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Abstract:  

The human reference genome serves as the foundation for genomics by providing a scaffold for 

sequencing read alignment, but currently only reflects a single consensus haplotype, impairing 

read alignment and downstream analysis accuracy. Reference genome structures incorporating 

known genetic variation have been shown to improve the accuracy of genomic analyses, but 

have so far remained computationally prohibitive for routine large-scale use. Here we present a 

graph genome implementation that enables read alignment across 2,800 diploid genomes 

encompassing 12.6 million SNPs and 4.0 million indels. Our graph genome aligner and variant 

calling pipeline consume around 5.5 and 2 hours per high coverage whole-genome-sequenced 

sample, respectively, comparable to those of state-of-the-art linear reference genome-based 

methods. Using orthogonal benchmarks based on real and simulated data, we show that using a 

graph genome reference improves read mapping sensitivity and produces a 0.5 percentage point 

increase in variant calling recall, which extrapolates into 20,000 additional variants being 

detected per sample, while variant calling specificity is unaffected. Structural variations (SVs) 

incorporated into a graph genome can be directly genotyped from read alignments in a rapid and 

accurate fashion. Finally, we show that iterative augmentation of graph genomes yields 

incremental gains in variant calling accuracy. Our implementation is the first practical step 

towards fulfilling the promise of graph genomes to radically enhance the scalability and 

precision of genomic analysis by incorporating prior knowledge of population characteristics.  

 

One Sentence Summary: Genome graphs incorporating common genetic variation enable 

efficient variant identification at population scale. 
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Main Text: 

Introduction 

Completion of the human reference genome was a landmark achievement in human genetics (1), 

establishing a standardized coordinate system for annotating genomic elements and comparing 

individual human genomes. The human reference genome has since become the cornerstone of 

genomics and plays an indispensable role in research on population genetics, disease genetics, 

cancer genomics, epigenetics, transcriptomics and personalized medicine (2–7). For most 

applications, a pivotal function of the human reference genome lies in providing a scaffold for 

mapping and assembling short DNA sequences (reads) into longer consensus contigs. This 

crucial initial step significantly impacts the quality of all ensuing analyses and ultimately the 

ability to draw conclusions of clinical significance from a sample cohort being studied. 

The current human reference genome is represented as a linear haploid DNA sequence (8). This 

structure poses theoretical limitations due to the prevalence of genetic diversity in human 

populations: any given human genome has on average 3.5-4.0 million single nucleotide 

polymorphisms (SNPs) or small insertions and deletions (INDELs) and around 2,500 large 

structural variations (SVs) compared with the reference genome (2, 9), including sizable 

genomic segments missing from the reference (10). This genetic divergence may cause 

sequencing reads to map incorrectly or fail to map altogether (11, 12), particularly when they 

span SV breakpoints. Read mapping accuracy thus varies significantly across genomic regions in 

a given sample, and across genetically diverged samples. Misplaced reads may in turn result in 

both missed true variants (false negatives) and incorrectly reported false variants (false 

positives), as well as hamper other applications that rely on accurate read placement, including 

RNA-sequencing, chromatin immunoprecipitation-sequencing (ChIP-seq) and copy number 
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variation detection (11, 12). Identifying SVs is particularly challenging: despite the large number 

of SVs already characterized (9), current methods for genotyping SVs do not make use of these 

data, but instead rely on detecting complex combinations of abnormal read alignment patterns to 

detect SVs (13, 14). The genomic representation of SVs presents additional challenges. Since 

existing methods identify SVs independently between samples, the detected SVs cannot easily be 

matched using their inferred genomic coordinates, but further ad hoc procedures are needed to 

merge individual SV calls into common SV events (9). We refer to the insufficient 

representativeness of the linear reference genome and the consequent adverse impact to genomic 

analyses as ‘reference bias’.  

