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Abstract1

Cytotoxic T lymphocytes (CTLs) have been suggested to play an important role in controlling human2

immunodeficiency virus (HIV-1 or simply HIV) infection. HIV, due to its high mutation rate, can3

evade recognition of T cell responses by generating escape variants that can not be recognized by4

HIV-specific CTLs. Although HIV escape from CTL responses has been well documented, factors5

contributing to the timing and the rate of viral escape from T cells have not been fully elucidated.6

Fitness costs associated with escape and magnitude of the epitope-specific T cell response are general-7

ly considered to be the key in determining timing of HIV escape. Several previous analyses generally8

ignored the kinetics of T cell responses in predicting viral escape by either considering constant or9

maximal T cell response; several studies also considered escape from different T cell responses to be10

independent. Here we focus our analysis on data from two patients from a recent study with relatively11

frequent measurements of both virus sequences and HIV-specific T cell response to determine impact12

of CTL kinetics on viral escape. In contrast with our expectation we found that including temporal13

dynamics of epitope-specific T cell response did not improve the quality of fit of different models to14

escape data. We also found that for well sampled escape data the estimates of the model parameters15

including T cell killing efficacy did not strongly depend on the underlying model for escapes: models16

assuming independent, sequential, or concurrent escapes from multiple CTL responses gave similar17

estimates for CTL killing efficacy. Interestingly, the model assuming sequential escapes (i.e., escapes18

occurring along a defined pathway) was unable to accurately describe data on escapes occurring19

rapidly within a short-time window, suggesting that some of model assumptions must be violated20

for such escapes. Our results thus suggest that the current sparse measurements of temporal CTL21

dynamics in blood bear little quantitative information to improve predictions of HIV escape kinetics.22

More frequent measurements using more sensitive techniques and sampling in secondary lymphoid23

tissues may allow to better understand whether and how CTL kinetics impacts viral escape.24
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an immunodeficiency virus.27
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1 Introduction29

In 2014, the number of people living with human immunodeficiency virus 1(HIV-1 or simply HIV)30

was estimated as 36.9 million [50], with roughly 2 million new HIV infections and 1.2 million people31

dead of HIV-induced diseases (AIDS) [51]. Cytotoxic CD8+ T lymphocyte (CTL) responses play32

an important role in control of virus replication [6, 38] by modulating some important predictors of33

disease progression (e.g., viral set-point and the rate of CD4+ loss rate [46]). Generation of HIV-34

specific CD8+ T cells by vaccination is one of the current approaches in developing HIV vaccines35

[23, 49]. However, HIV is able to generate mutants (termed “CTL escape mutants”) that are not36

recognized by HIV-specific T cells, which may be one of the reasons for failure of T cell based vaccines37

[3, 21, 44]. Better understanding of mechanisms of viral escape and principles governing CD8+ T cell38

responses to HIV may allow us to evaluate in silico a potential efficacy of T cell-based HIV vaccines.39

Viral escape from CTL responses follows a somewhat predictive pattern with more dominant40

(larger magnitude) CTL responses leading to earlier viral escape [4, 31]. However, not every CTL41

response elicits an escape and sometimes viral mutations occur in regions predicted to be recognized42

by CTLs but in the absence of detectable response [20]. To understand the timing and kinetics43

of CTL escape in HIV/SIV infection, mathematical models have been proposed previously on the44

dynamics of viral escape from a single CTL response (e.g., [2, 12, 15–17, 33, 42]). These initial45

models made a strong assumption of independent viral escape — i.e., it was assumed that viruses46

escaping from different CTL responses do not compete. Recent work, however, suggested presence of47

clonal interference and genetic hitchhiking among immune escape variants through reconstruction of48

HIV whole genome haplotypes [39], and similar concurrent CTL escapes were observed in four HIV-49

infected patients [29]. Clonal interference was suggested to impact the estimates of the escape rates50

[18, 19]. Even though several models have been developed to describe the dynamics of escapes from51

multiple CTL responses (e.g., [16–19, 26, 48]), many of these studies involved only model simulations52

and did not use information on the actual kinetics of HIV-specific CTL responses in predicting viral53

escape.54

Here we explored whether including experimentally measured CTL kinetics improves description55

of the viral escape data. In doing so we compared predictions of three alternative models of viral56

escape from CTL responses such as independent escapes, sequential escapes, and concurrent escapes.57

In the first model (independent escapes) we assumed that escape from any given CTL response58

occurs independently of other escapes and directly from the wild-type, i.e., we ignored the effects of59

clonal interference – in essence assuming high effective population size and/or high recombination60

rate. Of note, several recent experimental papers also assumed independent escapes [4, 20, 31]. In the61

second model (sequential escape) we assumed that escapes from different CTL responses occur along a62

defined pathway, generally set by the sequences of escape occurrence in the data. This model assumes63

strong clonal interference which may arise at low effective population size or when recombination rate64

is low. Finally, in the third model (concurrent escape) we tracked all escape variants simultaneously65

thus allowing for co-existence of multiple escape variants (i.e., escapes could occur along multiple66

alternative pathways). Interestingly, we found that for well sampled data on virus evolution the67

estimated CTL killing efficacies were independent of the model for viral escape. Some escape data68

could not be well described by the sequential escape model for biologically reasonable parameters.69

Furthermore, explicitly taking CTL kinetics into account did not improve the quality of fit of different70

models to escape data. Our results suggest that CTL kinetics in the blood as it is currently available71

may bear limited information relevant to improve description of kinetics of HIV escape from CTL72

responses.73
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2 Materials and Methods74

2.1 Experimental data75

Experimental details of patient enrollment and data collection were described in detail previously76

[20, 31]. In short, data from 17 patients in the Center for HIV/AIDS Vaccine Immunology (CHAVI)77

infected acutely with HIV-1 (subtypes B or C) were analyzed in great detail. All patients were infected78

with a single transmitted/founder (T/F) virus as determined by the single genome amplification and79

sequencing (SGA/S), and there were enough samples to accurately quantify CTL response to the80

whole viral proteome. In each patient, the kinetics of virus-specific CTL (CD8+ T cell) responses81

were measured using peptide-stimulated IFN-γ ELISPOT assay and/or intracellular cytokine staining82

(ICS) six months after enrollment using peptides matched to the founder virus sequence [20, 31]. For83

CTL responses measured by ELISPOT, the reported magnitude of the response was the number of84

cells, producing IFN-γ, per 106 peripheral blood mononuclear cells (PBMC). Multiple viruses were85

sequenced by SGA/S, and all sequences were compared at cites coding for CTL epitopes and changes86

in the percentage of transmitted (wild-type) sequences were followed over time [31]. The dynamics of87

the HIV-specific CTL responses and viral escape from epitope-specific CTL responses were measured88

longitudinally. Escape mutants were identified as viral variants with mutations in regions recognized89

by patient’s CTL responses with a reduced (or fully abrogated) production of IFN-γ following T90

cell stimulation. In many cases mutation in a single position was responsible for the escape. In our91

analysis all viral variants which did not have the wild-type amino acid in the epitope region were92

considered as escape variants.93

Review of the virus evolution and CTL dynamics data in all 17 patients revealed some data94

limitations. In particular, data for many patients lacked adequate temporal resolution to accurately95

estimate virus escape rates. In the vast majority of viral escape variants, escapes often occurred96

rapidly between two sequential time points with the frequency of the escape variant jumping from97

0 to 1. While previously it was suggested that such data may be modified to provide an estimate98

of the escape rate [2, 12, 16], such approaches may lead to biased parameter estimates [26]. While99

development of a method for unbiased estimation of escape rate from sparse data is ongoing (Ganusov100

et al., ms. in preparation), for this analysis we focused on patients CH131 and CH159 in which viral101

escape rates could potentially be accurately estimated due to sufficiently frequent sampling. While102

data from these patients were presented before [31], linking of escape and CTL response dynamics103

was not yet performed.104

2.2 Model of viral escape from a single CTL response105

Models describing the dynamics of viral escape from a single cytotoxic T lymphocyte (CTL) response106

have been developed and adopted by different researchers (e.g., [2, 12, 15–17]). Here we start with107

the basic model formulated earlier [17], and extend it to viral escape dynamics from multiple CTL108

responses. The model of viral escape from a single CTL response can be extended from the basic109

viral dynamics model [40] in the following way:110
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dT (t)

dt
= s(T0 − T (t))− βwT (t)Vw(t)− βmT (t)Vm(t),

dIw(t)

dt
= βw(1− µ)T (t)Vw(t)− δIw(t)− kIw(t),

dIm(t)

dt
= βmT (t)Vm(t) + βwµT (t)Vw(t)− δIm(t),

dVw(t)

dt
= pwIw(t)− cvVw(t),

dVm(t)

dt
= pmIm(t)− cvVm(t),

(1)

where T (t) is the density of uninfected target cells; Iw(t) and Im(t) is the density of target cells111

infected by the wild-type or escape variant viruses, respectively; Vw(t) and Vm(t) is the density of112

wild-type or escape variant viruses, respectively; s is the turnover rate of uninfected target cells; T0113

is the preinfection level of uninfected target cells; βw and βm is infection rate of wild-type or escape114

variant viruses, respectively; µ is the probability of mutation from wild-type to escape mutant during115

reverse transcription of viral RNA into proviral DNA; δ is the death rate of infected cells due to viral116

pathogenicity; k is the killing rate of wild-type virus infected cell due to CTL response; pw and pm is117

the rate at which cells infected by wild-type or escape mutant viruses produce viruses; and cv is the118

clearance rate of free viral particles.119

In this model (eqn. (1)), we assume that target cells infected by wild-type (Vw(t)) and escape120

viruses (Vm(t)) differ by two factors: viral infectivity (βw and βm) and the rate of virus production121

