
 

1 
 

Abundance and diversity of the fecal 
resistome in slaughter pigs and broilers in 
nine European countries 
 

Patrick Munk1, Berith Elkær Knudsen1, Oksana Lukjacenko1, Ana Sofia Ribeiro Duarte1, Roosmarijn E.C. 

Luiken2, Liese Van Gompel2, Lidwien A.M. Smit2, Heike Schmitt2, Alejandro Dorado Garcia2, Rasmus Borup 

Hansen3, Thomas Nordahl Petersen1, Alex Bossers2,4, Etienne Ruppé5, [EFFORT GROUP], Ole Lund1, Tine 

Hald1, Sünje Johanna Pamp1, Håkan Vigre1, Dick Heederik2, Jaap A. Wagenaar4,6, Dik Mevius4,6, Frank M. 

Aarestrup1* 

1 Research group for Genomic Epidemiology, National Food Institute, Technical University of Denmark. 

Kemitorvet 204, 2800 Kongens Lyngby, Denmark. 

2 Institute for Risk Assessment Sciences, Utrecht University. Yalelaan 2, 3584 CM Utrecht, Netherlands. 

3 Intomics A/S. Diplomvej 377, 2800 Kongens Lyngby, Denmark. 

4 Wageningen Bioveterinary Research. PO box 65, 8200AB Lelystad, The Netherlands. 

5 Genomic Research Laboratory, Hôpitaux universitaires de Genève. Rue Gabrielle-Perret-Gentil 4, 1205 

Geneva, Switzerland. 

6. Dept. Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University. Yalelaan 

1, 3584 CL Utrecht, the Netherlands. 

 

EFFORT group: 

Haitske Graveland, Alieda van Essen, Bruno Gonzalez-Zorn, Gabriel Moyano, Pascal Sanders, Claire Chauvin, 

Julie David, Antonio Battisti, Andrea Caprioli, Jeroen Dewulf, Thomas Blaha, Katharina Wadepohl, 

Maximiliane Brandt, Dariusz Wasyl, Magdalena Skarzyńska, Magdalena Zajac, Hristo Daskalov, Helmut W 

Saatkamp, Katharina D.C. Stärk. 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 28, 2017. ; https://doi.org/10.1101/194647doi: bioRxiv preprint 

https://doi.org/10.1101/194647
http://creativecommons.org/licenses/by/4.0/


 

2 
 

Abstract 1 

Antimicrobial resistance (AMR) in bacteria and associated human morbidity and mortality is increasing. Use 2 

of antimicrobials in livestock selects for AMR that can subsequently be transferred to humans. This flow of 3 

AMR between reservoirs demands surveillance in livestock as well as in humans. As part of the EFFORT 4 

project (www.effort-against-amr.eu), we have quantified and characterized the acquired resistance gene 5 

pools (resistomes) of 181 pig and 178 poultry farms from nine European countries, generating more than 6 

5,000 gigabases of DNA sequence, using shotgun metagenomics. We quantified acquired AMR using the 7 

ResFinder database and a database constructed for this study, consisting of AMR genes identified through 8 

screening environmental DNA. The pig and poultry resistomes were very different in abundance and 9 

composition. There was a significant country effect on the resistomes, more so in pigs than poultry. We 10 

found higher AMR loads in pigs, while poultry resistomes were more diverse. We detected several recently 11 

described, critical AMR genes, including mcr-1 and optrA, the abundance of which differed both between 12 

host species and countries. We found that the total acquired AMR level, was associated with the overall 13 

country-specific antimicrobial usage in livestock and that countries with comparable usage patterns had 14 

similar resistomes. Novel, functionally-determined AMR genes were, however, not associated with total 15 

drug use. 16 

  17 

Introduction 18 

Antimicrobial resistance (AMR) is considered one of the largest threats to human health.1 In addition to the 19 

use of antimicrobial agents for humans, livestock is considered an important source of AMR, potentially 20 

compromising human health.2 Besides AMR in zoonotic pathogens, AMR in commensal bacteria is 21 

worrisome because of its ability to spread horizontally to pathogens.  22 

Multiple studies have shown that use of antimicrobials in livestock will lead to increased occurrence of AMR 23 

and that reduction of usage will eventually lead to reduced resistance.3–8 A number of national surveillance 24 

programs have been implemented to monitor the occurrence of AMR in different reservoirs and follow 25 

trends over time.1,9–11 There are major differences in antimicrobial consumption patterns between different 26 

countries globally and also within Europe.12 Major differences in the occurrence of AMR have also been 27 

observed among indicator organisms (e.g. E. coli) isolated from different European countries.3,13 Current 28 

monitoring efforts are mainly based on culturing indicator bacteria followed by phenotypic AMR 29 

determination.13,14 This procedure only targets a limited number of species present in the gut microbiota 30 
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and thus likely represents only a fraction of its resistome (the collective pool of AMR genes). Such 31 

metagenomic approaches have been used in a number of recent studies and it has been shown that 32 

metagenomic read mapping describes AMR abundance in bacterial communities more accurately than 33 

commonly used technologies on selected indicator organisms.15–17 A recent study focused on sampling a 34 

diverse group of individual pigs from eleven farms in three countries showed that genetics, age, diet and 35 

country all likely influence the pig microbiota, but little information is available for poultry.16  36 

As part of the EU-funded EFFORT project (www.effort-against-amr.eu), we sampled over 9000 animals in 37 

181 pig and 178 poultry herds in nine European countries, generating herd-level composite samples as 38 

previously described.17 This gives us a unique insight into the diversity and structure of the acquired pig and 39 

broiler resistomes across Europe. We sampled animals as close as possible to slaughter to elucidate the 40 

potential consumer exposure to AMR associated with meat production in Europe. Association between 41 

AMR gene abundance and country level antimicrobial usage was analyzed. We hereby provide an overview 42 

of AMR in the two most intensively raised European livestock species. To our knowledge, this study 43 

represents the single largest metagenomic AMR monitoring effort of livestock: both in terms of countries 44 

(9), herds included (359), individual animals sampled (over 9,000) and sequencing effort (5,000+ gigabases).  45 