Reference bias is caused by the fact that existing genetic variant information is not considered in 

read mapping. Among the 1000G populations studied, 9-19% of the variants have a within-

population allele frequency of >50%, of which 0.3-2.9% are fully fixed on a population-level 

(Figs. S1 to S4), raising the possibility of addressing reference bias by generating population-

specific linear reference genomes using the major alleles of each population (15–18). However, 

such major allele references would still fail to include 81-91% of the variants in a given 

population (Figs. S3 and S4), and thus do not present a global solution for reference bias. 

Moreover, having distinct population-specific reference genomes with different coordinate 

systems would complicate any genomic analyses comprising multiple populations. An 

alternative approach to capture the genetic diversity in the human reference genome is to 

augment it with alternate haplotype sequences at genetically diverged loci (19). This approach 

has been applied since the previous human reference version, GRCh37 (19), but introduces 

inefficiency through sequence duplication between the main linear genome and the alternate 

haplotypes.  
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Recent large-scale resequencing efforts have comprehensively cataloged common genetic 

variants (2, 20, 21), prompting suggestions to make use of this information through multi-

genome references (22), which have been suggested to alleviate reference bias by facilitating 

read mapping (23, 24). Despite these promising observations, currently available 

implementations of multi-genome graph references are either orders of magnitude slower than 

conventional linear reference genome-based methods on human WGS data (one example is 

BWBBLE (25)) or are intended for use with small genomes (22) and small regions within large 

genomes (23, 24, 26, 27). Therefore, the genome-wide impact of using multi-genome references 

for human genomic analyses has not been assessed yet, although whole-genome workflows using 

graph genomes are under active development (28, 29). 

Here we present a graph genome toolkit for building, augmenting, storing and querying graph 

genomes composed of a population of genome sequences. Our algorithms are, to our knowledge, 

the first graph genome implementation that achieve comparable reference indexing and read 

alignment speed to BWA-MEM (30), a widely-used linear reference genome aligner. We show 

that graph genomes improve the mapping accuracy of next-generation sequencing (NGS) reads 

on the genome-wide level. Our NGS read alignment and variant calling pipeline (Graph Genome 

Pipeline) leveraging our graph genome data structure outperforms the current gold-standard 

linear reference-genome pipeline (31) comprising BWA-MEM (30) and GATK HaplotypeCaller 

(31), as measured by multiple orthogonal benchmarks. By including breakpoint-resolved SV 

polymorphisms into the graph genome, we demonstrate that SVs can be genotyped rapidly and 

accurately with a simple read counting approach. As novel genetic variation data are 

accumulated in graph genomes, incremental improvements in read mapping and variant calling 
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accuracy can be achieved. This will allow our approach to scale and improve with the expanding 

genomic variant catalogs. 

A Computationally Efficient Graph Genome Implementation 

We implemented a graph genome data structure that represents genomic sequences on the edges 

of the graph (Fig. 1A, Materials and Methods). A graph genome is constructed from a population 

genome sequences, such that each haploid genome in this population is represented by a 

sequence path through the graph. The genome sequences are provided using VCF files indicating 

genetic variants with respect to a standard linear reference genome, which is provided using a 

FASTA file. Thus, the standard linear reference genome is just one of the paths through the 

graph genome. For representational purposes, the linear reference genome path is labeled as the 

initial edge, and all coordinates of genetic variants are reported with respect to it. This ensures 

backward compatibility of graph coordinates to linear reference genome coordinates. In practice, 

a graph genome is built by iteratively adding edges corresponding to a non-reference allele, 

terminating at nodes corresponding to genomic loci on the initial edge. Insertions are represented 

as cyclic edges starting and terminating at the same node, but our mapping algorithm enforces 

acyclic traversal of the graph (Fig. 1A). Genomic features such as tandem repeats expansions and 

inversions are represented as insertions or sequence replacements in the graph. Variants are 

inserted into existing variant branches in a backward compatible manner, enabling variant 

discovery and representation in genomic regions absent from the linear reference genome (10) 

(Fig. 1A). For querying a graph genome, we use a hash table that associates short sequences of 

length k (k-mers) along all valid paths in the graph with their graph coordinates (Fig. 1B). 