(pw and pm). Given that in vivo viral particles are short-lived [41, 43], to a good approximation122

we may assume a quasi steady state for the virus particle concentration leading to V ∗
w(t) =

pw
cv
Iw(t)123

and V ∗
m(t) =

pm
cv
Im(t). We define a fitness cost c = 1 − βmpm

βwpw
, where c can be positive or negative.124

Positive c means true fitness cost of escape mutations, that is escape variant has a lower replication125

rate (βmpm ≤ βwpw) [45], and negative c implies fitness advantage of escape virus [45, 52]. By126

straightforward calculation, the system (eqn. (1)) can be written as127

dV ∗
w(t)

dt
= [(1− µ)r(t)− δ − k]V ∗

w(t),

dV ∗
m(t)

dt
= [(1− c)r(t)− δ]V ∗

m(t) + µr(t)V ∗
w(t)

pm
pw

,
(2)

For convenience, we replace V ∗
w(t) and V ∗

m(t) by w(t) or m(t), respectively, and assume that the128

wild-type and escape viruses differ only in the rate of infectivity (that is βw ≥ βm and pw = pm) [20],129

the system (2) can be simplified as130

dw(t)

dt
= [(1− µ)r(t)− δ − k]w(t),

dm(t)

dt
= [(1− c)r(t)− δ]m(t) + µr(t)w(t),

(3)

where r(t) = βwpw
cv

T (t) is the replication rate of cells infected by wild-type virus, and c = 1 − βm

βw
is131

the cost of the escape mutation defined as a selection coefficient. The frequency of the escape variant132

in the whole population is given by f(t) = m(t)
w(t)+m(t)

. This is perhaps the simplest model for a viral133

escape from a single CTL response. This is denoted as model 1 in the paper.134
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2.3 Models of viral escapes from multiple CTL responses135

Mathematical model given in eqn. (3) tracks changes in densities of wild-type virus and a single136

variant that has escaped recognition from a single epitope-specific CTL response. In acute HIV137

infection, the virus can escape from recognition of multiple CTL responses, which are specific to138

several viral epitopes [20, 47]. Several models have been developed to describe the dynamics of139

escapes from multiple CTL responses (e.g., [16, 17, 48]). Our model is an extension of previous140

models [16, 17] incorporating mutations from wild-type virus to different viral escapes. In contrast141

with previous studies in our analyses here we used experimentally measured time courses of different142

CTL responses [31].143

To track the dynamics of viral escape from multiple responses, we assume that there are in total144

n CTL responses that control viral growth, and virus can potentially escape from all n responses. We145

use mi to denote the density of variants where i is a vector i = (i1, i2, ..., in) denoting the positions146

of n epitopes, and we define ij = 0 if there is no mutation in the jth CTL epitope and ij = 1 if there147

is a mutation leading to an escape from the jth (1 ≤ j ≤ n) CTL response. We denote the set of148

escape variant as I, that is i ∈ I. The wild-type variant is then denoted as (0, 0, . . . 0).149

For our analysis, we neglect recombination and backward mutation from mutant to wild-type.150

We use ki, ci and µi to denote killing rate due to ith CTL response, cost of escape mutation from151

the ith CTL response and mutation rate for the ith epitope, respectively. Due to a small rate of152

double mutation [34], we assume that escape virus is generated with only one mutation in a single153

generation. That is for two escape variants mi = m(i1,i2,...,in) and mj = m(j1,j2,...,jn), we define the154

mutation rate Mi,j from mi to mj as µk, if and only if mj has only one more mutation at position155

k than mi and all other positions are exactly same. For example, when there are 3 CTL responses,156

the mutation rate from m(1,0,0) to m(1,1,0) is µ2, and the mutation rate from m(0,0,0) to m(1,0,1) is 0.157

Assuming multiplicative fitness (detailed deviation is given in Section S2 in Supplement), that is, the158

fitness cost of a variant i = (i1, i2, ..., in) is Ci = 1 −
∏n

j=1(1 − cjij). The death rate of the escape159

variant i = (i1, i2, ..., in) due to remaining CTL responses is given by Ki =
∑n

j=1 kj(1− ij), where we160

assume that killing of infected cells by different CTL responses is additive.161

Similar to eqn. (3), the dynamics of the wild-type and escape variants are given by162

dmi(t)

dt
= [r(1− Ci)(1−

∑
j∈I

Mi,j)−Ki − δ]mi(t) +
∑
j∈I

r(1− Cj)Mj,imj(t), i ∈ I. (4)

We define M(t) =
∑

i∈I mi as the total density of all variants in the population, and fj(t)163

(j = 1, ..., n) is the fraction of viral variants that have escaped recognition from the jth CTL response.164

The frequency of a viral variant escaping from the jth response is given by165

fj(t) =
∑
i∈J

mi(t)/M(t), J = (i1, ...ij, ..., in) with ij = 1. (5)

Based on previous work [26, 28, 29], we assume that there are two alternative ways to generate166

escape mutants (Figure 1). The first way can be called “sequential” escape (model 2), that is167

escape mutants are generated sequentially along a defined path from wild-type viruses. This is likely168

to happen when the effective population size of HIV is small and when the rate of recombination is169

negligible. The second way can be described as “concurrent” escape (model 3), in which the virus170

can escape from n CTL responses simultaneously along multiple different pathways. This is likely to171

happen when the HIV effective population size is large. With n CTL responses, there are n escape172
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variants for “sequential” escape and 2n − 1 escape variants for “concurrent” escape in addition to173

the wild-type variant. For example, with n = 3 CTL responses, for “sequential” escape there are 3174

escape variants: m(1,0,0), m(1,1,0), and m(1,1,1) with m(0,0,0) being the wild-type virus. For “concurrent”175

escape there are 7 escape variants: m(1,0,0), m(0,1,0), m(0,0,1), m(1,1,0), m(1,0,1), m(0,1,1) and m(1,1,1) with176

m(0,0,0) being the wild-type virus (Figure 1). Detailed equations for both models with n = 3 CTL177

responses can be found in Supplement (Section S2). It is interesting to note that “sequential” escape178

is a simplification of “concurrent” escape when the effective population size is small. Previous work179

did not fully resolve whether CTL escapes in HIV infection occur sequentially of concurrently [26, 29];180

most likely the type of escape varies by patient.181

Figure 1: Escape paths for models 1, 2 & 3 with 3 CTL responses. For model 1, there are 3 escape variants:
m(1,0,0), m(0,1,0) and m(0,0,1). For model 2 there are also 3 escape variants: m(1,0,0), m(1,1,0), and m(1,1,1).
For model 3 there are 7 escape variants: m(1,0,0), m(0,1,0), m(0,0,1), m(1,1,0), m(1,0,1), m(0,1,1) and m(1,1,1). In
each case, m(0,0,0) is the wild-type virus.

2.4 Models for CTL response182

The killing rate ki of the CTL response specific to the ith epitope in all three models is composed183

of two parts: the per-cell killing efficacy of CTLs (k′
i) and the number of epitope-specific CTLs (Ei)184

[15]. Previously the killing rates ki were often set to a constant (e.g., [15, 17]), or were set to a certain185

form k′
ig(Ei(t)) where gi(E(t)) is a function of epitope-specific CTL responses Ei(t) (e.g., [1, 19]).186

With the measured epitope-specific CTL response dynamics [20], we adopted two forms of killing187

rate: constant ki (termed as “constant response”) or time-dependent killing rate k′
iEi(t) (termed as188

“interpolated/fitted response”). We used the “mass-action” killing term to describe effect of CTLs on189

virus dynamics because it is the simplest form, it involves minimum parameters, and it is supported190

by some experimental data [14].191

Based on the available time course information of epitope-specific T cell response Ei(t), we used192

the first-order interpolation function (termed as “interpolated response”) or the fitted response func-193

tion (termed as “fitted response”) by the Ton-Toff model [10] to quantify the kinetics of HIV-specific194

CTL responses. The Ton-Toff model assumes that the response starts with E0 epitope-specific CD8
+ T195

cells that become activated at time Ton. Activated T cells start proliferating at a rate ρ and reach the196

peak at time Toff. After the peak, epitopes-specific CD8+ T cells decline at a rate α. The dynamics197

of the CD8+ T cell response E(t) is given thus by the following differential equation:198

dE

dt
=


0, if t < Ton,

ρE, if Ton ≤ t ≤ Toff,

−αE, if t > Toff.

