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Abstract. 

In diseases of many parenchymatous organs, heterogenous detoriation of individual 

functional units determines the clinical prognosis. However, the molecular characterization of 

these subunits remains a technological challenge that needs to be addressed in order to 

better understand pathological mechanisms. Sclerotic and proteinuric glomerular kidney 

disease is a frequent and heterogeneous disease which affects a fraction of nephrons, 

glomeruli and draining tubules, to variable extents, and for which no treatment exists. Here, 

we developed and applied an antibody-independent methodology to investigate 

heterogeneity of individual nephron segment proteomes from mice with proteinuric kidney 

disease. This “one-segment-one-proteome-approach” defines mechanistic connections 

between upstream (glomerular) and downstream (tubular) nephron segment populations. In 

single glomeruli from two different mouse models of sclerotic glomerular disease, we 

identified a coherent protein expression module consisting of extracellular matrix protein 

deposition (reflecting glomerular sclerosis), glomerular albumin (reflecting proteinuria) and 

LAMP1, a lysosomal protein. This module was associated with a loss of podocyte marker 

proteins. In an attempt to target this protein co-expression module, genetic ablation of 

LAMP1-correlated lysosomal proteases in mice could ameliorate glomerular damage. 

Furthermore, individual glomeruli from patients with genetic sclerotic and non-sclerotic 

proteinuric diseases demonstrated increased abundance of lysosomal proteins, in 

combination with a decreased abundance of the mutated gene products. Therefore, 

increased glomerular lysosomal load is a conserved key mechanism in proteinuric kidney 

diseases, and the technology applied here can be implemented to address heterogeneous 

pathophysiology in a variety of diseases at a sub-biopsy scale. 
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Introduction 

Many organs consist of repetitive functional subunits at the scale of a few 

micrometers, among these are islets of the pancreas, liver lobules and kidney nephrons. In a 

variety of diseases, decay in individual unit function and morphology determines organ 

function and clinical prognosis (for examples, see (1–4)). Since morphologies (as obtained in 

histology of biopsies) are frequently ambiguous, it has long been hoped that molecular 

patterns in native biomaterial provide a “molecular diagnosis”, thereby revealing treatment 

options and personalized prognosis. In fact, in many of these diseases, transcriptomic 

patterns have been analyzed and yielded first insights into classification and mechanisms of 

diseases (“integrative genomics”) (5–8). However, transcripts can only partially explain 

protein abundances, which is why the attention is shifting towards proteome data, especially 

in its targeted form (9). Unfortunately, only a few, highly specialized analytical pipelines 

analyzing pathophysiological processes at the functional unit level are developed, and they 

have not been applied to human disease samples so far, mainly because the mass 

spectrometer sensitivity is commonly considered to be insufficient (10). Immunostainings are 

an alternative approach. However, antibodies have a number of other limitations, among 

these recognition of unspecific epitopes, limited multiplexity and inaccurate quantification of 

signal intensities caused by background signals, autofluorescence and signal saturation (11, 

12). Finally, single cell approaches, although powerful in assessing heterogeneity, disrupt the 

initial tissue structure and allow only limited insights into extracellular matrix protein 

abundance, a strong pathological criterion in a variety of fibrotic and chronic diseases. 

Therefore, antibody-independent mass spectrometry-based proteome analysis at the 

functional unit level would be a valuable alternative to approach patho-mechanisms and 

molecular diagnosis in human diseases.    