Uninformative k-mers that occur exceptionally frequently are omitted (Materials and Methods).  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2017. ; https://doi.org/10.1101/194530doi: bioRxiv preprint 

https://doi.org/10.1101/194530
http://creativecommons.org/licenses/by-nc-nd/4.0/


We implemented a suite of accompanying algorithms optimized for computational resource 

consumption. A graph genome from the complete 1000G variant set can be built and indexed in 

less than ten minutes in total (Fig. 1C). Such a graph reference can be stored in less than 30 

gigabytes (GB) of memory or just over 1 GB of disk space (Fig. 1C). Loading a stored graph 

reference into memory takes less than two minutes. Over tenfold range in the number of variants 

included, time, memory and disk storage consumption only grew around fourfold, twofold and 

50%, respectively (Fig. 1C).  

Improved Read Mapping Accuracy using Graph Genomes 

To support genomic analyses on our graph genome implementation, we developed a graph 

aligner for short reads that uses the k-mer index for seeding followed by local read alignment 

against the graph (Materials and Methods). The read alignments against a path in the graph are 

projected to the standard reference genome and output to a standard BAM file, with the 

alignment path along the graph reported using custom annotation tags. Thus, the output format of 

our graph aligner maintains full compatibility with existing genomics data processing tools. 

When an unambiguous projection is not possible, for example for reads fully mapped within a 

long insertion variant, the reads are placed to the closest reference position, so that downstream 

analysis tools can access these reads conveniently.  

We measured the graph aligner runtimes on 30 randomly selected high coverage whole-genome 

sequencing datasets from the Coriell repository 

(http://www.ebi.ac.uk/ena/data/view/PRJEB20654). Read alignment against a “global graph 

genome” containing around 20 million variants (Materials and Methods) required around 5.5 

hours per sample when using 36 threads (Fig. 1D). This runtime is comparable to that of BWA-

MEM (30) (Fig. 1D).  
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In order to test the read mapping accuracy of the graph aligner, we simulated diploid individuals 

with variants observed naturally in the 1000G cohort. While reads without any variants align 

equally accurately to the reference genome by the graph aligner and BWA-MEM, the graph 

aligner maintains a high mapping rate and accuracy even in reads containing long INDELs 

relative to the standard linear reference genome (Fig. 2). Less than 1% of the reads with >10bp 

insertions and deletions are mismapped using the 1000G graph, whereas this number is two and 

three times as large with BWA-MEM, respectively (Fig. 2). Even against a linear reference 

without variants, our graph aligner is able to align more reads containing INDELs than BWA-

MEM (Fig. 2). In conclusion, our graph genome aligner significantly improves read alignment 

fidelity over BWA-MEM while maintaining comparable runtimes.  

Graph Genome Pipeline Improves Recall in Variant Detection 

We developed a complete graph genome-based variant calling pipeline (Graph Genome Pipeline) 

that includes a reassembly variant caller and variant call filters as suggested previously (31) 

(Materials and Methods). Generating variant calls from raw FASTQs in the Coriell cohort (29-

42x coverage) took on average 7h 10min (σ = 30min) using Graph Genome Pipeline on 36 CPU 

cores and 20GB of memory. In comparison, the best practices GATK pipeline using GATK 

HaplotypeCaller (https://software.broadinstitute.org/gatk/best-practices/, hereafter referred to as 

BWA-GATK) run on same hardware required 50GB of memory and an average of 11h 30min (σ 

= 3h 16min).  