(6)

5
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with E(0) = E0. Here the “precursor frequency” E0 is a generalized recruitment parameter, which199

combines the true precursor frequency and the recruitment rate/time [9, 10]. Our recent work showed200

that this model (eqn. (6)) reasonably well describes kinetics of HIV-specific CTL responses in acute201

HIV infection (Yang and Ganusov (in review)). When fitting the model (eqn. (6)) to experimental202

data of CTL dynamics we changed all initial undetected response values from 0 to 1; the latter was203

the detection limit in the data.204

2.5 Statistics205

Previously, under the assumption that some mutants are present initially, researchers (e.g., [1, 15])206

fit a logistic model to data on viral escape kinetics by the method of nonlinear least squares [5]. In207

essence, this is a maximum likelihood method which assumes normally distributed residuals. While208

this standard statistical method provides reasonable parameter estimates it assumes equal weights to209

different data points independently of how many viral sequences were measured at every time point210

which is likely to be unrealistic for most experimental studies. Here we follow the method proposed211

recently [17] to use binomial distribution (and thus different weights for different measurements/time212

points) in the likelihood of the model given the escape data. For HIV escape from a single CTL213

response the log-likelihood function is given by214

L =

Ti∑
j=1

[aj ln(f(tj)) + (Nj − aj) ln(1− f(tj))], (7)

where aj is the number of escape variant sequences in a sample of Nj sequences at the sample time215

tj, Tj is the number of measured time points for a specific viral escape trajectory, and f(tj) is the216

predicted frequency of a specific viral escape variant at time tj. Model parameters were thus found217

by maximizing the log-likelihood function (eqn. (7)).218

To discriminate between alternative models under different parameter constrains we used cor-219

rected Akaike information criterion (AIC) scores [8]. The model fit with the minimum AIC score220

among tested models was treated as the best model; however, a difference of less than 3 AIC units is221

generally viewed as not significant [8]. To test the statistical significance of the differences between222

parameters found by fitting different models, we used a bootstrap approach [11]. In this approach we223

resampled the data 1000 times using the Random routine in Mathematica assuming beta distribution224

for sequencing data [7], fitted models to bootstrap samples, and recorded all estimated parameters.225

For the same parameter, we use either paired and unpaired t-test to compare the means from different226

models.227

Both fitness costs of escape mutations and the killing efficacy of the CTL response determine228

the kinetics of viral escape from T cells [2, 12, 15], and that viral escape (sequence) data in most229

cases are not sufficient to estimate both rates [15]. Therefore, in our analyses to avoid overfitting230

we set fitness cost of escape to zero ci = 0. In all fits we assumed that the rate of virus replication231

r = 1.5/day [40].232

While multiple models may be able to describe accurately experimental data, some models may233

do so at biologically unreasonable parameters. For example, estimated rate of mutation at different234

epitopes may be unrealistically large. Thus, in our analysis we assume that mutation rates which235

are above 10−3 are likely to be unrealistic given that currently estimated HIV mutation rate is about236

3.2×10−5 per bp per generation [34] and size of a CTL epitope is 8-10 amino acids (3×10×3.2×10−5 ≈237
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10−3).238

To fit the Ton-Toff model (eqn. (6)) to experimental data using non-linear least squares we log-239

transformed the model predictions and the data.240

When interpolating CTL response kinetics, there was often not enough information on the starting241

point (day 0). In such situations we set the initial CTL density as 1 (the detection level for this data242

set) for simplicity. Other starting points (e.g., intersection point of the CTL response axis and the243

reverse extension line of the interpolation function) were also tested and led to similar results (not244

shown). This was largely due to the fact that in our models CTLs at low densities are not expected245

to exert large selective pressure on the virus population due to assumed mass-action killing term.246

3 Results247

3.1 Statistical model impacts estimation of the escape (killing) rate248

Given virus evolution data we may be often interested in quantifying selecting pressures driving249

specific changes in the virus population. Following HIV-1 infection, the virus escapes from several250

cytotoxic T lymphocyte (CTL) responses [36], and multiple studies used mathematical models of251

various levels of complexity to estimate the predicted efficacy at which CTLs recognize and eliminate252

cells, infected with the wild-type (unescaped) virus [2, 12, 15–17, 26]. Many of these previous stud-253

ies estimated the rate of HIV escape from immunity using nonlinear least squares which explicitly254

assumes normal distribution of the deviations between model predictions and data [2, 12, 15, 16].255

However, the assumption of normally distributed residuals is likely to be violated for data when only256

a handful of viral genomes are sequences – which is common in many studies involving single genome257

amplification and sequencing techniques (SGA/S). We have recently proposed to use a likelihood258

approach which assumes virus genome sampling to follow a binomial distribution [17]. This bino-259

mial distribution-based likelihood approach showed to impact the estimates of the CTL killing rate260

(escape rate can be proportional to the killing rate under an assumption of constant CTL response)261

when compared to normal distribution-based likelihood approach (least squares) [17]. However, this262

previous comparison was done on data which were fairly sparse and comparison involved modifica-263

tions of data to allow for non-zero and non-one frequencies of the escape variant [2, 12], and thus, it264

remained unclear if estimates of escape rates are truly dependent on the statistical model for better265

sampled data.266

Unfortunately, in our cohort of 17 patients [31] very few patients were sampled frequently enough267

to observe gradual accumulation of escape variants in the population (i.e., data with two sequential268

time points with mutant frequency in the range 0 < f < 1 were rare). For the analysis we, there-269

fore, used the escape data from two patients, CH131 and CH159, where CTL and HIV sequence270

measurements were sufficiently frequent to address our modeling questions. We fitted a simple math-271

ematical model describing escape of the virus from a single constant (non-changing) CTL response272

(eqn. (3)) to the data from one patient CH159 (Figure 2) assuming two different statistical models:273

with normally distributed residuals (least squares) or binomial distribution-based likelihood (eqn.274

(7)). Consistent with our previous observation we found that the type of statistical model impacts275

the estimate of the escape rate (k in Figure 2) with difference being nearly 2 fold (k = 0.27/day vs.276

k = 0.51/day). It is interesting to note that visually, the least squares method appear to describe the277

data better by accurately fitting the points with intermediate frequency of the escape variant in 20-30278

days after the symptoms (but missing the another intermediate data point (12, 0.08)). However, this279
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Figure 2: Statistical model has a strong impact on the estimated killing rate. We fit model in eqn. (7)
to the same data for HIV escape in the protein region DREVLIWKFDSSLARRHL of Nef (Nef 177-194) in
patient CH159, assuming normal distribution-based likelihood (normally distributed residuals or nonlinear
least squares, panel A) or binomial distribution-based likelihood method (panel B). Data are shown as dots
and bars represent the 95% confidence intervals calculated using beta distribution (Jefferey’s intervals, [7]).
The fitted parameters are µ = 7.76× 10−7 and k = 0.51 day−1 (A), or µ = 2.00× 10−4 and k = 0.27 day−1

(B).

visually better fit is not supported by the statistics: likelihood of the model for these data is -12.64280

or -10.53 for normal (Figure 2A) or binomial (Figure 2B) distribution, respectively (and AIC scores281

being 31.0 vs. 26.8, respectively). Interestingly, the main difference in the estimated escape rates282

was driven by just one data point ((t, f) = (12, 0.08)); removing this data point from the data led to283

identical estimates of the escape rate, k = 0.51/day, from two statistical models (results not shown).284

This is not surprising because with this data point removed, the information on escape rate is only285

coming from two data points when the frequency of the escape variant is intermediate (0 < f < 1).286

As discussed before least squares may not allow to estimate escape rates, e.g. in cases when mutant287

frequency jumps from 0 to 1 between two subsequent time points unless data are modified [2, 12] .288

Similarly, models assuming normally distributed residuals may not be able to fit other types of data,289

in which frequency of the mutant has an intermediate value (0 < f < 1) at one time point only. In290

particular, in our analysis of another escape in patient CH159 (Rev GRPTEPVPFQLPPLERLC, see291

Figure 3) we could not obtain finite estimates of the escape rate using normally distributed residuals292

(results not shown). Rather, the model fits tended to describe accurately two data points (t = 22 days293

and t = 29 days) and ignore another data point (t = 56 days) leading to extremely high predicted294

escape rates (results not shown). Interestingly, using binomial distribution-based likelihood allowed295

for an accurate fit of the model to data and the fit compromised between describing early and late296

data points (Figure 4A). The reason for the compromise is that a fit predicting fast escape and nearly297

100% escape variant by 56 days since symptoms is highly disfavored by the binomial distribution-298

based likelihood because some wild-type variants were still present at day 56 (thus the weight for299

missing this point by the model fit was very high in binomial distribution-based likelihood but not in300

the normal distribution-based likelihood). Taken together, these results suggest that the type of the301

statistical model used to estimate HIV escape rates influences the final estimates. Therefore, many302

previous studies on HIV escape assuming normally distributed residuals may need to be re-evaluated303

for the robustness of their conclusions.304

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 27, 2017. ; https://doi.org/10.1101/194886doi: bioRxiv preprint 

https://doi.org/10.1101/194886


3.2 CTL response kinetics do not improve description of the escape data305

As CTL responses drive HIV escape from epitope-specific T cells, it is expected that the magnitude of306

the CTL response should naturally impact escape kinetics. Previous studies provided some evidence307

that the relative magnitude of a given CTL response in the total HIV-specific CTL response early in308

infection (% immunodominance) predicts the timing of viral escape [4, 31]. Immune response was also309

shown to impact escape of simian immunodeficiency virus (SIV) from T cell responses [32, 33, 35].310