The human kidney is one of the most complex parenchymatous organs and consists 

of up to one million functional units, the nephrons. Each nephron consists of a renal 

glomerulus, the filtration barrier, and the draining tubule. The glomerulus is the site of the 

filtration barrier which consists of podocytes, endothelial cells and the glomerular basement 

membranes. The ultrafiltrate is passed to a draining tubule which consists of various 

segments with defined functions. Chronic kidney disease (CKD) is one of the most severe 

risk factors for cardiovascular events and stroke, and is characterized by individual nephron 

function decay (13). Decay in glomerular function is diagnosed frequently as proteinuric 

kidney disease, such as in focal segmental glomerulosclerosis (FSGS). FSGS is triggered by 

a variety of causes, including genetic mutations (WT1, NPHS1), and chemical and 

inflammatory stimuli (14). These insults lead to loss of podocyte function and sclerosis, 

typically in a heterogenous pattern.   
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Here, we introduce a scalable method to directly extract quantitative proteomic 

information from single units of the kidney - single glomeruli and single tubule segments. 

With this technology we are able to quantify the proteomes in kidney nephron segments – 

glomeruli and tubules – consisting of as little as 200 cells (15) and monitor podocyte marker 

proteins from as little as 80 podocytes per glomerulus independently of antibodies (16). We 

here develop an analytical pipeline to integrate causative disease mechanisms in 

heterogeneous nephron populations at a sub-biopsy scale. 

 

Results and discussion 

To analyze the proteome of a single glomerulus, we modified a protocol which was 

designed for very small sample amounts (17). Commonly used C18 based sample 

preparation protocols utilize relatively large volumes and has a sub-optimal sample recovery 

rate. In contrast, this protocol minimizes sample loss by tight binding of proteins and peptides 

to carboxylated magnetic beads during protein purification (Fig. S1A), making it compatible 

with most comprehensive lysis buffers (up to 10% SDS). We microdissected wildtype mouse 

glomeruli and subjected them – one at a time – to proteomic analysis (Fig. S1B). The 

ultrasensitive sample preparation method largely outperformed the C18-based, “standard” 

sample preparation (stagetips, Fig. S1C). Proteomic analysis by LC-MS/MS showed a 

substantial ion current signal from a single mouse glomerulus (Fig. 1A). Expectedly the 

method was even more successful for larger human glomeruli (Fig. 1B). The single 

glomerulus datasets contained core podocyte proteins such as nephrin, ACTN4, podocin and 

CD2AP, proteins of the basement membrane such as collagen type 4 and markers of 

mesangial cells such as desmin. Next, we analyzed the proteome of anatomically defined, 

microdissected mouse tubule segments, which is to our knowledge the first proteomic 

analysis of these structures that complements recent transcriptome acquisitions (18). Again, 

shotgun proteomic analysis could clearly distinguish single proximal tubules (S1 segments), 

thick ascending limbs and cortical collecting ducts by means of known marker protein 

expression (Fig. 1C) and on global proteome level (Fig. S2A,B). Expectedly, thicker 

segments yielded more peptides than thinner segments, such as thick acending loop of 

Henle (Fig. S2C). In proximal tubules, the data covered more than 1500 proteins, and the 

abundance spanned 4 orders of magnitude in single tubules (Fig. S2D). In a similar fashion, 

we also determined the proteome of single proximal tubules from humans (Fig. S2E-F). 

Since proteomes from single functional units could be resolved, we studied a disease 

model of WT1 haploinsufficiency. WT1 is a podocyte-specific transcription factor controlling 

expression of various podocyte-specific genes, Wt1het mice develop proteinuria and partially 
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sclerotic lesions at the age of 14 weeks resembling FSGS (19). Shotgun proteomics 

applications, as utilized above for initial testing of the method, are inherently limited due to 

stochastic acquisition and undersampling (20). To address heterogeneity and protein 

expression wiring independently of stochastic acquisition, we set up a targeted proteomics 

assay, specifically parallel reaction monitoring (PRM). We developed a “podocyte function 

sentinel assay” which comprises 20 proteins (41 peptides), that were selected based on the 

known, genetically verified importance for podocyte function, and which were all detected in 

the global glomerular proteomes (Table S1). We quantified these proteins using the assay in 

single glomeruli from mice heterozygous for the transcription factor WT1 (Wt1het) and 

wildtype mice (n=3 mice per group, n=7 single glomeruli/mouse) (Table S2). We found that 