We devised three independent and complementary experiments to compare the variant calling 

accuracy of our Graph Genome Pipeline against that of BWA-GATK  (Supplementary Materials 

and Fig. S12). The first benchmarking experiment is based on sequencing data simulation, which 

provides a known ground truth for all variants throughout the genome, but likely incompletely 
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reproduces the error modalities of real sequencing data. The second benchmarking experiment 

uses truth data established by the Genome in a Bottle Consortium (GIAB) (32) for five high 

coverage whole-genome sequenced samples (50x coverage). These truth data cover only about 

70% of the genome considered as “high-confidence” regions. This likely excludes ~30% of the 

genome that is hardest to align and call variants against. Consistent with this view, most 

contemporary pipelines already achieve greater than 99% variant calling precision and recall 

with the GIAB samples (https://precision.fda.gov/challenges/truth/results), limiting the utility of 

these truth sets in detecting further improvements in variant calling accuracy. Our third variant 

calling benchmark is based on measuring Mendelian consistency in family trios, which is an 

indirect proxy for variant calling accuracy, but can be conducted on real data throughout the 

genome. To support this approach, we developed a statistical method to estimate the unknown 

precision and recall rates of a variant caller using variant calls derived from each member of a 

family trio (Materials and Methods).  

A consistent pattern emerges from the three benchmarking experiments. In most samples across 

each benchmark, Graph Genome Pipeline improves SNP recall by around 0.5% over BWA-

GATK, while their SNP calling precisions are virtually the same (Fig. 3). Both the simulation 

and the GIAB benchmarks show that Graph Genome Pipeline improves INDEL recall, as well as 

INDEL calling precision in all but one sample (Fig. 3, A to B). In terms of SNP, INDEL and 

overall F1 score, Graph Genome Pipeline outperforms all pipelines that participated in the 

Precision FDA Truth Challenge (Figs. S9 and S10, https://precision.fda.gov/challenges/truth). 

With around 3.5-4.0 million SNPs and INDELs in an average individual (33), the improved 

recall of Graph Genome Pipeline translates into around 20,000 additional variants being 

discovered compared with BWA-GATK, with precision remaining comparable.  
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The GIAB variant call sets provide an estimate for the practical upper limit in achievable 

accuracy using the standard linear reference genome, since they are carefully curated from an 

extensive amount of high quality data generated from a combination of several different 

sequencing platforms, such as 300x PCR-free Illumina sequencing and high coverage 10x 

Genomics data, and meta-analyzed across a suite of state-of-the-art bioinformatics tools (32). 

Interestingly, among the variants detect by Graph Genome Pipeline but asserted as homozygous 

reference by GIAB, a substantial proportion (24-47% across four samples, Supplementary 

Materials) exhibited strong support from alternative sequencing technologies as well as in terms 

of Mendelian concordance (Supplementary Materials). These variants are often located in 

variant-dense regions, half (52%) of them are part of the global graph, and most of the remaining 

variants (46%) are phased with one or multiple nearby variants present in the graph (Fig. S7, 

Supplementary Materials). Contrary to the linear reference genome, Graph Genome Pipeline is 

by design able to map reads across known variations without reference bias, which allows it to 

mitigate the impact of reference bias in repetitive or variant-dense genomic regions (Materials 

and Methods). We therefore hypothesized that these variants could be real but missed by all 

other linear reference genome-based pipelines used by GIAB due to reference bias. We 

successfully carried out Sanger sequencing at 241 and 457 of these “false FP” variants in two 

GIAB samples, HG001 and HG002, validating 62% and 58% of these variants as real variants 

missed by GIAB, respectively. Notably, the variants missed by GIAB only derive from the 70% 

of the genome considered “high-confidence” by GIAB, whilst the remainder of the genome 

likely contains more variant-dense loci refractory to accurate genomic analyses using linear 

reference genomes. Thus, our graph genome implementation is able to overcome the practical 

accuracy limitation of linear reference genomes.  
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Direct Genotyping of Common SVs using Graph Genomes 

Sequence information of SV breakpoints can be incorporated into a graph genome, allowing 

reads to be mapped across SV breakpoints. Indeed, we found that Graph Genome Pipeline is able 

to align reads across SVs while BWA-MEM fails to do so with both short Illumina and long 

PacBio reads, even when the PacBio reads are aligned using parameters tuned for PacBio data 

(Fig. 4, A to C).  