 46 

Methods 47 

Farm selection and sampling 48 

The sampling protocol for pig and broiler farms that has been agreed on by the EFFORT consortium is 49 

described below. Selection of farms and sampling procedure followed these guidelines to the extent 50 

possible, but some deviations from the protocol were occasionally necessary. A detailed description of the 51 

sampling conducted in the individual countries is provided in supplementary material.  52 

Selection of pig and poultry farms 53 

In each participating country, 20 conventional integrated pig farrow‐to‐finisher non-mixed farms were 54 

selected. The farms needed to have a minimum of 150 sows and 600 fatteners and employ batch 55 

production to ensure that the majority of the animals of the sampled group originated from the same birth 56 

cohort. All‐in all‐out production at compartment level was preferred and all fatteners sampled were 57 

required to have been on the same site during their entire life. Selected farms should have no contact 58 

through livestock trade, and have a random regional distribution.  59 
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In each country, 20 conventional broiler farms (no breeders) were selected. The farms should have all-in all-60 

out production, with a thinning procedure from day 30 onwards allowed. All selected farms should have no 61 

intended slaughter age higher than 50 days, no slow growing breeds (intended growth rate less than 55 62 

gram/day) and no stocking density lower than 10 birds/m². Only one flock/house per holding should be 63 

sampled and the flock should be between 20,000 and 40,000 birds. If possible, selected farms should have 64 

a random regional distribution.  65 

Procedure for sampling 66 

We sampled pig farms between May 2014 and December 2015, and tried to minimize seasonal influences. 67 

The sampled fatteners should be as close to slaughter as possible (i.e. within the last week). A total of 25 68 

fresh, still warm and undisturbed fecal droppings were sampled from pen floors (a minimum of 10 g of 69 

feces per sample) randomly divided over all eligible compartments/stables of fatteners close to slaughter.  70 

Broilers were sampled between May 2014 and June 2016, and we tried to minimize seasonal influences. On 71 

each farm, 25 undisturbed, fresh main bowel droppings were collected from the floor of the house (a 72 

minimum of 3 g feces per sample). The flocks should be sampled as close to slaughter as possible (last week 73 

before the final depopulation).  74 

All samples were collected aseptically in plastic containers and were stored at 4°C and transported to the 75 

laboratory within 24 hours after sampling. 76 

Pooling and handling of samples 77 

Upon arrival in the laboratory, individual fecal samples were homogenized by stirring thoroughly with a 78 

sterile tongue depressor/ spoon for a few minutes. From each pig sample, two 2 ml cryotubes were filled 79 

and frozen immediately at ‐80 ͦC (alternatively at ‐20 ͦC for maximum 4 days, before transferring to ‐80 ͦC). 80 

For broiler samples, at least 0.5 g feces was added to two cryotubes. Sample pooling was either done 81 

immediately or the frozen tubes were shipped to the Technical University of Denmark (DTU) on dry ice for 82 

pooling. Individual samples from the same herd were defrosted and placed on ice briefly before weighing. 83 

Following weighing, they were pooled with 0.5 g of feces from each sample and stirred for a few min with a 84 

sterile device (e.g. disposable wooden tong depressor). All samples were only thawed once shortly before 85 

DNA extraction. 86 

After removing two mis-labeled samples, we ended up with composite fecal samples from 178 broiler 87 

flocks and 181 pig herds. 88 
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Sampling to estimate the effect of random sampling 89 

To study the potential effect of sampling randomness and the reproducibility of our sampling protocol, two 90 

of the pig herds were chosen for triplicate sampling. These two herds were sampled three times on the 91 

same day (25 samples x 3 sampling rounds), resulting in six pooled samples (2 herds x 3 sampling rounds), 92 

from which the within-farm variation was assessed. A table with all samples and their metadata is included 93 

as Supplementary Table 1. 94 

DNA extraction and sequencing 95 

From each of the pooled, herd-level fecal samples, DNA was extracted using a modified QIAamp Fast DNA 96 

stool mini kit protocol (Qiagen, cat. no. 51604), as previously described.18 One major modification is the 97 

addition of a bead beating step in the beginning of DNA extraction. The protocol can be found at 98 

https://figshare.com/articles/SOP_-_DNA_Isolation_QIAamp_Fast_DNA_Stool_Modified/3475406. DNA-99 

purification of all pooled samples was processed centrally at Technical University of Denmark (DTU), and 100 

the DNA was stored in duplicates at ‐20 ͦC until further use. 101 

DNA was shipped on dry ice for library preparation and sequencing at the Oklahoma Medical Research 102 

Foundation (OMRF). There, DNA from all samples was mechanically sheared to a targeted fragment size of 103 

300bp using ultrasonication (Covaris E220evolution). For pooled pig samples, library preparation was 104 

performed with the NEXTflex PCR-free library preparation kit (Bioo Scientific). For poultry samples, due to a 105 

lower DNA availability, the minimal amplification-based KAPA Hyper kit (Kapa Biosystems) was used. For all 106 

samples, the Bioo NEXTflex-96 adapter set (Bioo Scientific) was used. In batches of roughly sixty samples, 107 

the libraries were multiplexed and sequenced on the HiSeq3000 platform (Illumina), using 2x150bp paired-108 

end sequencing per flow cell. A total of 17 Belgian, Danish and Dutch pig fecal samples were sequenced on 109 

the HiSeq2500 platform (Illumina), using 2x100bp paired-end sequencing, before converting to HiSeq3000 110 

for the remaining samples (See Supplementary Table 1). 111 

Bioinformatics processing 112 

The FASTQ files with sequencing data for each sample were analyzed following the principles from the 113 

previously described MGmapper tool.15 The reads were first cleaned by cleaning out adaptors using BBduk 114 

(BBMap v39.92 - Bushnell B. -https://sourceforge.net/projects/bbmap/), and by removing reads that 115 

aligned to the internal sequencing control phi-X174 as determined by the BWA-MEM algorithm.19 Trimmed 116 

read pairs were aligned using the BWA-MEM algorithm Prokaryotic RefSeq genomes from NCBI GenBank 117 