Immune response magnitude, and as a consequence, the overall CTL killing efficacy is important311

in determining both timing and speed of viral escape with the rate of viral escape being directly312

related to the immune response efficacy [15, 16]. In contrast, both initial mutant frequency, virus313

mutation rate, and CTL killing efficacy determine timing of viral escape [16]. Whether inclusion of314

the experimentally measured CTL dynamics impacts ability of mathematical models to accurately315

describe viral escape data has not been tested.316

To test the benefits of using longitudinally measured CTL responses in describing viral escape317

data we considered several alternative models for the CTL dynamics and viral escape. Our model 1318

describes the dynamics of viral escape from each CTL response independently. Models 2 & 3 describe319

escape from multiple CTL response that occurs sequentially or concurrently, respectively (see Mate-320

rials and Methods for more details). CTL dynamics was either considered to be unimportant (i.e.,321

killing rate ki was set constant over time), or when killing rate was proportional to the experimentally322

measured CTL frequency (k′
iEi(t)), respectively. To describe CTL dynamics we either used the first323

order interpolation function or the Ton-Toff model (eqn. (6) and see Materials and Methods for more324

detail).325

In patient CH159, four CTL responses were detected (Figure 3B) and three of these responses were326

escaped within nearly 4 years of infection. Interestingly, the response specific to Gag TPQDLNTML327

was dominant (Figure 3B), but the corresponding escape mutant Gag TPQDLNTMLNTVGGHQAA328

did not appear up to 1132 days since onset of symptoms (Figure 3A).329

Patient CH159 had two escape mutants in regions Rev GRPTEPVPFQLPPLERLC (Rev 65-330

82) and Nef DREVLIWKFDSSLARRHL (Nef 177-194) satisfying our selection criteria (Figure 3C).331

Despite a relative small magnitude of CTL responses specific to Rev65 and Nef177 early in infection332

(up to 29 days since onset of symptoms), escape mutants appeared early and their frequencies arose333

rapidly.334

We fitted three alternative mathematical models for viral escape and three alternative models335

for the CTL dynamics to the data on viral escape (Figure 3C) using binomial distribution-based336

likelihood method (see Materials and Methods for more detail). Surprisingly, we found that the337

models 1 & 3 with a constant immune response described the data with best quality as judged by338

the AIC (or likelihood). Parameter estimates in the model 1 which assumes independent escape were339

nearly identical to the parameters in the model 3 which assumed concurrent escape (Figure 4 and340

Table 1). Importantly, adding experimentally measured CTL response dynamics (as interpolated341

function or by using parameterized Ton − Toff model) did not improve the quality of the model fit to342

escape data (Table 1). Even worse, for models 1 & 3 the fits with a fitted response were of lower343

quality as judged by the large increase in AIC (Table 1). Models that included an interpolated CTL344

response provided better fits than models with a fitted response (Table 1).345

The exact reasons of why including experimentally measured CTL response dynamics led to worse346

fits of the escape data are unclear but perhaps rapid change in magnitude of CTL responses in this347

patient – if response directly impacts killing of infected cells – was simply not reflected in the kinetics348

of viral escape (Figure 4D&G). Specifically, CTL kinetics-driven escape would predict non-monotonic349
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Figure 3: Basic dynamics of CTL response and HIV escape for patient CH159. Data are from a previous
publication [31]; the data show four CTL responses in the patient (panel B) and frequencies of corresponding
escape variants (panel A). Based on the selection criteria described in the Materials and in Methods we
focused our analysis on CTL dynamics and escape in two regions: Rev GRPTEPVPFQLPPLERLC (65-82)
and Nef DREVLIWKFDSSLARRHL (177-194) shown for the first 200 days in panels C-D. Dashed lines in
panel D are the prediction of the Ton-Toff model to these data with the following estimated parameters for
the Rev-specific T cell response: E0 = 1 IFNγ+SFC/106 PBMC, Ton = 12 day, Toff = 29 day, ρ = 0.23
day−1, α = 1.67× 10−6 day−1; and for the Nef-specific T cell response: E0 = 73.59 IFNγ+SFC/106 PBMC,
Ton = 0 day, Toff = 126.05 day, ρ = 6.98× 10−3 day−1, α = 1.86× 10−3 day−1.

rise in the escape variant frequency which was not observed in the data, thus, favoring a model with350

a constant killing rate by CTLs.351

Interestingly, the model 2 fits of the data resulted in unphysiologically large estimates for the352

mutation rate µ2 (Table 1). As we elaborate later (see below) this failure of the model to describe353

these data stems from the fact that escapes in the data occur nearly at the same time and assuming354

that escapes are sequential led to an unrealistic mutation rate in the second epitope. This suggests355

that the observed dynamics of viral escape in patient CH159 is not consistent with sequential escape.356

Models 1 & 3 also predicted slightly higher than expected mutation rate µ1 (bigger than 10−3) for357

the peptide Rev 65-82. Constraining this parameter to remain µ1 ≤ 10−3 led to fits of significantly358

lower quality (likelihood ratio test, p < 0.05). Due to large length of the peptide, the overall mutation359

rate in this region could indeed be slightly higher than our calculated high bound for the mutation360

rate (see Materials and Methods for more detail). Furthermore, since peptide Rev 65-82 is the epitope361

in which first escape occurred, it was possible that the high estimate of the mutation rate could be due362
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Figure 4: Including CTL response dynamics worsened model fits of HIV escape data in patient CH159.
We fitted model 1 (independent escapes, eqn. (3)), model 2 (sequential escape, eqn. (S6)) and model 3
(concurrent escape, eqn. (S8)) to escape data in patient CH159 with different response inputs (constant,
interpolated, or fitted response, see Materials and Methods for more detail). Adding direct time-dependent
response (interpolated or fitted response) did not improve the quality of the model fit to data (see Table 1
for parameter estimates). Model 2 was not able to accurately describe these data for biologically reasonable
mutation rates (see Table 1).

to late sampling of viral sequences. In these data sampling was done after patients were diagnosed363

with infection, however, viral escape could have started earlier and for escapes starting earlier it may364

be possible to describe the data with a lower mutation rate [17, 27].365

Therefore, to test whether the timing of the start of the escape influences the estimate of the366

mutation rate we did the following. We shifted the data for two escapes forward by adding some367

initial zeroes to data and reverse extended the predicted CTL response curves. Then we refitted368

model 1 & 3 to the data under the constrain µ ≤ 10−3. We found shifting the data did not improve369

the quality of the model fits as compared to unmodified data when CTL dynamics is explicitly taken370

into account as interpolated or fitted response (results not shown). However, assuming a constant371

response allowed to obtain lower, more physiological estimates of the mutation rate. These results372

suggest that inability of the models which explicitly incorporate CTL dynamics to explain kinetics373

of first escape with physiologically reasonable mutation rate is due to late appearance of the CTL374

response. Indeed, escape can only accumulate when CTL response is present and extending the time375

window for virus evolution but not having CTL response active will not significantly impact estimates376
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peptide model 1 model 2 model 3

constant
response

mutation rate
(µi, i=1,2)

killing rate
(ki, i=1,2)

mutation rate
(µi, i=1,2)

killing rate
(ki, i=1,2)

mutation rate
(µi, i=1,2)

killing rate
(ki, i=1,2)

Rev 65-82 1 .68 × 10−3 0.17 9.71× 10−4 0.20 1 .68 × 10−3 0.17
Nef 177-194 2.02× 10−4 0.27 0.11 6.29× 10−12 2.0× 10−4 0.27

L = −25.25, AICc= 62.14 L = −25.66, AICc= 62.95 L = −25.25, AICc= 62.14

interpolated
response

mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
Rev 65-82 8 .88 × 10−3 2.12× 10−3 1 .64 × 10−3 2.03× 10−10 8 .88 × 10−3 2.12× 10−3

Nef 177-194 4.94× 10−4 3.23× 10−3 697.77 2.32× 10−3 4.93× 10−4 3.23× 10−3

L = −27.21, AICc= 66.05 L = −26.10, AICc= 63.84 L = −27.21, AICc= 66.05

fitted
response

mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
Rev 65-82 1 .43 × 10−2 1.39× 10−3 1 .13 × 10−3 8.50× 10−18 1 .43 × 10−2 1.39× 10−3

Nef 177-194 2.46× 10−4 3.25× 10−3 13004.84 2.29× 10−3 2.47× 10−4 3.25× 10−3

L = −29.68, AICc= 70.99 L = −26.61, AICc= 64.86 L = −29.68, AICc= 70.99

Table 1: Parameters for the three models fitted to escape data from patient CH159. Fits of the model
to data are shown in Figure 4. L and AICc are the log-likelihood and the corrected Akaike information
criterion value, respectively. In bold we show maximum L and minimum AICc reached by the models 1 &
3 with constant response. There are some unrealistic mutation rates given by model 2 (much bigger than
10−3, highlighted as italic), and models 1& 3 also led to slightly unrealistic mutation rates at the peptide
Rev 65-82 (slightly bigger than 10−3). Units for ki and k′i are day−1 and µi is dimensionless (same for all
tables below).

of the mutation rate.377

Given our results for one patient we next sought to investigate whether our conclusions will remain378

robust when looking at data from another patient. Patient CH131 had 6 CTL responses and there379

was escape from at least 5 of these responses in 2 years since symptoms (Figure 5). One escape, Nef380

EEVGFPVKPQV (Nef 64-74), occurred very early in infection, and two escapes, Env RQGYSPLS-381

FQTLIPNPRG (Env 709-726) and Gag VKVIEEKAFSPEVIPMFT (Gag 156-173), occurred late382

(Figure 5). In this patient the pattern of escape followed the ranking of immunodominance of CTL383

responses [31]: Nef64-specific CTLs were dominant at symptoms and drove earlier escape, while Env384