To demonstrate that reads spanning SV breakpoints can be used to directly genotype SVs, we 

manually curated a dataset of 230 high quality, breakpoint-resolved deletion-type SVs (Table S6) 

and genotyped them across 49 individuals from the Coriell cohort for which the true SV 

genotypes are available from the 1000 Genomes Project (9) (Materials and Methods). The 

fractions of reads spanning SV breakpoints segregates cleanly into three clusters based on SV 

genotype (Fig. 4D) suggesting that graph genome-based SV genotyping could be accomplished 

even with a simple read counting-based method. Indeed, a simple alternate allele fraction 

thresholding method correctly identifies 10,836/11,270 (96.1%) of the totality of SV genotypes 

across all 49 samples. Moreover, SV genotyping across all 230 sites takes less than three seconds 

per sample. Since SVs genotyped using a graph genome have an automatically defined genomic 

position with respect to the linear reference genome, they are directly comparable to each other 

without requiring further coordinate matching.  

To compare the SV genotyping performance of the graph aligner to competing technologies, we 

focused on the GIAB sample HG002, for which both Illumina read and PacBio long read data 

are publicly available. We manually examined the alignment results from each technology in the 

72/230 SVs detected in this sample by the graph aligner. BWA-MEM is unable to align Illumina 

reads across any of these SVs (Fig. 4A). Similarly, PacBio long read alignment fails in all these 
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SVs, even when aligned with BWA-MEM using parameters tuned for PacBio data (Fig. 4C and 

Fig. S11). Thus, graph genomes improve SV genotyping for short read and long read sequencing 

technologies alike.  

Among the 230 curated SVs are two events, esv3642033 and esv3638126, that are in strong 

linkage disequilibrium with SNPs significantly associated (P-value < 5×10-8) with breast cancer 

(rs1436904) and obesity class II risk (rs11639988), respectively (34, 35) (Fig. 4C). We were able 

to correctly genotype the presence of these two SVs in 48/49 and 49/49 samples, respectively 

(Fig. 4C). Thus, graph genomes enable rapid and straightforward genotyping of common SVs, 

including those with clinical and biological relevance. 

Graph Genomes Prevent Erroneous Variant Calls Around SVs 

Structural variations mediated by certain DNA repair mechanisms can exhibit microhomology, 

including imperfect microhomology, around their breakpoints (36). If an aligner is not aware of 

an SV, sequencing reads spanning the SV could become erroneously aligned over a region of 

imperfect microhomology instead, causing mismatches over the region to be spuriously reported 

as SNPs and INDELs. To quantify this effect in 1000G, we compared the rate of 1000G SNPs 

around SV breakpoints to their background levels. Within the deleted portions of the 230 curated 

deletion SVs combined, the total rate of 1000G SNPs is 1.9/base pair (bp), and these SNPs have 

a transition-transversion ratio (Ti/Tv) of 2.1, which is expected from real biological SNPs (37) 

(Fig. 4E). In contrast, in the ten first base pairs immediately after an SV breakpoint, the total 

1000G SNP rate is increased 1.9-fold to 5.5/bp, suggesting that 65% of 1000G SNPs called 

within 10bp of an SV breakpoint are in fact false (Fig. 4, E to F). The Ti/Tv of these SNPs is 

0.72, deviating significantly from the expected ratio of 2.1. Assuming that spurious SNPs have 

an expected Ti/Tv of 0.5, the FP SNP rate over this region estimated using Ti/Tv is 86%, 
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reaching a similar value to that estimated using total SNP counts (Supplementary Materials). In 

addition to false positive variant calls, we also encountered examples where variants overlapping 

with an SV erroneously appear homozygous, because BWA-MEM fails to align reads across the 

SV and thus fails to detect the corresponding SV haplotype (Fig. 4A). Thus, using population 

variation information in graph genomes mitigates variant calling and genotyping errors.  