(downloaded on Nov. 18, 2016) with the “reference” or “representative” genome tags. The BWA-MEM 118 

algorithm (v0.7.15) was slightly modified such that the insert size was estimated for the entire sample 119 

unaffected by the number of CPU cores used. This estimate was then used for re-analyzing the cleaned 120 
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read pairs using BWA-MEM, ensuring that the thresholds for a read pair to map as a 'proper pair' were the 121 

same for all read pairs, and avoiding bad insert size estimates when few read pairs aligned. 122 

The read pairs were aligned to the bacterial NCBI genomes again, and to the AMR genes present in the 123 

ResFinder database (accessed Nov. 17, 2016).20 ResFinder is a manually curated database of horizontally 124 

acquired AMR genes and thus does not include intrinsic AMR genes and mutated housekeeping genes 125 

providing AMR by changing the drug target. Technical duplicate read pairs were then removed using 126 

'MarkDuplicates' from the Picard command line tools (v2.8.3; http://broadinstitute.github.io/picard/). 127 

For each ResFinder reference sequence, we counted the number of read pairs that properly aligned with at 128 

least 50 bp aligning from both the forward and reverse reads. Each read pair matching a ResFinder 129 

reference was assigned to the first highest-scoring reference, as done in MGmapper. The same was done 130 

for NCBI microbial genomes in order to quantify the bacteriome and get a measure of the microbial 131 

proportion within each sample. This total was used to normalize the ResFinder counts, by computing an 132 

FPKM-value (fragments per kilobase reference per million bacterial fragments) for each ResFinder 133 

reference sequence. The FPKM values were computed by dividing the mapping count on each reference 134 

with its gene length and the total number of bacterial read pairs for the samples and multiplying by 109.21 135 

Raw mapping count data and their associated FPKM values can be found in Supplementary Table 2 and 3.  136 

Because ResFinder contains many representatives of certain gene families, a high degree of homology 137 

exists, with long stretches of the references being identical. This causes unspecific mapping between high-138 

identity sequences. To eliminate this random noise, we chose to aggregate read counts and relative 139 

abundances post-mapping at higher levels based on sequence identity. We clustered all the ResFinder 140 

genes using CD-HIT-EST (v4.6.6) at a 90% identity level and otherwise default settings.22 The resulting gene 141 

clusters were manually inspected and named to reflect their contents while avoiding conflicts with other 142 

clusters (Supplementary Table 4). Abundances were aggregated according to these clusters of high-identity 143 

genes and the resistance-class-level as annotated in ResFinder. These two levels, “gene” and “class”, were 144 

used for all downstream analysis. 145 

Functional resistance database 146 

Previous studies have identified a wide array of novel AMR genes in various reservoirs using functional 147 

metagenomics, referred to as functional AMR genes.23–26 By cloning random DNA fragments from complex 148 

microbiomes into an expression vector expressed in a host (typically E. coli) and selecting for growth in the 149 

presence of certain antibiotics, they have been found to provide AMR to many antibiotics.23–26 We 150 
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constructed a functional resistance database (FRD) from 3,416 AMR gene variants identified in four major 151 

studies, using 23 different antimicrobials for selection.23–26 152 

Briefly, in each of these studies, DNA was extracted from environmental and human fecal samples, 153 

fragmented and cloned into a plasmid vector and screened for AMR functionality in E. coli cultured with 154 

one of multiple antimicrobials. AMR-granting plasmid inserts were then sequenced and the responsible 155 

open reading frame was identified. The protocol for the database construction can be found at 156 

https://cge.cbs.dtu.dk/services/ResFinderFG/. Genes were quantified using MGmapper as was done for 157 

ResFinder. Genes with more than 90% identity to ResFinder genes were removed post mapping to obtain 158 

the new AMR genes without overlap with ResFinder. The resulting data was aggregated to 90% gene 159 

clusters, using CD-HIT-EST, as was done for ResFinder.22 The most frequent gene clusters remaining were 160 

derived from genes selected using: trimethoprim, chloramphenicol, co-trimoxazole, cycloserine, amoxicillin, 161 

gentamicin, penicillin and tetracycline. 162 

Principal coordinate analysis and resistome clustering 163 

For principal coordinate analysis (PCoA), the gene-cluster level FPKM matrix was Hellinger-transformed and 164 

the Bray-Curtis (BC) dissimilarities between all samples were calculated using the R package vegan.27 PCoA 165 

was carried out for both pigs and poultry; combined and separately, using the vegan function ‘betadisper’. 166 

The same analysis was used to test whether host animal and country were significant predictors of within-167 

group beta diversity dispersion. The effects of country on sample dissimilarities was determined using 168 

‘permutational multivariate analysis of variance using distance matrices’ (‘adonis2’ function in vegan 169 

package), separately for pig and poultry. 170 

Antimicrobial use in livestock 171 

Data for national livestock antimicrobial usage (AMU) was obtained from the European Medicines Agency’s 172 

2014 European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) report and was stratified by 173 

major drug family.28 The mass of active compound sold for use in animals in 2014 was divided by the 174 

Population Correction Unit (PCU) in 106 kg - approximating the biomass. The PCU is a unit that allows inter-175 

species integration by adjusting for import/export and differences in average weight between species when 176 

they are most likely to receive antimicrobial treatment. The estimate was multiplied by 1000 to obtain drug 177 

mg/kg PCU livestock. The country-specific veterinary drug use can be found in Supplementary Table 5. 178 

Procrustes analyses 179 

In order to test the association between country-specific AMU patterns and the resistomes, we performed 180 

Procrustes analysis using the vegan R package as follows. A PCoA was generated from Euclidean distances 181 
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between the samples in the PCU-corrected AMU (Supplementary Table 5, Supplementary Figure 1). The 182 

AMU PCoA was tested against the previously mentioned Hellinger-transformed, resistome BC dissimilarity 183 

PCoA using the ‘protest’ function with the default 999 permutations, again separately for pigs and poultry. 184 