709- and Gag156-specific CTLs arose later with escapes occurring later in infection (Figure 5A&B).385

However, there were apparently discrepancies such as two escapes in Tat epitopes (Tat DPWNH-386

PGSQPKTACNNCY, that is Tat 9-26 and Tat FQKKGLGISY, that is Tat 38-47) occurred at the387

same time while CTL responses specific to these different epitopes were of different sizes (Figure388

5A&B). Because escapes in these two Tat epitopes occurred rapidly and did not have two interme-389

diate measurements of the mutant frequency, our following analysis was only restricted to escapes in390

three CTL epitopes: Nef64, Env709, Gag156 (Figure 5C&D).391

We thus fitted 3 different models of viral escape combined with 3 different models for the CTL392

dynamics to the data on viral escape (Figure 6). Importantly, as with the analysis of data from393

patient CH159 we found that including the data-driven CTL dynamics in the escape models did394

not improve the quality of the model fit to the escape data (Table 2). In contrast with the previous395

results, though, the assumption of the constant and time-variable killing efficacy (i.e., due to variation396

in the immune response magnitude) did not strongly impact the quality of the model fit as judged by397

the AIC or likelihood (Table 2). Importantly, however, models 1&3 gave nearly identical estimates398

of the CTL killing efficacy, suggesting that for data with good temporal resolution model estimates399

of the CTL killing efficacy (or by inference, escape rates) are not strongly dependent on the specific400
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Figure 5: Basic dynamics of CTL response and HIV escape in patient CH131. Patient CH131 had 6
CTL responses (panel B) and 5 responses were escaped by 700 days since infection (panel A). Based on our
selection criteria (see Materials and Methods) we focused our analysis on escape in three epitopes: Nef 64-74,
Env 709-726 and Gag 156-173 (panel C) with the corresponding CTL dynamics (panel D). Dashed lines in
panel D denote fits of the Ton − Toff model (eqn. (6)) to these data resulting in the following estimates for
the model parameters for Nef-specific T cell responses: E0 = 808.59 IFNγ+SFC/106 PBMC, α = 4.55×10−3

day−1; for Env-specific T cell responses: E0 = 82.97 IFNγ+SFC/106 PBMC, Ton = 0 day, Toff = 202.02
day, ρ = 0.017 day−1, α = 9.23 × 10−3 day−1; for Gag-specific T cell responses: E0 = 1.67 IFNγ+SFC/106

PBMC, Ton = 0 day, Toff = 80.76 day, ρ = 0.084 day−1, α = −1.04× 10−3 day−1.

mechanisms used to describe escape (independent vs. concurrent escape).401

Extending the observation made with the patient CH159 data, we found that model assuming402

sequential escape (model 2) could not accurately describe the dynamics of viral escape for biologi-403

cally reasonable parameter values specifically for the third escape in Gag156 although this inability404

was significant only for a constant killing efficacy (Table 2). Allowing time-dependent killing efficacy405

resulted in small yet larger values for the mutation rate than that expected from basic calculations.406

Forcing the mutation rate µ3 to be constrained (µ3 ≤ 10−3) significantly reduced the quality of the407

model fit to data (likelihood ratio test, p ≪ 0.001). Furthermore, estimates for the CTL killing effica-408

cy differed between model 2 and models 1&3 suggesting that model choice (sequential vs. concurrent)409

may indeed influence estimates of the killing efficacy.410
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Figure 6: Including CTL response dynamics did not improve model fits of HIV escape data in patient
CH131. We fitted model 1 (independent escapes), model 2 (sequential escape) and model 3 (concurrent
escape) to escape data in patient CH131 with different CTL response inputs (constant, interpolated or fitted
response). Adding data-derived time-dependent CTL response (interpolated or fitted response) does not
improve the fitting results in most cases (Table 2). Notably, model 2 was unable to accurately describe late
escape for biologically reasonable mutation rate µ3. Model parameters providing the best fit are given in
Table 2.

3.3 No difference in predicted killing efficacy of CTLs, specific to differ-411

ent epitopes412

Our analyses so far demonstrated that several different mathematical models were capable of ac-413

curately describing the escape data, but this ability was dependent on the specific pathway of how414

escape mutants were generated and the assumption on whether data-driven CTL dynamics was in-415

cluded in the model. In cases, when a model was able to accurately describe the data, we generally416

observed different estimates for the parameters for HIV escape in different epitopes; for example, for417

the data in patient CH131 estimated CTL killing rate in the model 1 (independent escapes) with418

interpolated response different nearly 100 fold between k′
1 and k′

3 (Table 2). Knowing which immune419

responses may be more efficient on a per cell basis in killing virus-infected cells may be beneficial420

for inducing such responses by vaccination. We therefore investigated how robust these differences421

in estimated per capita killing rates are. For that we fitted mathematical models assuming equal422
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peptide model 1 model 2 model 3

constant
response

mutation rate
(µi, i = 1, 2, 3)

killing rate
(ki, i = 1, 2, 3)

mutation rate
(µi, i = 1, 2, 3)

killing rate
(ki, i = 1, 2, 3)

mutation rate
(µi, i = 1, 2, 3)

killing rate
(ki, i = 1, 2, 3)

Nef 64-74 1 .75 × 10−3 0.25 1 .72 × 10−3 0.25 1 .78 × 10−3 0.25
Env 709-726 1.03× 10−7 0.031 3.18× 10−5 5.45× 10−3 9.91× 10−7 0.031
Gag 156-173 1.49× 10−4 5.16× 10−3 433780.63 0.010 1.49× 10−4 5.19× 10−3

L = −34.09, AICc= 84.38 L = −36.54, AICc= 89.27 L = −34.09, AICc= 84.38

interpolated
response

mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
Nef 64-74 4.33× 10−4 1.97× 10−4 3.95× 10−4 2.00× 10−4 4.30× 10−4 1.96× 10−4

Env 709-726 7.07× 10−6 3.01× 10−5 8.76× 10−5 1.56× 10−5 7.17× 10−6 3.00× 10−5

Gag 156-173 1.56× 10−4 4.59× 10−6 3 .33 × 10−3 7.48× 10−14 1.55× 10−4 4.61× 10−6

L = −34.02, AICc= 84.24 L = −36.79, AICc= 89.77 L = −34.02, AICc= 84.24

fitted
response

mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
Nef 64-74 3 .25 × 10−3 3.38× 10−4 2 .99 × 10−3 3.46× 10−4 3 .16 × 10−3 3.41× 10−4

Env 709-726 1.38× 10−6 2.59× 10−5 8.90× 10−5 1.05× 10−5 1.12× 10−6 2.66× 10−5

Gag 156-173 1.73× 10−4 2.82× 10−6 3 .41 × 10−3 6.90× 10−14 1.73× 10−4 2.83× 10−6

L = −33.94, AICc= 84.07 L = −36.98, AICc= 90.17 L = −33.94, AICc= 84.07

Table 2: Parameters estimated by fitting different models of viral escape to escape data in patient CH131
assuming constant killing rates ki (panels A-C), or time-varying killing rates due to interpolated CTL
response (panels D-E) or CTL response in the Ton − Toff model (panels G-I). Alternative models assume
independent escape (model 1, panels A, D, & G), sequential escape (model 2, panels B, E, & H), or concurrent
escape (model 3, panels C, F, & I). Fits of models 1 &3 gave very close parameter values, but there were
some unrealistic parameter values (italicized in the table) from fits of the model 2. L and AICc give the
log-likelihood score and the correlated Akaike information criterion value, respectively. Models 1 &3 fit
almost equally with three types of response inputs and the lowest L and AICc are shown in bold.

killing efficacies to the data on escape. As expected, reducing the number of fitted parameters led423

to fits of lower quality (as judged by the log-likelihood); however, this reduction in complexity of424

the model was favored by the AIC and in most cases by the likelihood ratio test (Tables S2 and S4425

in Supplement). Visually, the reduction in the quality of the model fit to data was also relatively426

small (Figures S2 and S4 in Supplement). Thus, for these data we found no strong evidence in the427

difference in the estimated per capita killing efficacy of the CTL response specific to different viral428

epitopes.429

3.4 Identifying conditions when the model 2 (sequential escapes) fails430

In analysis of data from both patients we found that model 2, describing sequential escape from431

CTL responses, was not able to accurately describe experimental data for biologically reasonable432

parameter values; these model fits predicted extremely high mutation rates (e.g., see Tables 1 and 2).433

Additional analyses demonstrated that fitting the models with constrained mutation rates, µi ≤ 10−3,434

led to fits of significantly lower quality (based on increased AIC, results not shown).435

A closer look at the experimental data for which model 2 provided unreasonably high mutation436

rates revealed that the trajectories of two subsequent escapes in the model 2 were too close to each437

other which naturally required a high mutation rate from one variant to another. Therefore, only438

when trajectories are separated in time mutation rate µ2 is expected to be biologically reasonable.439

Indeed, by simulating virus dynamics using model for sequential escapes by varying model parameters440

we found that CTL killing rate has the major impact on the time delay between two escapes (Figure441