Incremental Improvement in Variant Calling Recall through Iterative Graph 

Augmentation 

As common genetic variants continue to be cataloged across populations, newly discovered 

variants can be incrementally added to existing graph genomes to increase the 

comprehensiveness of the graph while maintaining backward compatibility to samples analyzed 

using earlier versions of the graph (Fig. 1A). To test whether incremental graph augmentation 

would improve variant calling, we augmented the global graph with variants detected in ten 

samples from three super-populations of the Coriell cohort as well as a Qatar genome project 

cohort (16) (Fig. 5, A to B), and compared the variant calls obtained using the global and the 

four augmented global graphs. Augmenting the global graph genome does not change the 

number of known variants discovered (0.7% and 0.0% median increase in the number of known 

SNPs and INDELs called, respectively; Fig. 5, C to D). However, the augmented graphs result in 

16.6% and 2.4% additional previously unreported SNPs and INDELs being discovered, 

respectively (Fig. 5, C to D). 

We measured the quality of the detected variants indirectly using Ti/Tv and heterozygous-to-

homozygous alternate allele ratio (het/hom) for SNPs, and INDELs, respectively (37). For each 

tested pipeline, known SNPs and INDELs have a Ti/Tv ratio of 2.06 and het/hom ratio of 1.3-

2.0, which is within the expected range for common variants (37). These indicators deviate from 
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the expected values for novel SNPs and INDELs (although to a lesser extent with Graph Genome 

Pipeline compared with BWA-GATK), implying that there are false positives among the novel 

variants called by Graph Genome Pipeline (Fig. 5, C to D). However, while the augmented 

graphs help detect more known and novel variants, Ti/Tv and het/hom of either, with the 

exception of novel indels in the Qatari samples, are unaffected.  

Read alignment and variant calling benchmarking experiments yielded similar observations. 

Read alignment recall reaches almost 100% if a target sample is aligned against a graph genome 

that contains all its actual variants (Fig. 2). Likewise, trio concordance and variant calling recall 

is further improved variant calling in a child is performed using a graph genome augmented with 

variants detected in the respective parents (Fig. 3, C to E). Thus, incremental augmentation of 

graph genome references yields cumulative improvements in variant calling recall without an 

accompanying decrease in precision.  

Discussion 

Here we presented, to our knowledge, the first computational infrastructure for building, 

augmenting, storing and querying multi-genome references at comparable computational 

requirements to prevailing linear reference-based methods. Our graph genomes are constructed 

from the linear reference genome and genetic variants provided in standard FASTA and VCF 

formats, and our graph genome aligner outputs read alignments in the standard BAM format 

against the coordinate system of the linear reference genome. As a result of the backward 

compatibility and computational efficiency of our graph genome infrastructure, any existing 

genomics pipeline can swap in our graph genome algorithms to capitalize on the accompanying 

improvements in accuracy without requiring any other pipeline or hardware upgrade.  
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Our benchmarking experiments demonstrate that using a graph genome reference improves read 

mapping and variant calling recall, including that of SVs, without a concomitant loss in precision 

(Figs. 2 to 5). Our graph aligner is able to readily align reads across breakpoint-resolved SVs 

included in the graph, unlike linear reference genome-based methods even with long reads (Figs. 

4 and S11). These alignments can then be used to directly genotype SVs (Fig. 4). In contrast, 

existing methods for genotyping INDELs or SVs require specifically designed multi-step 

algorithms (13). Importantly, graph genome-based SV genotyping provides a unified coordinate 

system for common SVs, solving the problem of ambiguous coordinate representation that 

complicates SV analyses (9). The simplicity, speed and accuracy of graph genome-based SV 

genotyping raises the prospect for population-scale SV genetics and association studies. 

Further improvements to variant calling could be achieved through leveraging haplotype 

information of SVs and small variants onto the graph paths. Information such as allele 

frequencies of each variant and linkage disequilibrium between them could be incorporated into 

the graph, providing additional statistical information for read alignment and variant calling. This 

approach would provide a computationally efficient alternative to “joint variant calling” (38) in 

leveraging previously accumulated population genetics information when analysing a newly 

sequence sample. Future efforts from us and others (39) will be required to assess the benefits of 

using graph genomes with encoded allele frequency and linkage disequilibrium information.  