The gene-cluster FPKM ResFinder matrix and the genus-level FPKM taxonomy matrix were Hellinger 185 

transformed and BC dissimilarities were calculated. They were ordinated using non-metric 186 

multidimensional scaling (NMDS) with the ‘metaMDS’ vegan function (999 permutations) for pig and 187 

poultry samples separately. The symmetric Procrustes correlation coefficients between the bacteriome and 188 

resistome ordinations, p-values and plots were obtained using the ‘protest’ and ‘procrustes’ functions in 189 

vegan.29 190 

Alpha diversity 191 

For all samples, we computed the within-herd resistome diversity using Simpson diversity index (1-D), 192 

Chao1 richness estimate and Pielou’s evenness.30 The raw read count matrix was rarified to 10,000 hits for 193 

all samples for alpha diversity estimation, leading to the exclusion of 10 samples.  194 

Visualization 195 

Heatmaps were produced using the pheatmap R package. For heatmaps showing individual gene 196 

abundances, the BC dissimilarities between samples were used. For all other dendrograms, the Pearson 197 

product-moment correlation coefficients (PPMCC) were used. Complete-linkage clustering was used for all 198 

dendrogram clustering. For sample similarities, BC dissimilarity was converted to a similarity percentage, 199 

i.e., 100*(1- BC). 200 

The circular BC sample dendrogram was exported in Newick format using the ape package and further 201 

annotated with the Interactive Tree of Life tool.31,32 Bar-, box- and scatter plots were produced using the 202 

ggplot2 R library.33 The R library RcolorBrewer was used to generate the color palettes used. The library is 203 

based on work by Cynthia A. Brewer (www.ColorBrewer.org). 204 

Statistical analyses 205 

All statistics was done in Microsoft R Open (MRO) 3.3.2, using the libraries and procedures detailed below. 206 

Exact package versions can be found here: https://mran.revolutionanalytics.com/snapshot/2016-11-207 

01/bin/windows/contrib/3.3/. For statistical tests, only the first sampling from triple-sampled herds was 208 

included (see Supplementary Table 1). Unless otherwise mentioned, all statistical analyses were performed 209 

on pigs and poultry separately.  210 
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Effect of AMU on total AMR  211 

For testing the effect of total AMU on total metagenomic AMR abundance (sum of all genes), we used the 212 

lme4 1.1-12 package to make linear mixed effects regression models with total livestock drug usage as the 213 

independent variable, total AMR abundance (FPKM) as the dependent variable and country as a mixed 214 

effect intercept, adjusting for the fact that AMR abundance observed in farms from the same country is 215 

correlated due to factors that are not included in this study.34 The effect of AMU was modelled on a 216 

logarithmic scale, which resulted in lower Akaike’s information criteria compared with modelling AMU on a 217 

linear scale. Country- and sample-level residuals were plotted and inspected for normality and 218 

homoscedasticity. Pig sample residuals and country residuals were normal and so were poultry country 219 

residuals. Poultry sample residuals had a longer right tail. Square-root transforming the poultry AMR data, 220 

gave more normal residuals and a similar conclusion (p<0.05). The effect and significance of drug usage was 221 

assessed using likelihood-ratio tests, comparing the random effect models with and without the AMU 222 

effect. 223 

Differential abundance analysis 224 

To identify differentially abundant AMR genes per country, we analyzed the read pair mapping count 225 

matrix using the DESeq2 package as previously recommended for metagenomic read count data.35,36 This 226 

was done on the raw read pair matrix, following recommendations that rarefying is not warranted in 227 

metagenomic studies.36 The read-pair count matrices for pigs and poultry were analyzed separately. The 228 

number of mapped bacterial pairs was divided by the minimum number of mapped bacterial pairs and was 229 

used as the size factor. For each gene, we used a two-sided Wald test to determine whether the fold 230 

change between countries differed from 0 and extracted all the country-versus-country results. P-values 231 

were adjusted for the false discovery rate (FDR) using the Benjamini-Hochberg approach and we used a 232 

significance threshold of alpha: 0.05.37 233 

Core resistome 234 

The core resistomes determined here, were the set of AMR gene clusters with mapping read pairs in at 235 

least 95% of the samples. The core resistomes were determined separately for the pig and poultry 236 

reservoirs. 237 

 238 

Results 239 

In total, DNA from 365 pooled samples was extracted and shotgun sequenced, resulting in more than 36 240 

billion sequences (18 billion paired-end (PE) reads), comprising more than 5 terabases of DNA. This yielded 241 
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an average of 50 million (SD: 18*10^6) PE reads per pooled sample. This was similar for pig and poultry 242 

samples, though the former varied more than the latter. 243 

 244 

Acquired resistome characterization 245 

The total AMR gene level varied significantly across samples, both depending on host animal and country of 246 

origin. In general, pigs had a higher AMR level than poultry (Figure 1a). The highest AMR levels were found 247 

in Italian pigs from where the top four resistance-scoring samples originated, all in excess of 10,000 FPKM 248 

AMR. At the lower end of the spectrum were Danish poultry samples that occupied the eleven samples 249 

with least AMR, all below 500 FPKM. 250 

 251 
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 252 

 253 

Figure 1. Overview of AMR abundance and composition. From the read mapping results to the ResFinder database, AMR 254 

abundance was calculated for each reference gene in each sample. (a) Boxplots showing the total AMR level per sample, 255 

stratified by host species and country. Each herd is also represented by a dot with sideways jitter to minimize overplotting. 256 

Horizontal box lines represent Q1, median and Q3. Whiskers denote range of points within Q1-1.5*IQR and Q3+1.5*IQR. (b) 257 

Stacked barchart of AMR abundance per type (colors) per sample (x-axis), proportional to total AMR within each sample.  258 