7). This analysis thus suggested that for the model 2 (sequential escape) to be consistent with the442
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Figure 7: Model, assuming sequential escape (model 2), can be consistent with escape data when the
trajectories for two sequential viral escape are separated in time. We illustrate that separation of trajectories
by ∆t50 = 409.8−344.2 ≃ 66 days is sufficient for the mutation rate to be realistically small (panel A). Here
ti50 is the time by which the ith variant reaches 50% of the viral population, so ∆t50 = t250 − t150. Parameters
used in simulations are µ1 = µ2 = 10−5, k1 = k2 = 0.02 day−1, r = 1.5 day−1, δ = 1 day−1. The distance
between trajectories needed for small predicted mutation rates is reduced for higher CTL killing rates (panel
B) and the time is only weakly dependent on the mutation rate assumed in simulations.

data, escapes from 2 responses must be separated in time by about 20-50 days.443

4 Discussion444

CTL responses play a major role in HIV within-host evolution [36, 37]. Recent studies suggested that445

a relative magnitude of the CTL response (relative immunodominance) plays an important role in446

determining the time of viral escape from T cell responses [4, 31]. These previous studies, however,447

only utilized a maximum value of the CTL response early in infection, in general within 50 days since448

the onset of symptoms, and thus impact of the kinetics of CTL response on the rate of virus escape449

remained undetermined. Furthermore, the pathways of HIV escape from CTL responses were not450

fully resolved as escapes occurring sequentially and concurrently have been proposed [26, 29, 39], and451

several previous studies assumed that escapes occur independently from each other [2, 12, 16]. Here452

by using experimental data on evolution of HIV sequences from acute infection into chronic phase453

and temporally resolved dynamics of HIV-specific CTL responses we tested the hypothesis that CTL454

dynamics plays an important role in virus escape.455

Perhaps in contrast with our initial expectations (e.g., due to [4, 31]), we found that including456

experimentally measured dynamics of epitope-specific CTL responses did not led to a better descrip-457

tion of the kinetics of viral escape from T cells (e.g., in patient CH131, Table 2), or even reduced458

the quality of the model for viral escape fit to data (e.g., in patient CH159, Table 1). This was459

not because we assumed that killing of virus-infected cells was dependent on the absolute magni-460

tude of epitope-specific CTL responses; assuming frequency-dependent killing, that is, when killing461

of infected cells expressing ith epitope was given by kiEi(t)/
∑n

j=1Ej(t) (1 ≤ i ≤ n), led to similar462

conclusions (results not shown). Because previous work suggested that kinetics of escape was in-463

dependent of the specific mechanism of how CTLs suppress wild-type virus (e.g., killing of infected464

cells or virus production by infected cells) [15], we did not investigate non-lytic control of HIV by T465
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cells. It is interesting that the lack of correlation between the rate of viral escape and CTL response466

magnitude was highlighted previously [16].467

Reasons of why a model with time-variable CTL response did not describe experimental data468

better than a model with a constant response remain unclear but several hypotheses could be gen-469

erated. First, frequency of sampling of the viral sequences may not be high enough to detect change470

in the speed at which mutant viruses accumulate in the population. Indeed, in mathematical mod-471

els CTL dynamics has a direct impact on the rate of escape (e.g., see eqn. (3)) and the observed472

changes in CTL densities may not be reflected in escape data if data sampling is infrequent. Second,473

virus sequence data could simply be noisy. Because only handful of viral sequences were analyzed474

by the SGA/S, measurements of frequencies of viral variants have in general large expected error475

(e.g., Figure 2). Third, CTL dynamics in the blood may not reflect CTL dynamics in tissues such as476

secondary lymphoid organs (lymph nodes and spleen). While it is well known that T cells recirculate477

in the body [13], how quickly CTLs in the tissues migrate into the blood and then back to the tissues478

during HIV infection is not known. Finally, it is possible that the measured CTL responses were479

not the drivers of escape. While the ability of CTLs to recognize the wild-type virus and inability480

of the same CTLs to recognize mutant viruses is generally interpreted as evidence that these CTLs481

drove viral escape, such observations are correlational in nature, and thus can not fully establish the482

causality of escape, at least in humans.483

Our results may be interpreted as contradictory to several previous studies that found a strong484

correlation between the time of viral escape (time when a escape variant reaches frequency of 50% in485

the viral population) and a relative magnitude of CTL response (relative or “vertical” immunodom-486

inance) [4, 31]. However, our studies are not directly compatible because this previous work focused487

on the timing of escape while we primarily focused on the rate of viral escape. These two parameters488

are differently impacted by the CTL response [16] and may have different clinical importance. In our489

simple mathematical model (e.g., eqn. (3)) CTL response magnitude is expected to directly impact490

the rate at which an escape mutant accumulates in the population, independently of when this es-491

cape may occur. In contrast, timing of viral escape also depends on the mutation rate. Biologically,492

however, timing of escape may be more important than the rate because it may be more beneficial493

to the patient if viral escape occurs 5 years after infection but rapidly as compared to slow escape in494

just 1 year. This conjecture clearly depends on the premise that HIV escapes from CTL responses495

are detrimental to patients.496

In our analysis we generally found that for well sampled data the pathway of generation of escape497

mutants played a minor role in predicting overall CTL killing efficacy; assuming escapes that occur498

independently (model 1) or concurrently (model 3) gave nearly identical estimates of the CTL killing499

efficacy (e.g., Tables 1 and 2). In contrast, the model assuming sequential escape (model 2) often500

failed to accurately explain experimental data; this was due to some escapes co-occurring at nearly the501

same time which obviously violated the model assumption of sequential escape. This inability of the502

sequential escape model to describe the data may be the result of the way we compared models to data:503

by using deterministic model approach and by ignoring recombination. Using deterministic model504

may be justified because in acute infection the effective population size of HIV may be sufficiently505

large and ignoring recombination may again be appropriate because very few cells in HIV infection506

are generally infected by 2 or more viruses [24, 25]. However, further work is needed to demonstrate507

whether our conclusions regarding inability of sequential escape model to accurately explain some508

escape data is due to some of the assumptions made in the model by running stochastic simulations509

and by allowing some degree of recombination.510

Many of our model fits predicted a high mutation rate for the first epitope to be escaped by the511
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virus (e.g., Table 2). This model prediction could not be changed by shifting the experimental data512

to allow for more time to generate escape mutant; in part, this test failed because in the absence of513

epitope-specific T cells escape variants accumulate rather slowly mainly driven by mutations. It may514

indicate that immune pressure on the virus population starts much earlier than it is reflected in the515

blood, echoing our concerns of whether CTL dynamics in the blood is an accurate reflection of T cell516

response in lymphoid tissues. Currently it is believed that lymphoid tissues and not the blood are517

the major places of interactions between the virus and CTLs [22, 30].518

Our analysis further highlights the importance of choosing the appropriate statistical model for519

the analysis of the escape data – assuming normally-distributed residuals, and therefore, using least520

squares approach, may not be appropriate for some escape data with very few sequences analyzed.521

Importantly, we confirm that the type of statistical model has an impact on the estimate of the522

escape rate [17].523

We found that experimental data on HIV escape can be explained well if we assume identical per524

capital killing efficacy of CTLs, specific to different viral epitopes. This suggests that individual per525

capita killing rates not accurately estimated from these data. While it is possible that this result526

was the consequence of assuming additive killing of virus-infected cells by different CTL responses,527

we currently do not have any in vivo data to support more complex killing terms.528

Overall, analyses of data from two patients suggested that models assuming independent escape529

of HIV from different CTL responses (model 1) or models assuming concurrent escape from mul-530

tiple CTL responses (model 3) fit the data well and provide very similar (often nearly identical)531

estimates for the killing efficacy of CTL response. Thus, for well sampled data assumption of in-532

dependent escapes may be sufficient to accurately estimate HIV escape rates. Also the model with533

data-driven time-dependent CTL response (interpolated or fitted response input) did not improve534

the quality of the model fit to data, so at present it appears to be unnecessary to incorporate the535

experimentally-measured CTL response dynamics in the model describing viral escapes. Our analysis536

thus demonstrates how mathematical modeling may help to quantify HIV evolution in presence of537

CTL responses and to highlight potential limitations with experimental measurements.538
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Supplementary Information699

S1 Model derivation of viral escape from multiple CTL responses700

Following the previous work [16], we use mi to denote the density of variants denoted by a vector701

i = (i1, i2, ..., in), which is the index denoting the positions of n epitopes, and we define ij = 0 if702

there is no mutation in the jth CTL epitope and ij = 1 if there is a mutation leading to an escape703

from the jth CTL response.704

We assume that a CTL response that recognizes the ith epitope of the virus kills the virus infected705

cells at rate ki, and escaping from the ith CTL responses only at a rate µi leads to a viral replicative706

fitness cost ci (i = 1, ..., n). As shown in model (1) of viral escape from a single CTL response (see707

equation (1)), we denote the infection rate of variants mi by βi and variants mi are produced by708

infected cells at rate pi (i ∈ I). We assume that the wild-type has a higher (or equal) reproductive709

ratio, that is βipi ≤ β(0,0,...,0)p(0,0,...,0) for all i ̸= (0, 0, ..., 0) (i ∈ I).710

Let r = β0p0
cv

T (t) (with β0 = β(0,0,...,0) and p0 = p(0,0,...,0)) as the reproduction rate of wild-type711

virus, we use fitness cost ci (i = 1, ..., n) and r to express the replication rate of each escape variant.712

