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Abstract 15	

Cytokinesis in most eukaryotic cells is orchestrated by a contractile actomyosin ring. While many of the 16	

proteins involved are known, the mechanism of constriction remains unclear. Informed by existing literature 17	

and new 3D molecular details from electron cryotomography, here we develop 3D coarse-grained models of 18	

actin filaments, unipolar and bipolar myosins, actin crosslinkers, and membranes and simulate their 19	

interactions. Exploring a matrix of possible actomyosin configurations suggested that node-based architectures 20	

like those presently described for ring assembly result in membrane puckers not seen in EM images of real 21	

cells. Instead, the model that best matches data from fluorescence microscopy, electron cryotomography, and 22	

biochemical experiments is one in which actin filaments transmit force to the membrane through evenly-23	

distributed, membrane-attached, unipolar myosins, with bipolar myosins in the ring driving contraction. While 24	

at this point this model is only favored (not proven), the work highlights the power of coarse-grained 25	

biophysical simulations to compare complex mechanistic hypotheses. 26	

 27	

 28	

 29	
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Significance Statement 31	

In most eukaryotes, a ring of actin and myosin drives cell division, but how the elements of the ring are 32	

arranged and constrict remain unclear. Here we use 3D coarse-grained simulations to explore various 33	

possibilities. Our simulations suggest that if actomyosin is arranged in nodes (as suggested by a popular model 34	

of ring assembly), the membrane distorts in ways not seen experimentally. Instead, actin and myosin are more 35	

likely uniformly distributed around the ring. In the model that best fits experimental data, ring tension is 36	

generated by interactions between bipolar myosins and actin, and transmitted to the membrane via unipolar 37	

myosins. Technologically the study highlights how coarse-grained simulations can test specific mechanistic 38	

hypotheses by comparing their predicted outcomes to experimental results. 39	

	40	

  41	
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Introduction 42	

It is well known that an actomyosin ring (AMR) drives cell division in most eukaryotic cells, but how it 43	

contracts and how force is transmitted to the membrane remain unclear (1, 2). Two components involved in 44	

contraction are actin filaments (F-actin) and the motor protein, non-muscle myosin II, which exerts tensile 45	

force on F-actin through a processive ATP-dependent power stroke mechanism (3). Both proteins are essential 46	

for cytokinesis and localize to an equatorial contractile ring during mitosis (4–12). Fluorescence studies of 47	

ring assembly in Schizosaccharomyces pombe, a rod-shaped unicellular fission yeast that shares most of the 48	

cytokinesis genes with metazoans (1), showed that the ring components first form a broad band of nodes (13, 49	

14) that coalesce into a ring at the division plane (15). Recent electron cryotomography (ECT) of dividing 50	

fission yeast showed, however, that F-actin termini are apparently randomly distributed around the ring (16), 51	

calling into question whether nodes continue to exist during constriction. F-actin in the contractile ring is 52	

contributed by both existing actin cables (17) and de novo nucleation, primarily by the formin Cdc12p (18), a 53	

barbed-end actin-capping dimeric protein that is essential for ring assembly in fission yeast (19). While it has 54	

been proposed that ring tension is transmitted to the membrane via connection between the actin barbed end 55	

and Cdc12p, which either exists individually (2) or at nodes (20), this mechanism has not been proven. 56	

 57	

There are two myosin type-II heavy chains (Myo2p and Myp2p) in the contractile ring. Myo2p, the essential 58	

type II myosin (6, 21), plays the leading role in ring assembly while the second, non-essential, unconventional 59	

type II myosin, Myp2p, is the major driver for ring constriction (22), consistent with its arrival at the division 60	

site immediately prior to ring constriction (12). Recent evidence indicates that during constriction, Myo2p and 61	

Myp2p are distributed in two distinct concentric rings (22), but the causes and functional implications of this 62	

segregation are unknown. While previous simulation studies have described myosin as bipolar (23, 24), and 63	

this assumption is supported by some in vitro evidence (25, 26), myosin has also been proposed to exist in a 64	

unipolar form with its C-terminal tail tethered to the membrane and its N-terminal motor domain in the 65	
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cytoplasm, in a ‘bouquet-like’ arrangement (20, 27). Further study is needed to elucidate how myosin is 66	

organized within the ring and how it generates tension during constriction. 67	

 68	

In addition to F-actin and myosin, the actin crosslinkers α-actinin and fimbrin have been reported to be 69	

important for assembly of the ring (28, 29). While α-actinin is present in the ring during constriction, it is not 70	

clear whether fimbrin is present as well (30). In vitro, however, addition of actin-crosslinkers stalls ring 71	

contraction (31). Thus it is presently unclear how these actin crosslinkers affect ring contraction. Cofilin has 72	

also been reported to help maintain the structure of the ring, but its seemingly counterintuitive function as an 73	

F-actin severing protein (32, 33) leaves its role during ring constriction unclear. 74	