We summed the relative abundance of AMR to the corresponding drug class level for each sample to look 259 

for major trends across species and countries (Figure 1b). When considering the proportion of the total 260 

resistome that each AMR type takes up, the pig samples were relatively homogenous: tetracycline AMR 261 

was by far the most common, followed by macrolide AMR. Beta-lactam and aminoglycoside AMR genes 262 

followed with other kinds of AMR being rare. Italian pigs had a notably larger proportion of phenicol AMR 263 

compared with other countries and it seemed to be consistent across all Italian farms. A subset of Bulgarian 264 

pig farms had a similar proportion of phenicol AMR. 265 
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Among the poultry farms, there was less consistency: both within and between countries, the relative 266 

proportions of AMR per drug class varied more. Tetracycline, macrolide, beta-lactam and aminoglycoside 267 

AMR made up the majority of AMR, as in pig samples, but the two latter classes had very minimal 268 

contributions in a subset of herds. Sulfonamide and trimethoprim AMR were more abundant in poultry 269 

samples compared with pig samples, across all countries. In many Polish poultry herds, quinolone AMR 270 

made up a sizeable fraction of the combined resistome. This was also true for a few non-Polish herds, 271 

notably in Bulgaria. For non-proportional graphical representations of the AMR load stratified by sample 272 

and drug class, see the supplementary material for an unscaled, stacked bar chart (Supplementary Figure 2) 273 

and a heatmap (Supplementary Figure 3). Class level AMR relative abundances can be found in 274 

Supplementary Table 6. 275 

To characterize the individual components of the resistome, we summed relative abundance to the gene-276 

cluster level as we had done at drug class level. We found evidence for 407 different gene clusters across all 277 

pig and poultry samples (Supplementary Table 2). 278 

We calculated the BC dissimilarities between all samples’ gene-level resistomes and visualized it in a 279 

dendrogram (Figure 2a). There was a perfect host separation, with all pig samples clustering separately 280 

from all poultry, suggesting pig and poultry resistomes are very different. Within the pig cluster, the 281 

country separation was more pronounced than for poultry. An exception was Danish poultry, where 18/20 282 

samples clustered. 283 

To assess the reproducibility of our protocol, from sampling through sequencing, we evaluated the 284 

similarities between resistomes of two triple-sampled swine herds. Dutch triple-sampled herd pools had 285 

the highest similarities of all samples, ranging from 93.6% - 93.7% BC similarity. The Belgian triple-sampled 286 

herd pools had values ranging from 91.5% - 93.3% similarity. No replicated sample pool had higher 287 

similarity to other herds than to its own replicates and the two sets of three samples can thus be seen 288 

clustering as expected (Figure 2a). A sample similarity heatmap is found in Supplementary Figure 4.  289 
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290 

 291 

Figure 2. Resistome clustering is influenced by both host animal and country. (a) Dendrogram showing complete linkage 292 

clustering of BC dissimilarities between all pig and poultry resistomes. Triple-sampled pig herds are highlighted in separate 293 

colors. (b-d) PCoA plots for pig and poultry samples combined (b), pig samples (c) and poultry samples (d), respectively. Ellipses 294 

denote standard deviation for distance of each member to its group centroid (labeled). (e-g) Boxplots of distances for each 295 

group’s samples to its centroid for pig and poultry samples combined (e), pig samples (f) and poultry samples (g), respectively. 296 

Horizontal box lines represent Q1, median and Q3. Whiskers denote range of points within Q1-1.5*IQR and Q3+1.5*IQR. 297 

 298 
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We ordinated the gene-level resistomes for all samples (Figure 2b) and pig and poultry samples separately 299 

(Figure 2cd). As with hierarchical clustering, there was a clear separation of pig and poultry samples, along 300 

the first principal coordinate, which explained 48% of the variation across all resistomes. 301 

When analyzing the two reservoirs separately, we observed clustering according to country of origin in pigs 302 

(Figure 2c), while clustering was more diffuse for poultry (Figure 2d). We tested for the country effect and 303 

found it to be significant in both pigs (adonis2 p<0.001) and poultry (adonis2 p<0.001). In poultry however, 304 

the country effect only explained roughly a quarter of the variation, while country explained roughly half of 305 

the variation in pigs (data not shown). In the pig resistome ordination, the Danish and Dutch samples 306 

clustered closely together. The same could be seen for French and Belgian resistomes and to a lesser 307 

degree, Italian and Spanish samples. Bulgaria, Germany and Poland showed larger dispersions than the 308 

other countries. Poultry samples had a higher dispersion than pig samples (Figure 2e, beta-dispersion 309 

p<0.001). Beta-dispersion levels varied significantly between countries in both pigs (Figure 2f, beta-310 

dispersion p<0.001) and poultry (Figure 2g, beta-dispersion p<0.001). 311 

We visualized the AMR gene abundances in a heatmap to look at the overall structure and composition of 312 

the resistomes and the co-occurrence of AMR genes (Supplementary Figure 5). Some AMR genes were 313 

more abundant in one species, while others, including tet(W) and erm(B) were ubiquitous in all samples, for 314 

both species. Among the pig samples, the Italian samples stood out: several chloramphenicol AMR genes, 315 

including cat(pC194), catP, and cat_2, were much more abundant in ltaly, compared to the other countries, 316 

consistent with our inspection of AMR at class level (Figure 1). Several AMR genes known to be co-located 317 

indeed co-occurred across samples. The genes in the vancomycin AMR VanA cassette were co-located in a 318 

number of poultry samples. This was also true for the VanB cassette members, clustering together, but 319 

separately from VanA, showing ability to distinguish variants of homologous genes. As earlier indicated, the 320 

poultry samples showed less country-based clustering than pigs. An exception were the Danish poultry 321 

samples. These had noticeably lower abundance of many AMR genes that were widespread in other 322 

countries. 323 

Core resistome 324 

To determine whether specific genes were unique to each of the host animals, we examined the set of AMR 325 

genes that was consistently observed within each animal species (evidence for it in 95% of samples). We 326 

identified 33 core AMR genes in pigs and 49 core AMR genes in poultry, with 24 being shared between the 327 

two hosts (Supplementary Figure 6). Hence, only nine AMR genes were pig-core genes without also being 328 

poultry-core genes. These included the genes making up the Van-G vancomycin cassette, tet(C), blaACI and 329 
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cfxA. Twenty- five AMR genes were poultry-core genes without also being pig-core genes and include the 330 