For simplicity, we neglect recombination and only allow single point mutation. To be consistent713

with the model of viral escape from a single CTL escape, we let βi denote the rate at which variant714

m(0,...,1,...,0) (only ith position equal to 1) infect cells, and pi denote the production rate of variant715

m(0,...,1,...,0). Then the fitness cost ci of m(0,...,1,...,0) can be written as ci = 1 − βipi
β0p0

(i = 1, ..., n). As716

for variants m(i1,...,in) having two more mutations, we assume717

β(i1,...,in)p(i1,...,in)
β0p0

=
∏

j=1,...,n
ij ̸=0

βjpj
β0p0

. (S1)

This assumption means for variant having mutations at ith and jth epitopes, the normalized reproduc-718

tive rate (by wild-type reproductive rate β0p0) equals the product of normalized reproductive rates of719

variants, which only have one mutation at ith or jth epitope. For example,
β(1,1)p(1,1)

β0p0
= β1p1

β0p0

β2p2
β0p0

with720

n = 2. Under this assumption, the fitness cost C(i1,...,in) = 1− β(i1,...,in)p(i1,...,in)

β0p0
of variant m(i1,...,in) can721

be written as722

C(i1,...,in) = 1−
∏

j=1,...,n
ij ̸=0

(1− cj). (S2)

Assuming multiplicative fitness, the fitness cost of a variant i = (i1, i2, ..., in) is Ci = 1−
∏n

j=1(1−cjij).723

The death rate of the escape variant i = (i1, i2, ..., in) due to remaining CTL responses is given by724

Ki =
∑n

j=1 kj(1 − ij), where we assume that killing of infected cells by different CTL responses is725

additive.726

We neglect recombination and backward mutation from mutant to wild-type in this modeling727

framework. More specifically, for two escape variants mi = m(i1,i2,...,in) and mj = m(j1,j2,...,jn), we728

define the mutation rate Mi,j from mi to mj as µk, if and only if mj has only one more mutation at729

position k than mi and all other positions are exactly same. For example, when there are 3 CTL730

responses, the mutation rate from m(1,0,0) to m(1,0,1) is µ3, and the mutation rate from m(0,0,0) to731

m(1,0,1) is 0.732

Similar as equation (1), the dynamics of the wild-type and all escapes from CTL responses is733

S0
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given by734

dmi(t)

dt
= [r(1− Ci)(1−

∑
j∈I

Mi,j)−Ki − δ]mi(t) +
∑
j∈I

r(1− Cj)Mj,i
pi
pj
mj(t), i ∈ I. (S3)

Here we adopt the simple assumption that escape mutants and wild-type viruses may differ from735

rates βi∈I at which they infect cells, that is p0 = pi and β0 ≥ βi (i ∈ I and i ̸= (0, ..., 0) ). The system736

(S3) becomes737

dmi(t)

dt
= [r(1− Ci)(1−

∑
j∈I

Mi,j)−Ki − δ]mi(t) +
∑
j∈I

r(1− Cj)Mj,imj(t), i ∈ I. (S4)

We define M(t) =
∑

i∈I mi as the total density of all variants in the population, and fj(t)738

(j = 1, ..., n) is the fraction of viral variants that have escaped recognition from the jth CTL response.739

Then740

fj(t) =
∑
i∈J

mi(t)/M(t), J = (i1, ...ij, ..., in) with ij = 1. (S5)

For example, when n = 2, there are 3 types of escape variants m(0,0), m(1,0) and m(1,1) for741

“sequential” escape (model 2), and 4 types of escape variants m(0,0), m(1,0), m(0,1) and m(1,1) for742

“concurrent” escape (model 3).743

Under all above assumptions, from system (S4), model 2 with n = 2 can be written as:744

dm(0,0)(t)

dt
=[r(t)(1− µ1)− (δ + k1 + k2)]m(0,0)(t),

dm(1,0)(t)

dt
=[r(t)(1− c1)(1− µ2)− (δ + k2)]m(1,0)(t) + µ1r(t)m(0,0)(t),

dm(1,1)(t)

dt
=[r(t)(1− c1)(1− c2)− δ]m(1,1)(t) + r(t)(1− c1)µ2m(1,0)(t).

(S6)

and745

f1(t) =
m(1,0)(t) +m(1,1)(t)

m(0,0)(t) +m(1,0)(t) +m(1,1)(t)
,

f2(t) =
m(1,1)(t)

m(0,0)(t) +m(1,0)(t) +m(1,1)(t)
.

(S7)

Similarly, following system (S4), model 3 with n = 2 can be written as:746

dm(0,0)(t)

dt
=[r(t)(1− µ1 − µ2)− (δ + k1 + k2)]m(0,0)(t),

dm(1,0)(t)

dt
=[r(t)(1− c1)(1− µ2)− (δ + k2)]m(1,0)(t) + µ1r(t)m(0,0)(t),

dm(0,1)(t)

dt
=[r(t)(1− c2)(1− µ1)− (δ + k1)]m(0,1)(t) + µ2r(t)m(0,0)(t),

dm(1,1)(t)

dt
=[r(t)(1− c1)(1− c2)− δ]m(1,1)(t) + r(t)(1− c2)µ1m(0,1)(t)

+ r(t)(1− c1)µ2m(1,0)(t).

(S8)

S1
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and747

f1(t) =
m(1,0)(t) +m(1,1)(t)

m(0,0)(t) +m(0,1)(t) +m(1,0)(t) +m(1,1)(t)
,

f2(t) =
m(0,1)(t) +m(1,1)(t)

m(0,0)(t) +m(0,1)(t) +m(1,0)(t) +m(1,1)(t)
.

(S9)

S2 Examples of “sequential” and “concurrent” escapes for n = 3 epi-748

topes/CTL responses749

The difference between “sequential” escape (model 2) and “concurrent” escape (model 3) is the set750

of escape variants I. The set I has n+1 elements for “sequential” escape model and 2n elements for751

“concurrent” escape model for n epitope case. For the simple case n = 3, equations for all escape752

variants are753

Model 2:

dm(0,0,0)(t)

dt
=[r(t)(1− µ1)− (δ + k1 + k2 + k3)]m(0,0,0)(t),

dm(1,0,0)(t)

dt
=[r(t)(1− c1)(1− µ2)− (δ + k2 + k3)]m(1,0,0)(t) + µ1r(t)m(0,0,0)(t),

dm(1,1,0)(t)

dt
=[r(t)(1− c1)(1− c2)(1− µ3)− (δ + k3)]m(1,1,0)(t) + µ2r(t)(1− c1)m(1,0,0)(t),

dm(1,1,1)(t)

dt
=[r(t)(1− c1)(1− c2)(1− c3)− δ]m(1,1,1)(t) + µ3r(t)(1− c1)(1− c2)m(1,1,0)(t),

(S10)

and754

Model 3:

dm(0,0,0)(t)

dt
=[r(t)(1− µ1 − µ2 − µ3)− (δ + k1 + k2 + k3)]m(0,0,0)(t),

dm(1,0,0)(t)

dt
=[r(t)(1− c1)(1− µ2 − µ3)− (δ + k2 + k3)]m(1,0,0)(t) + µ1r(t)m(0,0,0)(t),

dm(0,1,0)(t)

dt
=[r(t)(1− c2)(1− µ1 − µ3)− (δ + k1 + k3)]m(0,1,0)(t) + µ2r(t)m(0,0,0)(t),

dm(0,0,1)(t)

dt
=[r(t)(1− c3)(1− µ1 − µ2)− (δ + k1 + k2)]m(0,0,1)(t) + µ3r(t)m(0,0,0)(t),

dm(1,1,0)(t)

dt
=[r(t)(1− c1)(1− c2)(1− µ3)− (δ + k3)]m(1,1,0)(t) + µ1(1− c2)r(t)m(0,1,0)(t)

+ µ2(1− c1)r(t)m(1,0,0)(t),

dm(1,0,1)(t)

dt
=[r(t)(1− c1)(1− c3)(1− µ2)− (δ + k2)]m(1,0,1)(t) + µ1(1− c3)r(t)m(0,0,1)(t)

+ µ3(1− c1)r(t)m(1,0,0)(t),

dm(0,1,1)(t)

dt
=[r(t)(1− c2)(1− c3)(1− µ1)− (δ + k1)]m(0,1,1)(t) + µ2(1− c3)r(t)m(0,0,1)(t)

+ µ3(1− c2)r(t)m(0,1,0)(t),

dm(1,1,1)(t)

dt
=[r(t)(1− c1)(1− c2)(1− c3)− δ]m(1,1,1)(t) + µ1(1− c2)(1− c3)r(t)m(0,1,1)(t)

+ µ2(1− c1)(1− c3)r(t)m(1,0,1)(t) + µ3(1− c1)(1− c2)r(t)m(1,1,0)(t).