The potential benefits of an unbiased multi-genome graph reference are not limited to variant 

calling, but cover the full range of genomics research. Graph genomes provide an unbiased, 

representative scaffold for read alignment, which is critical to sequencing alignment 

quantification applications such as RNA-sequencing, ChIP-seq and CNV calling. Our graph 

genome implementation can also be used to encode information other than whole human 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2017. ; https://doi.org/10.1101/194530doi: bioRxiv preprint 

https://doi.org/10.1101/194530
http://creativecommons.org/licenses/by-nc-nd/4.0/


genomes. Individual gene families or related microbial strains could be compressed and 

efficiently searched using our graph genome algorithms. Similarly, the transcriptome could be 

represented as genomic deletions, allowing RNA-seq reads to be directly aligned across exon-

exon junctions (40). A personalized graph genome could be constructed from a sequenced 

germline genome, in order to provide an optimized scaffold for somatic variant detection in 

matched cancer genomes. 

The ability to genotype variants including SVs efficiently and accurately opens the door for 

myriad clinical and research applications. A graph built from rearranged B or T cell receptors 

could allow quantitative tracking of mature B or T cells populations. A somatic graph 

incorporating somatic mutations and SVs of a treated primary tumor could enable sensitive 

monitoring of tumor relapse at the primary site or in cell-free DNA. A “precision medicine 

graph” could be designed and continually updated to include all actionable genetic variants in 

order to support clinical decision making.  

As more genetic variants are accumulated on a reference graph genome, cumulative gains in 

genomics analysis accuracy can be achieved (Figs. 2, 3 and 5). This is consistent with recent 

efforts to establish population-specific reference panels, which have been shown to contribute to 

increased accuracy in imputation (41–43) and genetic risk prediction (44). The current wave of 

national sequencing projects will extend the catalogs of population-specific genetic variants, 

which will incrementally improve the prospects for graph genome reference approaches (24, 28, 

29), including ours. Completion of the linear human reference genome marked the beginning of 

human genomics. Our computationally efficient and flexible graph genome implementation 

supports the community for a gradual transition towards a graph-based reference system. 
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Figure 1. The graph genome architecture and computational resource requirements 
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(A) A graph genome is constructed from a standard linear reference genome in FASTA format 

augmented by a set of genetic variants provided in VCF format. A graph genome can further be 

augmented with additional genetic variants in a second VCF file, or in the case of variants within 

variants using our graph genome toolkit. The coordinate system of each constructed graph 

genome is backward compatible with that of the linear reference genome. 

(B) A graph genome is indexed by creating a hash table with k-mers along all possible paths of 

the graph as keys and their corresponding graph genome positions as values. These k-mer 

positions can then be used as seeds for aligning sequencing reads against the graph.  

(C) Computational resource requirements of building, indexing and storing graph genomes. The 

resource usage statistics are provided for the standard linear reference genome (GRCh37), which 

was augmented with different subsets of the 1000G variants. All tests were performed using a 

single thread on the Amazon AWS instance type c4.8xlarge. 

(D) Runtimes for BWA and the graph aligner for 30 randomly selected samples from the Coriell 

cohort. The underlying graph genome contains around 20 million variants and is described in 

detail in Materials and Methods. Both BWA-MEM and the graph aligner were executed using 36 

threads on the Amazon AWS cloud instance type c4.8xlarge.  
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Figure 2. Read mapping accuracy using BWA-MEM and graph genomes 

Simulated reads were divided into six categories based on the type of simulated variants they 

contain relative to the linear reference genome. The percentage of reads mapped correctly was 

plotted against the percentage of reads mapped for a range of mapping quality (MQ) cutoffs. 

‘Identity graph’ refers to a graph genome containing only the genetic variants present in the 

respective target sample.  
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Figure 3. Variant calling benchmarking between Graph Genome Pipeline and BWA-

GATK 
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(A) Precision and recall in simulated sequencing data. Every point corresponds to a different 

simulated individual.  

(B) Precision and recall benchmarking based on five samples for which the GIAB truth sets are 

available (we show BWA-GATK results with Hard Filtering as that approach performed better out of the 

two recommended options; Figure S12 also shows results after VQSR filtering).  