albumin, as well as the extracellular matrix (ECM) proteins collagen type IV and laminin were 

significantly increased in single glomeruli from Wt1het mice (Fig. 1D), a finding consistent 

with FSGS and proteinuria in these animals (Fig. S3 A,B). Yet, a large variation between 

different glomeruli was observed (Fig. S3 C illustrates some of the individual measurements 

for proteins). To illustrate this heterogeneity, we calculated the correlation of all proteins 

across all glomeruli (correlations with each other), and performed hierarchical clustering of 

the correlation coefficients. As an example, a strong correlation also occurred between 

laminin 5 and the lysosomal marker LAMP1 (Fig. 1E). LAMP1 and ACTN1/4 correlated 

negatively (Fig. 1E). For some proteins, there was no correlation i.e. between nephrin and 

ACTN1/4 (Fig. 1E).   

Next, we analyzed the proximal tubule of the same proteinuric mice. Proximal tubules 

alter their physiological function due to proteinuria and overwhelming albumin uptake (21). 

To assess this systematically, we again developed a proteomics sentinel assay to survey 

proximal tubule status. In total, we monitored 74 proteins that are determining key 

physiological proximal tubule function (such as metabolite transporters, the Na+/K+-ATPase 

and key signaling molecules, Table S3). We isolated proximal tubules from the same Wt1het 

knockout mice as described above and applied the tubule sentinel PRM assay (n=3 mice per 

group, n= 7 tubules/mouse). In isolated S1 tubular segments, initial correlational analysis 

revealed distinct clusters of proteins highly associated with each other. Overall regulation of 

proteins was not determined by known mRNA expression patterns of the different proximal 

tubule subtypes (S1, S2 or S3, based on (18); Fig. S4A). One of the key tasks of the 

proximal tubule is the reabsorption of metabolites, such as amino acids, and disruption of this 

function results in aminoaciduria, which is occasionally observed in nephrotic patients (22, 

23). Quantitative analysis (Wt1het vs wildtype) revealed that the amino acid carriers 

SLC3A1, SLC13A3 and SLC6A20a/b were decreased in single Wt1het mouse proximal 

tubules (Fig. 1F). Interestingly, only a few tubules regulated these transporters: those 

particular tubules that expressed low abundance of these transporters contained high 
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expression of other amino acid transporters with overlapping amino acid transport spectrum 

(Fig. S4A). Furthermore, these tubules also showed increased abundance of albumin and 

collagen type 4 (Fig. 1F, Fig. S4A). Consistent with the stochastic decrease in these three 

transporters, we found moderately increased levels of urinary lysine (one of the substrates of 

SLC3A1 (24)) and proline (one of the substrates of SLC6A20 (25)), and glutamate (one of 

the low-affinity substrates of SLC13A3 (26)) in the urine of proteinuric mice (Fig. 1G) – 

changes in the other amino acids were not significant (Fig. S4B). These data demonstrate 

that single-segment proteomics can reflect pathomechanisms in proteinuric kidney disease.  

We decided to follow up on the glomerular function in a second FSGS model using 

single glomerular proteomics analysis and the same sentinel assay. We used the model of 

doxorubicin (trade name: Adriamycin) induced FSGS and proteinuria (Fig. S5). We found 

that in contrast to the Wt1het FSGS model, there was a significant decrease in nephrin (gene 

symbol Nphs1) in these glomeruli (Fig. 2A, Table S4). To determine similarities of the Wt1het 

and the doxorubicin damage models, we compared fold changes of the observed proteins 

between both datasets, unraveling that albumin, laminin, collagen and LAMP1 were 

upregulated in both models, and ACTN1/4 and CD2AP were decreased in both models (Fig. 

