of the heatmap (right
column) shows qexplore, and the y-axis shows qdecay under the range close to the MLE parameters.
Darker shades of red are indicate success rates closer to 1, and thus are better.

Figure 5: Repairing road closures in the Europe road graph. Analysis of how well the
turtle ant algorithm translates to repair simulated breaks in a real-world transport network. A) An
example of a path in the European E-road network connecting Munich to Berlin, Germany. The
roads and junctions form a graph. On the left, the black ‘X’ shows a road that has been broken
or closed along the path. On the right, we show an alternative path that avoids the broken road.
B) The success rate of the turtle ant algorithm (RankEdge) applied to this network. Map data:
Google, DigitalGlobe.

Figure 6: Poor path entropy for Weighted. The initial (left) and final (right) networks for
the (A) Full grid and (B) Spanning grid. In both cases, the MLE parameter values (qexplore =
0.05, qdecay = 0.01) for Weighted did not find a low path entropy solution.

Figure 7: Analysis in the absence of a break. A) Initial Spanning grid, with no break. B) The
final network produced using Weighted, which does not find a low entropy solution. C) The final
graph using RankEdge, which finds a low path entropy solution.

Figure 8: Turtle ants prune paths. The diagram from [12] shows the results of an experiment
in which an edge was cut. Left: The initial trail is shown in grey. The edge connecting nodes 5
and 6 was cut. After 75 minutes, the turtle ants explored several new paths (red). Center: Five
hours after the cut, some of the red paths were pruned (transparent grey). Ants traveling down
from node 7 took one trail, consisting of nodes 6, 15, 16, 17, 18, 4, and 3, because they could not
use 12 in this direction. Ants traveling in the other direction took another trail, consisting of nodes
3, 4, 5, 12, 13, and 14, or the trail consisting of 11, 13, and 14. Right: The next day, there was
additional pruning. Because node 12 could now be used in both directions, ants traveled both ways
on the indicated trail.
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[71] Tomer J Czaczkes, Christoph Grüter, and Francis LW Ratnieks. Negative feedback in ants: crowding910

results in less trail pheromone deposition. Journal of the Royal Society Interface, 10(81):20121009, 2013.911

Author Contributions912

AC and SN performed the computational experiments. DMG performed the field experiments. All913

authors wrote and reviewed the manuscript.914

Competing Interests915

The authors declare no competing interests.916

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 1, 2018. ; https://doi.org/10.1101/194480doi: bioRxiv preprint 

https://doi.org/10.1101/194480
http://creativecommons.org/licenses/by-nc-nd/4.0/