Enterobacteriaceae-associated strAB, sul2, blaTEM and tet(A) genes. 331 

 332 

Differential abundance analysis 333 

In order to test which specific genes differed in abundance between countries, we carried out a differential 334 

abundance analysis for ResFinder gene read pair counts. Heavy overrepresentation of low unadjusted p-335 

values indicated a large effect of country in both in the pig and poultry datasets (Supplementary Figure 7). 336 

Of special interest was the newly characterized Enterococcus-associated linezolid-resistance gene optrA, 337 

that had a significantly higher abundance in Bulgarian poultry farms, compared with poultry farms in all 338 

other countries (FDR < 0.05) (Figure 3b). A single Spanish farm did, however, have even higher optrA 339 

abundance than any other farm. Among the pig herds, the optrA gene was more abundant in Bulgarian and 340 

Italian herds than anywhere else (except for two farms in Spain) (FDR<0.05). 341 

The newly identified colistin-resistance gene mcr-1 was significantly more abundant in Bulgarian and Italian 342 

poultry farms, compared with most other countries (FDR<0.05). France, Poland and Spain had intermediate 343 

levels, while Denmark, the Netherlands and Germany had the lowest levels (Figure 3b).  344 

As previously noted from visual inspection of heatmaps, multiple chloramphenicol AMR genes including 345 

cat(pC194) were much more abundant in Italian pigs than other pigs. The ESBL blaCTX-M gene cluster 1 also 346 

showed country dependency, being significantly more abundant in poultry samples from Spain, Poland, 347 

Italy, France and Belgium than Germany (FDR<0.05). Differential abundance analysis results can be found in 348 

Supplementary Table 7 and 8 for pig and poultry respectively. 349 
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 350 

Figure 3. AMR genes differ in abundance between countries. A handpicked subset of genes that differed significantly in 351 

abundance between at least two countries’ pig farms (a) or poultry farms (b). The regularized log abundance (rlog) is shown on 352 

the y-axis in boxplots and points. Points were sideways jittered to reduce overplotting. Horizontal box lines represent Q1, 353 

median and Q3. Whiskers denote range of points within Q1-1.5*IQR and Q3+1.5*IQR. 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 
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Alpha diversity and richness 362 

We calculated several alpha diversity indexes for each farm resistome (Figure 4) The range of AMR diversity 363 

was generally much larger for poultry samples, having both lower and higher diversity than pig samples, 364 

which had a tighter spread of diversity. The poultry samples had a higher estimated richness than pigs (i.e. 365 

a higher number of unique AMR genes per sample). Alpha diversity indexes can be found in Supplementary 366 

Table 9. 367 

Interestingly, countries with high AMR richness in pigs also tended to have high AMR richness in poultry. 368 

Spain had the highest median richness in both reservoirs, followed by Italy. Poland and Bulgaria together 369 

had the third and fourth highest AMR richness in pigs and poultry. Overall, the median estimated Chao1 370 

richness per country correlated significantly between the reservoirs (Spearman’s rho: 0.88, p < 0.01). This 371 

was neither true for evenness nor diversity (p>0.05). Rarefaction curves for pig and poultry resistomes can 372 

be found in Supplementary Figure 8. 373 

 374 

 375 

Figure 4. Resistome alpha diversity and richness differs between animal host and countries. From the read count pair matrix, 376 

several indexes were calculated. (a) Simpson diversity index, (b) Pielou’s evenness, and (c) the Chao1 richness estimate. 377 

Horizontal box lines represent Q1, median and Q3. Whiskers denote range of points within Q1-1.5*IQR and Q3+1.5*IQR. 378 

 379 

 380 

Association between bacteriome and resistome 381 

To test the degree to which bacterial genus composition of the microbiota dictates the resistomes, 382 

Procrustes analyses were performed. We compared ordinations of the pig microbiome with the pig 383 

resistome and the poultry microbiome with the poultry resistome (Figure 5). We found that for both pig 384 
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and poultry, the bacterial composition correlated significantly with the resistome (p<0.001). Samples with 385 

similar taxonomic compositions thus tended to have similar resistome compositions. 386 

 387 

 388 

Figure 5. Microbial composition dictates the resistome. Procrustes analysis plots for pig (a/b) and poultry (c/d). Procrustes 389 

rotations of bacterial composition onto their corresponding resistome composition (a/c). Bar charts of Procrustes residuals 390 

(b/d). 391 

 392 

The correspondence between the two datasets was slightly stronger in pigs (Procrustes symmetric 393 

correlation: 0.71) than in poultry (Procrustes symmetric correlation: 0.66). Interestingly, in pig samples we 394 

saw a country effect on the strength of association between the bacteriome and the resistome. In Dutch 395 

and Belgian pig herds, ordinations based on bacterial genera and AMR genes gave similar results (Figure 396 

5b). For samples from Bulgaria, Denmark, Italy and especially Germany however, the Procrustes residuals 397 

were larger. This was less evident for poultry, though a single Danish poultry herd had a very unusual 398 

resistome, considering its taxonomic composition (Figure 5d). Stress plots for NMDS can be found in 399 

Supplementary Figure 9. 400 

 401 
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AMR and drug use association 402 

We found that the total country-level veterinary AMU was positively associated with AMR in both pigs and 403 

poultry. The AMR abundance increased by 1736-3507 (95% CI, β=2621) FPKM in pigs when the AMU 404 

increased by 1 loge unit (36.8% increase in AMU) (Figure 6a) and to a lesser degree in poultry, where the 405 

AMR abundance increase by 68 - 1330 FPKM (95% CI, β =700) when the AMU increase 1 loge unit (Figure 406 

6b). For pigs, the variance between farms within countries was 7 times larger than the variance between 407 

countries in general, whereas in poultry the variance was 4 times larger within-country than between 408 

countries.  409 

 410 

Figure 6. National veterinary AMU affects total metagenomic AMR. (a-b) Scatter plots of country AMU and pooled sample total 411 