(S11)

S2
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S3 Additional results of the analysis755
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Figure S1: Mathematical model accurately explains kinetics of HIV escape from CTL response when
assuming equal mutation rates (µ1 = µ2) for data from patient CH159. We fit the three mathematical
models (models 1, 2, and 3) to experimental data using likelihood approach outlined in the Materials and
Methods section assuming µ1 = µ2. Three different models for the CTL response dynamics were assumed:
constant input, interpolated input and fitted input. Models with response input did not improve the quality
of the model fit to data. The best fit was provided by the models 1&3 with constant response. Estimated
parameter values are given in Table S1. Notations for data points and lines are identical to those given in
Figure 4 in the main text.
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peptide model 1 model 2 model 3

constant
response

mutation rate
(µi, i=1,2)

killing rate
(ki, i=1,2)

mutation rate
(µi, i=1,2)

killing rate
(ki, i=1,2)

mutation rate
(µi, i=1,2)

killing rate
(ki, i=1,2)

Rev 65-82
7.55× 10−4 0.21

6 .75 × 10−3 1.86× 10−13

7.55× 10−4 0.21
Nef 177-194 0.21 0.25 0.21

L = −25.77, AICc= 59.54 L = −28.34, AICc= 64.68 L = −25.77, AICc= 59.54

interpolated
response

mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
Rev 65-82

5 .98 × 10−3 3.07× 10−3

8 .88 × 10−3 3.69× 10−12

4 .98 × 10−3 3.07× 10−3

Nef 177-194 1.51× 10−3 2.74× 10−3 1.51× 10−3

L = −29.88, AICc= 67.75 L = −29.30, AICc= 66.59 L = −29.88, AICc= 67.75

fitted
response

mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
Rev 65-82

8 .73 × 10−3 1.98× 10−3

8 .19 × 10−3 6.32× 10−9

8 .72 × 10−3 1.98× 10−3

Nef 177-194 9.22× 10−4 2.69× 10−3 9.23× 10−4

L = −34.92, AICc= 77.85 L = −29.48, AICc= 66.97 L = −34.92, AICc= 77.85

Table S1: Best fit parameters of three models (models 1, 2 and 3) fitted to experimental data on HIV escape
in patient CH159 assuming identical mutation rates (µ1 = µ2). Model fits are shown in Figure S1. L and
AICc give the log-likelihood score and the correlated Akaike information criterion value, respectively. Best
L (maximum) and AICc (minimum) scores are shown in bold. Mutation rates which exceed a theoretically
assumed maximum value of 10−3 are shown in italics.
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Figure S2: Killing rates of CTL responses specific to different epitopes may be similar. We fit three
different models to experimental data from patient CH159 assuming identical CTL killing rates (k1 = k2)
with different CTL response dynamics (constant input, interpolated input and fitted input). Such constrain
did not reduce the quality of the model fit to data as judged by AIC. Parameter estimates are given in Table
S2. Notations for data points and lines are identical to those given in Figure 4 in the main text.
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peptide model 1 model 2 model 3

constant
response

mutation rate
(µi, i=1,2)

killing rate
(ki, i=1,2)

mutation rate
(µi, i=1,2)

killing rate
(ki, i=1,2)

mutation rate
(µi, i=1,2)

killing rate
(ki, i=1,2)

Rev 65-82 8.39× 10−4

0.21
9.75× 10−4

0.10
8.39× 10−4

0.21
Nef 177-194 6.61× 10−4 0.30 6.61× 10−4

L = −25.71, AICc= 59.42 L = −25.75, AICc= 59.51 L = −25.71, AICc= 59.42

interpolated
response

mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
Rev 65-82 7 .71 × 10−3

2.75× 10−3 2 .60 × 10−3

1.50× 10−3 7 .70 × 10−3

2.75× 10−3

Nef 177-194 8.91× 10−4 13282.59 8.85× 10−4

L = −27.44, AICc= 62.88 L = −27.03, AICc= 62.06 L = −27.44, AICc= 62.88

fitted
response

mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
mutation rate
(µi, i=1,2)

killing rate
(k′

i, i=1,2)
Rev 65-82 1 .26 × 10−2

2.35× 10−3 2 .34 × 10−3

1.69× 10−3 1 .26 × 10−2

2.35× 10−3

Nef 177-194 9.34× 10−4 7186.74 9.33× 10−4

L = −30.53, AICc= 69.06 L = −29.33, AICc= 66.66 L = −30.53, AICc= 69.06

Table S2: Best fit parameters of three models (models 1, 2 and 3) fitted to experimental data on HIV
escape in patient CH159 assuming identical killing rates (k1 = k2). Model fits are shown in Figure S2. High
(perhaps unrealistic) mutation rates are highlighted in italic. L and AICc give the log-likelihood score and
the correlated Akaike information criterion value, respectively. Best L (maximum) and AICc (minimum)
scores are shown in bold.
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Figure S3: Mathematical models accurately explain kinetics of HIV escape from CTL response when
assuming equal mutation rates (µ1 = µ2 = µ3) for data from patient CH131. We fit the three mathematical
models (models 1, 2, and 3) to experimental data using likelihood approach outlined in the Materials and
Methods section assuming µ1 = µ2 = µ3. Three different models for the CTL response dynamics were
assumed: no input, interpolated input and fitted input. Best model fit was provided by the models 1&3
with interpolated response input. Estimated parameter values are given in Table S3. Notations for data
points and lines are identical to those given in Figure 6 in the main text.

S7

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 27, 2017. ; https://doi.org/10.1101/194886doi: bioRxiv preprint 

https://doi.org/10.1101/194886


peptide model 1 model 2 model 3

Constant
response

mutation rate
(µi, i = 1, 2, 3)

killing rate
(ki, i = 1, 2, 3)

mutation rate
(µi, i = 1, 2, 3)

killing rate
(ki, i = 1, 2, 3)

mutation rate
(µi, i = 1, 2, 3)

killing rate
(ki, i = 1, 2, 3)

Nef 64-74
4.34× 10−5

0.44
3.05× 10−4

0.34
4.34× 10−5

0.44
Env 709-726 0.016 1.44× 10−10 0.016
Gag 156-173 0.011 0.021 0.011

L = −35.96, AICc= 81.73 L = −38.97, AICc= 87.75 L = −35.96, AICc= 81.73

interpolated
response

mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
Nef 64-74

6.22× 10−5

2.53× 10−4

3.00× 10−4

2.07× 10−4

6.22× 10−5

2.53× 10−4

Env 709-726 1.87× 10−5 5.33× 10−6 1.87× 10−5

Gag 156-173 8.73× 10−6 1.24× 10−5 8.73× 10−6

L = −35.01, AICc= 79.84 L = −38.99, AICc= 87.79 L = −35.01, AICc= 79.84

fitted
response

mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
Nef 64-74

7.48× 10−5

6.72× 10−4

3.21× 10−4

5.41× 10−4

7.65× 10−5

6.70× 10−4

Env 709-726 1.19× 10−5 2.88× 10−6 1.18× 10−5

Gag 156-173 5.82× 10−6 1.00× 10−5 5.74× 10−6

L = −36.08, AICc= 81.97 L = −39.43, AICc= 88.68 L = −36.08, AICc= 81.97

Table S3: Best fit parameter values found by fitting different mathematical models (models 1, 2 and 3)
to experimental data in patient CH131 assuming identical mutation rates (µ1 = µ2 = µ3). Model fits are
shown in Figure S3. L and AICc give the log-likelihood score and the correlated Akaike information criterion
value, respectively. Best L (maximum) and AICc (minimum) scores are bolded in the table.
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Figure S4: No evidence for difference in CTL killing rates for data on HIV escape in patient CH131. We
fit different mathematical models (models 1, 2, or 3) to experimental data from patient CH131 assuming
equal killing rates (k1 = k2 = k3). The best fit is given by models 1&3 with interpolated response input.
Best fit parameter values are given in Table S4. Notations for data points and lines are identical to those
given in Figure 6 in the main text.
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peptide model 1 model 2 model 3

Constant
response

mutation rate
(µi, i = 1, 2, 3)

killing rate
(ki, i = 1, 2, 3)

mutation rate
(µi, i = 1, 2, 3)

killing rate
(ki, i = 1, 2, 3)

mutation rate
(µi, i = 1, 2, 3)

killing rate
(ki, i = 1, 2, 3)

Nef 64-74 0.047
0.017

0.051
7.88× 10−3

0.047
0.016Env 709-726 3.68× 10−5 3.60× 10−5 3.69× 10−5

Gag 156-173 1.67× 10−5 81454.11 1.68× 10−5

L = −36.82, AICc= 83.45 L = −37.54, AICc= 84.89 L = −36.82, AICc= 83.45

interpolated
response

mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
Nef 64-74 0.046

1.28× 10−5

0.050
6.65× 10−6

0.046
1.28× 10−5Env 709-726 1.31× 10−4 6.82× 10−5 1.31× 10−4

Gag 156-173 3.09× 10−5 2 .39 × 10 7 3.07× 10−5

L = −37.31, AICc= 84.44 L = −37.13, AICc= 84.09 L = −37.31, AICc= 84.44

fitted
response

mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
mutation rate
(µi, i = 1, 2, 3)

killing rate
(k′

i, i = 1, 2, 3)
Nef 64-74 0.051

9.79× 10−6

0.053
5.07× 10−6

0.051
9.78× 10−6Env 709-726 1.02× 10−4 5.51× 10−5 1.02× 10−4

Gag 156-173 2.67× 10−5 2 .73 × 10 7 2.67× 10−5

L = −37.28, AICc= 84.38 L = −37.41, AICc= 84.64 L = −37.28, AICc= 84.38

Table S4: Best fit parameter values found by fitting different mathematical models (models 1, 2 and 3) to
experimental data in patient CH131 assuming identical killing rates (k1 = k2 = k3). Model fits are shown
in Figure S3. L and AICc give the log-likelihood score and the correlated Akaike information criterion
value, respectively. Best L (maximum) and AICc (minimum) scores are bolded in the table. High (perhaps
unrealistic) mutation rates are highlighted in italic.
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