2B). We plotted correlation coefficients between all protein pairs in both the doxorubicin 

model and the Wt1het model (Fig. 2C). Interestingly, a common finding between both models 

was the positive correlation of the lysosomal marker LAMP1 with glomerular albumin and 

ECM proteins, both markers of glomerular damage (Fig. 2C, upper right quadrant). Thus, for 

a number of proteins, co-expression is wired across single glomeruli and across damage, 

and LAMP1 expression was connected with extracellular matrix and albumin amount in 

single glomeruli in two models, suggesting that an increase in LAMP1 is a common hallmark 

of the glomerular kidney diseases examined. 

LAMP1 is a structural protein of the lysosome, and may thus not be suitable as a key 

therapeutic target in renal disease. Therefore, we focused on components of the lysosomes 

of higher accessibility which could be better druggable targets. Cathepsin L but also other 

cathepsin proteases are expressed in cultured podocytes and possibly functional in 

podocytes based on degradomics data (27–30). Since cathepsins can also act outside of 

lysosomes (31), we investigated whether lysosomal (LAMP1) abundance is linked to 

cathepsin abundance. To this end, we designed a targeted proteomic assay to monitor the 

expression of the three proteases (cathepsin B, L, and Z) and LAMP1 (Table S5). In single 

glomeruli of the Wt1het model of podocyte damage, there was a significant increase of 

cathepsin B and Z, while cathepsin L was increased, but not significantly (Fig. 2D). Both 

cathepsin B and cathepsin L correlated significantly (p<0.0001) with LAMP1 abundance (Fig. 

2E). Somewhat similar, in single glomeruli from proteinuric doxorubicin-treated mice, 
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cathepsin B and Z were found to be increased (Fig. 2F), and both cathepsin B and Z 

significantly correlated with LAMP1 abundance (Fig. 2G). To systematically test if LAMP1-

correlated cathepsins may be causative for glomerular damage, we used constitutive 

knockout mice for cathepsin B, L and Z. Under baseline conditions, the knockout animals 

were not proteinuric (Fig. S6A). However, all three knockout strains, especially cathepsin B 

knockouts, showed more resistance and faster recovery after glomerular damage upon 

podocyte injury induced by nephrotoxic serum (Fig. 2H, Fig. S6B). These findings 

demonstrate that single unit proteomic analysis of glomeruli can resolve orchestrated 

glomerular cathepsin activity, thereby adding LAMP1-correlated cathepsin B as an important 

causal mediator in different modes of glomerular injury.  

We found that in two independent models of glomerular disease, LAMP1 was part of 

a protein co-expression module consisting also of cathepsin proteases, albumin and ECM 

proteins. Therefore, we asked if this module of proteins could also be found to be disease 

driving in human proteinuric kidney diseases. We compared the proteome of single glomeruli 

from patients with nephrotic syndrome with those from tumor nephrectomy samples from 

adult patients, and again measured the proteome of each single one separately. In single 

glomeruli from a nephrectomy sample from a five year old patient with primary idiopathic 

steroid-resistant FSGS, abundance of LAMP1 and SCARB2, an alternative lysosomal marker 

protein was significantly increased (Fig. 3A). In addition, increased abundance of 

extracellular matrix proteins was detected compared to a control kidney (Fig. 3A). We also 

microdissected and measured single glomeruli from nephrectomy samples from two patients 

with congenital nephrotic syndrome and MCD caused by nephrin (NPHS1) mutation. (Table 

S6 for the dataset, Table S7 for details on the clinical presentation, and Fig. S7 for histology 

of patients and controls). We identified more than 2000 proteins in this dataset and quantified 

more than 1000 proteins in all samples. There was a strong reduction of nephrin (NPHS1) in 

the samples obtained from the glomeruli with NPHS1 mutation (Fig. 3B), and lysosomal 

marker LAMP1 was increased. These results could be confirmed when comparing single 

glomeruli of the second NPHS1 patient with those of a second control kidney (Fig. 3C). As an 

ancillary finding, we found reduced amounts of mitochondria in all three datasets analyzed as 

compared to control cells (Fig. S8). Furthermore, the mass spectrometry data was consistent 