AMR. A slight sideways jitter was added to the points to minimize overplotting. Trend lines are shown for (a) pigs and (b) 412 

poultry. (c-f) Procrustes errors from rotation of resistome principal coordinate analysis (PCoA) onto country AMU PCoA (c-d) and 413 

poultry (e-f). (c/e) Procrustes rotations with arrows starting in AMU and ending in corresponding AMR ordination. (d/f) Line 414 

plots showing length of each residual arrow in Procrustes rotation. 415 

 416 

To test if the AMU pattern was associated with AMR gene profiles, we compared the AMR abundance 417 

matrix with AMU matrix, comprised of the 15 recorded AM classes (Supplementary Table 5). We found an 418 

association between the veterinary AMU pattern and the pig resistomes (Procrustes correlation: 0.51, 419 

p<0.001) (Figure 6cd). The poultry resistomes were also significantly associated with AMU, albeit with a 420 

lower correlation, likely due to their larger beta-diversity and lower degree of country clustering 421 

(Procrustes correlation: 0.38, p<0.001) (Figure 6ef).  422 

 423 

 424 
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Functional AMR genes 425 

In addition to using ResFinder, we also ran most analyses with the FRD database, to elucidate whether the 426 

functionally determined AMR genes behave similarly to the acquired AMR genes in ResFinder. If FRD genes 427 

serve similar AMR functionality as the acquired ResFinder genes, we would expect similar results.  428 

Using the FRD database, we found both similar and different patterns, compared with using ResFinder. 429 

There was still a perfect separation between pig and poultry samples, but the country separation in pigs 430 

was less distinct than when using ResFinder (Supplementary Figure 10). Though less variation could be 431 

explained by two axes, the PCoA plot of pig samples now clustered German and Spanish samples, with the 432 

remaining countries being more similar. The resistome richness showed similar patterns to ResFinder: 433 

Spanish, Italian, Polish and Bulgarian samples had a higher estimated richness in both pig and poultry, 434 

compared to the other countries. The Procrustes correlation between the resistome and drug usage was 435 

lower (0.40 for pig and 0.25 for poultry). This result was echoed by the lack of association between total 436 

AMR and total AMU, for both pig and poultry (p>0.05, Supplementary Figure 11). 437 

 438 

Discussion 439 

Using a metagenomic shotgun sequencing strategy, we were able to detect and quantify more than 400 440 

AMR genes across 181 pig and 178 poultry herds in 9 European countries. 441 

A recent study including Chinese, Danish and French pigs showed the Chinese pig resistomes clustered 442 

separately, while Danish and French overlapped.16 Here we demonstrate that even among European 443 

countries, the livestock resistomes differ in a country-specific manner that might be explained by 444 

differential AMU so that countries with similarly high and diverse AMU (Spain, Italy) have similar 445 

resistomes, the same way as countries with similarly low AMU (Denmark, Netherlands) also have similar pig 446 

resistomes. 447 

We found that the beta diversity dispersion seems to be country dependent, particularly in pigs, with 448 

Bulgarian, German and Polish pig herds having more dispersed AMR. While we cannot currently explain 449 

this, we consider possible causes as differences in trade and management, among others. 450 

We found the recently discovered plasmid-borne colistin resistance gene mcr-1 in a number of poultry 451 

herds, especially in Bulgaria, Spain and Italy. Spain and Italy had the highest reported veterinary colistin 452 

usage among the surveyed countries, whereas Bulgaria has a low reported usage, uncharacteristic for the 453 
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high mcr-1 level found here.13 This gene was recently discovered in China and identified throughout the 454 

world and has been identified in pigs, poultry and human clinical infections alike.38  455 

A newly characterized enterococcal linezolid-resistance gene, optrA was detected in a subset of pig 456 

samples, with Bulgaria, Italy and Spain having the highest abundances. The optrA gene provides AMR to 457 

both oxazolidinone and amphenicols, including the veterinary-used florfenicol.13,39 The high abundance of 458 

this gene in these countries can likely be explained by the fact that they have the highest veterinary 459 

amphenicol usage (together with Croatia, which we did not sample) among the 26 countries surveyed by 460 

ESVAC.12 This explanation fits well with the fact that Bulgaria, Italy and Spain also had the highest 461 

abundances of chloramphenicol AMR genes such as cat(pC194) in poultry. 462 

Another AMR gene of special interest, the blaCTX-M, was also observed in the poultry herds. The higher 463 

abundance of blaCTX-M cluster 1 in Spain, Italy, Poland and Belgium, could possibly be explained by co-464 

selection by fluoroquinolones, which is used more in Spain, Poland, Italy and Belgium than other sampled 465 

countries. qnr and blaCTX-M genes are frequently co-located on large ESBL plasmids. Veterinary 466 

cephalosporin usage did not seem to explain the observed levels. 467 

Poland and Spain use far more fluoroquinolones veterinarily than other countries included in this study. We 468 

found that plasmid mediated quinolone AMR (qnr-genes) was frequently abundant in Polish, but not in 469 

Spanish, poultry. In Bulgaria, quinolone AMR was also frequently observed, although their reported AMU 470 

did not follow the same trend. 471 

Interestingly, we observed that country-wise estimated AMR richness significantly correlated between pig 472 

and poultry. Also, the countries with a high AMR richness were also the ones with higher AMR abundance 473 

(Italy, Spain, Bulgaria and Poland). While having higher abundance of the ubiquitous core genes, these 474 

countries had a higher number of unique genes in both pig and poultry production. The fact that countries’ 475 