(C) Statistically estimated precision and recall from the Mendelian consistency data.   

(D) Schematic representation of the trio concordance analysis.  

(E) Mendelian concordance of two trios analyzed using BWA-GATK, Graph Genome Pipeline 

with the global graph and Graph Genome Pipeline using a global graph augmented by the 

variants detected in either parent of each family.  
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Figure 4. SV genotyping using graph genomes 
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(A) An Integrative Genomics Viewer (44) (IGV) screenshot of the BWA alignment over an SV 

at chromosome 4 position 132,524,277-132,524,548 (GRCh38, Database of Genomic Variants 

ID: esv3602264), which in this sample (HG01628) overlaps with a small deletion variant. BWA 

is able to align reads across the small deletion, but not across the SV. Instead, reads on the SV 

haplotype become soft-clipped (colored vertical bars at the tips of the reads facing the SV). As a 

consequence of the SV not being called, the small intervening deletion appears homozygous in 

the read alignment. A schematic of the read alignment pattern is shown above the screenshot.  

(B) An IGV screenshot of the Graph Genome Pipeline read alignment from the same sample and 

at the same locus as in panel A. A schematic of the local graph structure and read alignment on 

the graph is depicted above the screenshot. Thanks to the SV being included in the graph 

genome, reads are correctly aligned across it, revealing the SV haplotype. Reads linked with a 

yellow line in panels A and B are the same reads.  

(C) An IGV screenshot of an SV at chromosome 18 position 26,991,656-26,992,377 (GRCh38, 

Database of Genomic Variants ID: esv3642033) in sample HG002. This SV is in complete 

linkage disequilibrium with SNP rs1436904, which is significantly associated with breast cancer 

risk. Colored vertical bars at the tips of reads indicate soft-clipping. Whereas the graph aligner 

(top panel) is able to correctly align reads across the SV, BWA fails to do so (middle panel). 

Similarly, BWA-aligned PacBio reads (bottom panel) using parameters optimized for PacBio 

(option ‘-x pacbio’ in BWA) also fail to align across the SV.  

(D) The fraction of reads aligning to an SV branch by 1000G SV genotype (9), summarized 

across 230 SVs and 49 individuals. 

(E) Total number of transition and transversion SNPs reported by 1000G around the breakpoints 

of the 230 deletion SVs, grouped by distance from a SV breakpoint in 10bp bins. Positive 
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distances (i.e. >0bp) are within a SV, while negative distances (i.e. <0bp) are outside an SV. For 

example, positions +1 to +10bp correspond to the 10bp closest to an SV breakpoint within a 

deletion, while positions -1 to -10 bp correspond to the 10bp closest to an SV breakpoint outside 

a deletion. Red and blue portions of each bar correspond to transition and transversion counts at 

each bin.  

(F) Example of an alignment that causes a false positive SNP due to misalignment against the 

linear reference genome. This sample has a homozygous deletion in this region, and graph 

aligner (top) aligns reads successfully across it. BWA-MEM (bottom) fails to align reads across 

the SV, but since the SV has 20bp of imperfect microhomology at the breakpoint, BWA-MEM 

aligns the reads on the right hand side over the imperfect microhomology region, resulting in a 

spurious homozygous G>A SNP call.  
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Figure 5. The effect of iteratively augmented graph genomes on variant calling 

(A) Schematic representation of the graphs generated in the graph augmentation experiment.  
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(B) Numbers of SNPs, INDELs and other variant types in the global and augmented graphs.  

(C) Counts and transition/transversion ratios of known and novel SNPs called through the BWA-

GATK, global graph and augmented graph pipelines. Grey horizontal lines indicate the expected 

transition/transversion genome-wide ratio (36).  

(D) Counts and het/hom ratios of known and novel INDELs called through the BWA-GATK, 

global graph and population-augmented graph pipelines. Horizontal bars indicate the average 

value of each group. Gray rectangles indicate the expected range of population averages for 

heterozygous/homozygous alternate ratios (36). 
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