with the histopathological diagnosis of an enlarged mesangial matrix in one patient (Fig. 3D), 

which translated into an increased fraction of collagen proteins in the single glomerular 

proteomes (Fig. 3D). To see if we could reduce the amount of tissue even more, we used 

laser dissection microscopy from 10µm thick cryosections. We could obtain clear glomerular 

or tubular proteome patterns which included important mediators of podocyte signaling by 

proteomic analysis (Fig. S9).  
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To summarize, we successfully applied advanced sample preparation (32) to analyze 

protein composition of kidney tissue at a single-unit level resolution. The “one-glomerulus-

one-proteome” approach described herein allows studying correlated variation of molecular 

markers across nephrons and within a kidney, and to functionally link them to both 

morphology and physiology (Fig. 3E). An LMD-coupled proteomics approach to glomerular 

disease has shown great success for identifying high abundant extracellular proteins and 

thereby identifying novel disease mechanisms (33). By improving sensitivity, and utilizing 

targeted proteomics, we here obtain molecular information also on lower-abundant 

intracellular signaling proteins from individual glomeruli, which allows definition of correlative 

modules. These can be targeted therapeutically, and we identify cathepsin B, LAMP1, 

extracellular matrix proteins and albumin as key components of a disease-driving protein 

module. Historically, our understanding of renal physiology is derived from the functional 

analysis of rodent single nephron segments such as kidney tubules (34) or glomeruli (35). 

Here, we utilize these techniques to allow assessment of physiological and molecular 

variability in diseases. By converting tissue at the sub-biopsy level into computable datasets, 

single unit proteomics can uncover disease-driving protein modules which connect 

morphology and function across segments and individuals. Leveraging intraindividual 

variability of protein expression within functional units can serve as a blueprint to understand 

pathobiology also in other organs with similar-sized repetitive functional units. 
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Figure 1: Development of a single segment proteomic method and application to renal 

segments of the WT1 heterozygous mouse. A. Total ion current during LC-MS/MS 

acquisition of samples from 0 (vehicle solution only) and 1 mouse glomerulus. B. 

Comparison of identified peptides from mouse and human glomeruli as determined by 

ultrasensitive proteomics and MaxQuant analysis (n = 12 single glomeruli from 3 mice and n 

= 18 single glomeruli from three humans). + = mean, - = median, * = p<0.01 in a two-tailed t-

test. Boxes indicate 25-75% percentile. Outliers beyond the 95% percentile are marked with 

dots. C. Analysis of single, microdissected tubules from mouse kidney cortex. S1 proximal 

tubules, cortical thick-ascending limb (TAL) and cortical collecting ducts (CCDs) are clearly 

discernible by proteomic analysis as compared to “empty” (0) samples. A selection of 

proteins is clustered with their gene symbol. The proteins in the first three rows are non-

segment specific tubular proteins such as Na/K ATPase (Atp1b1). D. Volcano plot of single 

glomeruli. Proteomics analysis of glomeruli obtained from a WT1 heterozygous KO mouse 

(Wt1het) and wildtype mice as controls. Negative log(p-value) of a two-tailed t-test is plotted 

against a log2 fold change of Wt1het/wildtype. Quantification is based on n=20 single 

glomeruli from n=3 different Wt1het animals, and n=20 single glomeruli from n=3 different 

wildtype controls. E. Hierarchical clustering of correlation coefficients across samples. F. 

Volcano plot quantification of single S1 tubules microdissected from wildtype vs control mice. 

Amino acid transporters are marked with blue, and other transporters are indicated in red. G. 

Selective aminoaciduria of proteinuric Wt1het mice for proline (a substrate of SLC6A20), and 

lysine (a substrate of SLC3A1) and glutamate (a lower-affinity substrate of SLC13A3). n=6, * 

p<0.05 two-tailed t-test. 
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Figure 2: Individual glomeruli analysis reveals a disease-driving module of protein 

expression in glomerular disease. A. Volcano plot of single glomeruli proteomics analysis 

of glomeruli obtained from doxorubicin treated and wildtype mice as controls. Negative log(p-

value) of a two-tailed t-test is plotted against a log2 fold change of doxorubicin/vehicle. 