AMR abundance and gene richness in pig and poultry tend to follow each other, could perhaps be explained 476 

with policy: if a country has strict AMU regulations in one livestock species, chances are that similar 477 

regulations are in place for other livestock species. Better host-separated, preferably herd-level, AMU data 478 

is needed to further explore this. 479 

 480 

It has previously been reported that soil community composition structures the soil resistome.26 Using a 481 

wide array of environmental matrices, including fecal and waste water samples, this has also been shown 482 

for human habitats.40 We found the same to be true for pig and poultry resistomes, and additionally, we 483 

showed that the taxa-AMR association strength differs between countries. Horizontal gene transfer (HGT) 484 
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could explain this phenomenon, if a larger proportion of certain countries’ resistome is mobile and AMR 485 

genes are more frequently introduced and re-introduced to genera. On the other hand, vertical AMR 486 

transmission can also play a role; if e.g. one country’s livestock is more isolated from trade. This would 487 

mean more livestock generations for the microbiome and resistome to diverge from those in other 488 

countries.  489 

The determination of a set of core AMR genes for pig and poultry likely represents an underestimate of the 490 

true core resistomes. Requiring a certain percentage of samples to show evidence for a gene does not 491 

account for differential sequencing depth. The core genes discovered here thus likely represent a 492 

conservative subset of the true core resistomes. 493 

In contrast to ResFinder, when using FRD we found no relationship between total drug use and total 494 

functional AMR abundance. This suggests that while many genes can provide AMR when cloned into e.g. E. 495 

coli in functional metagenomic assays, they might not provide AMR functionality in their natural hosts with 496 

natural expression levels. If most of them did, we could expect to see AM-based selection and an 497 

association to drug usage, like it is observed for the AMR genes in ResFinder - a database of genes known to 498 

provide AMR to their natural hosts. This finding echoes previous sentiments that one should carefully 499 

consider the risk to human health imposed by individual AMR genes.41 Some FRD genes might represent 500 

high risk, but we currently do not know what subset that is. Creating the FRD is a first step in trying to 501 

catalog the many AMR genes found in functional metagenomic studies. Screening sequenced pathogenic 502 

isolates and metagenomic assemblies for FRD genes, would be a good start for assessing their host range 503 

and risk potential. 504 

The AMU data used in this study is not optimal. There is variation in drug use within each country’s farms 505 

that we did not account for by using a national average and we are unable to accurately distinguish 506 

between drugs used in different livestock species. Moreover the PCU denominator used by ESVAC may vary 507 

greatly between countries with differences in livestock populations and imports/exports that contribute to 508 

the biomass as calculated. Furthermore, the integrated herds enrolled in this study might represent only a 509 

limited subset of the overall livestock production in some countries. However, even with our crude AMU 510 

estimates, we found significant associations with total AMR abundance. The similar conclusion when 511 

considering the specific drug usage profile of each country indicates that the resistome is responding to 512 

AMU. The AMR-AMU association is well-documented for specific cultured indicator species and certain AM 513 

drugs, but relatively unknown when considering the whole microbiota and resistome and the newer 514 

approach of metagenomic shotgun sequencing.3,8 We do not know why the pig samples had a large within-515 
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country spread of total AMR, but perhaps the more heterogeneous production system and production 516 

management is responsible.  517 

DNA extractions from the pooled poultry samples resulted in relatively low DNA yields. The protocol used 518 

was optimized for pig feces, human feces and sewage, but not poultry feces.18 The lower yields 519 

necessitated the use of a PCR-based library preparation kit, that can influence downstream analysis of 520 

shotgun sequencing.42. While the large difference between pig and poultry resistomes in our study is likely 521 

real, we caution the use of sensitive, quantitative analyses when comparing between samples prepared 522 

using different library preparation kits. For this reason, we have mostly tested within each reservoir. For 523 

future studies, one might consider using larger volumes of bird feces or otherwise optimize the protocol to 524 

ensure PCR-free library preparation is possible for all samples.  525 

The sensitivity of metagenomic approaches does not yet rival phenotypic alternatives such as selective 526 

enrichment. We relied on read-mapping as opposed to a metagenomic assembly-based strategy for greater 527 

sensitivity. Still, there are AMR genes in important pathogens that we know are likely present but are below 528 

our detection limit. For example, we only found evidence for blaCTX-M in three pig herds, whereas in 529 

phenotypic studies, the prevalence is high even among farms with no cephalosporin usage.43 Another 530 

tradeoff with the use of reference-based read mapping is our inability to identify mutated housekeeping 531 

genes granting AMR or distinguish between close homologs of the same AMR gene, e.g., the non-ESBL 532 

blaTEM genes from those encoding ESBL variants. 533 

The primary concern with read-mapping techniques, the lack of genomic context, can be solved using 534 

metagenomic assembly and binning approaches.16,44,45 In this way, AMR alleles in full length, their genomic 535 

context and their associated taxa have been identified in both pig, poultry and human fecal samples.46 As 536 

shown previously, the association between AMR and AMU is similar for metagenomics and traditional 537 

phenotypic methods, but several aspects make metagenomics an intriguing monitoring tool.17 The fact that 538 

both types of analyses (quantitative, sensitive read mapping and qualitative, context-giving binning) use the 539 

same raw data, makes metagenomics an attractive tool. In addition, the digital nature of shotgun data 540 

would also allow future re-use and form the basis of an invaluable historical archive, potentially usable for 541 

both AMR and pathogen tracking worldwide. While it is possible to identify thousands of AMR genes from 542 

environmental samples using functional metagenomics, and then track them using shotgun sequencing, 543 

their association to drug use and potential risk to human and animal health requires much further work to 544 

inform effective drug policies. 545 
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We found that the metagenomic resistome varied significantly in livestock, with large differences between 546 

the pig and poultry reservoir, but also within each livestock species, in a country-dependent manner. 547 

Within each country, we found different levels of variation, with some countries having more homogenous 548 

herds than others. Differences were seen both in total AMR abundance, but also abundances of AMR types 549 

and specific genes, including clinically relevant AMR genes. Some of this variation, we attributed to 550 

differential drug usage between the countries. We also identified the microbiome background as an 551 

important factor in determining the resistome in livestock, but found the strength of the association was 552 

country-dependent, at least in pigs. Interestingly, we found that AMR richness in one livestock species in a 553 

country is linked to the abundance in another livestock species. Finally, we observed some indications that 554 

newly described AMR genes from functionally metagenomic studies, might not provide AMR functionality 555 

when expressed in their natural host, even though they have the potential at the right expression levels in 556 

the right organism.  557 

Data availability 558 

The DNA sequences (reads) from the 363 metagenomic samples from the 359 herds are deposited in the 559 

European Nucleotide Archive (ENA) under the project accession number PRJEB22062. 560 
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