Quantification is based on n=19 single glomeruli from n=3 different animals treated with 

doxorubicin, and n=19 single glomeruli from n=3 different animals treated with vehicle. B. 

Correlational analysis of proteins across samples. B. Comparison of log2 fold changes 

between doxorubicin and Wt1het podocyte damage model. Proteins of interest are marked in 

red with their gene symbol. The housekeeping protein actin (Actb, depicted in black) remains 

unchanged in both models. C. Comparison of Pearson’s coefficient between doxorubicin and 

Wt1het podocyte damage model. Each dot is a correlation pair. D. Fold change comparison 

of normalized cathepsin B, L, Z and LAMP1 expression in single glomeruli from Wt1het and 

wildtype animals as determined by parallel reaction monitoring. n=16 (control) vs n= 18 

(Wt1het) glomeruli from 3 different animals. *p<0.05 in a two-tailed t-test. Boxes indicate 25-

75%; and whiskers indicate the 97.5% interval. Median is indicated by a line, mean is 

indicated by a +. Outliers are marked as dots. E. Correlation analysis of cathepsin B, L, Z 

and LAMP1 over all single glomeruli from Wt1het and wildtype animals. Pearson’s R is 

clustered according to maximum distance. F. Fold change comparison of cathepsin B, L, Z 

and LAMP1 in single glomeruli from vehicle and doxorubicin treated animals. n=17 (vehicle) 

vs n=18 (doxorubicin). G. Correlation analysis of cathepsin B, L, Z and LAMP1 in single 

glomeruli from vehicle and doxorubicin treated mice. H. Proteinuria (expressed as albumin-

creatinine ratio) of cathepsin B, L and Z knockout mice with and without glomerular injury 

mediated by nephrotoxic serum (NTS). *p<0.05 in a one-way ANOVA followed by Tukey’s 

post test) 
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Figure 3: Application of ultrasensitive proteomics on patient material identifies 

causative mechanisms and increased lysosomal abundance. A. Application of 

ultrasensitive proteome analysis to single glomeruli from a five year old male patient with 

primary and idiopathic FSGS; and comparison to a control kidney. Extracellular matrix 

proteins (green) are increased in glomeruli from FSGS. LAMP1 and SCARB2, two lysosomal 

markers (marked in black), are increased in FSGS. N = 6 glomeruli/patient. All test are two-

tailed t-tests, with the significance of the test (-log10) plotted against the log2 fold change of 

disease/control. The curved line determine significance after correction for multiple testing 

(FDR = 0.05. s0 = 0.1). B. Application of ultrasensitive proteome analysis to single glomeruli 

from one patient (NPHS1 patient 1, n = 7 single glomeruli per patient) with congenital 

nephrotic syndrome and NPHS1 mutation; and comparison to a control kidney (control 1, n = 

7 single glomeruli). Proteins known to cause genetic glomerular disease are labeled with 

their gene symbols (pink: actin cytoskeletal proteins, blue: slit diaphragm proteins, and black: 

other proteins of interest).  C. Application of ultrasensitive proteome analysis to single 

glomeruli from a patient (patient 2) with congenital nephrotic syndrome, minimal-change 

disease and NPHS1 mutation; and comparison to a control kidney. N=8 glomeruli. Color 

coding as in Panel B. D. Methenamine-Silver staining of the four patients analyzed in this 

study, and fraction of iBAQ belonging to collagens in the corresponding datasets. *p<0.05 in 

a one-way ANOVA with Tukey’s post-test. E. Summary of discovered protein modules 

discovered by individual nephron proteomics to connect morphology and function. Double-

headed arrows indicate correlation of protein expression. Black = positive correlation, red = 

negative correlation.  
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