 75	

Simulations have been used previously to explore constriction of the actomyosin ring (34). In an early 76	

continuum model, discrete molecules were not described. Instead the ring was represented by density values 77	

and the roles of myosin and crosslinkers were implicitly represented using coefficients of tension contribution 78	

(35). Simulations based on this model suggested that actin depolymerization in the presence of end-tracking 79	

crosslinkers could drive constriction, but whether such a crosslinker exists is unknown. Later simulations 80	

further explored this same idea, modeling individual filaments as lines with defined polarity (36). In more 81	

recent work, the ring was modeled as a 2D band in which actin filaments were modeled as chains of beads and 82	

clusters of myosins were represented as single beads which exerted force on actin filaments in close proximity 83	

(24). Parameters were found in which this 2D model produced tension similar to that measured in fission yeast 84	

protoplasts.  Simulations have also explored the condensation of the ring before constriction (37). 85	

 86	

Prompted by new electron cryotomography (ECT) data revealing for the first time the native 3D organization 87	

of the actin filaments and the membrane in dividing yeast cells (16), here we developed more detailed and 3D 88	

coarse-grained simulations to explore different hypotheses about how actin and myosin might constrict the 89	

membrane. F-actin, unipolar and bipolar myosins, and actin crosslinkers were all modeled using a bead-spring 90	
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representation. A flexible cylindrical membrane was also modeled. To make actomyosin interactions as 91	

realistic as possible, the ATPase cycle of myosin was implemented in step-by-step detail. Random forces were 92	

further added to mimic thermal fluctuation.  93	

 94	

First, we introduced the basic components of the ring one-by-one to define a minimal set of components and 95	

rules necessary for constriction. In doing so, we found that actin crosslinkers are required to propagate tension 96	

through the ring, and that introducing cofilin to sever bent F-actin helps reproduce the filament straightness 97	

observed by ECT. We then explored sixteen candidate actomyosin architectures and ring-to-membrane 98	

attachments. Combined with ECT data, our results suggest that actomyosin does not exist in nodes during 99	

constriction. Judged by all currently available experimental data, our simulations favor a model in which the 100	

ring tension is generated primarily through interactions between bipolar myosins and actin filaments, and is 101	

transmitted to the membrane via unipolar myosins, which are individually attached to the membrane. Due to 102	

the 3D and dynamic nature of our data, which is much better presented in movies than static figures, we 103	

encourage readers to begin by watching Movie S1, which presents (i) the elements and properties of our 3D 104	

coarse-grained model of the contractile ring, (ii) building the initial model, (iii) exploration of different 105	

actomyosin configurations, and (iv) a final model that best agreed with experimental data.   106	
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Results 107	

Basic components of the ring 108	

To build a coarse-grained model of the contractile ring, three main components of the ring including F-actin, 109	

myosin and crosslinkers were represented using a bead-spring model (Fig. 1A). Each filament was modeled as 110	

a chain of beads connected by springs, each myosin was modeled to be either unipolar or biopolar, and each 111	

crosslinker was modeled to have two actin binding domains at the two ends. The membrane was modeled as a 112	

sheet of beads, originally having a cylindrical shape (Fig. 1A). Actin-myosin interaction was modeled to occur 113	

in a power-stroke fashion in which the myosin ATPase cycle had five steps (Fig. 1B). The power stroke was 114	

generated via changing the angle of the myosin head as it transitioned between its ATPase phases (see 115	

Methods for details). 116	

 117	

Many proteins are present at the mid-cell during constriction, but it is unclear which are essential for the 118	

contractility of the ring. We therefore started with a very simple model, testing interactions between bipolar 119	

myosin and F-actin of mixed polarities, originally arranged into a ring (Methods/Initial ring configuration). 120	

In this test, a membrane was added to confine the actomyosin system, but membrane constriction was not 121	

expected since it was not linked to the ring (Fig. 2A). As myosin moved along F-actin toward their plus ends 122	

in a ATPase-dependent power-stroke fashion (Fig. 1B), the filaments slid, bent and oriented randomly, but the 123	

ring did not constrict due to the lack of long-range propagation of tension around the ring (Fig. 2B; Movie S1, 124	

at 2:10). Reasoning that crosslinking F-actin would help propagate tension, actin crosslinkers were added, and 125	

the ring began to contract, despite losing the original ring-like arrangement of F-actin (Fig. 2C; Movie S1, at 126	

2:35). Linking the ring to the membrane (Methods/Membrane tethering) resulted in membrane constriction 127	

showing that a ring composed of F-actin, myosin and actin crosslinkers is capable of generating tension and 128	

constricting the membrane (Fig. 2D; Movie S1, at 3:01). As the membrane was pulled inward, cell wall 129	

material was added behind preventing the membrane from relaxing back (see Methods). The ring-like 130	

arrangement of F-actin was now maintained, suggesting that membrane attachment contributes to maintenance 131	
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of the ring structure. Note that in later simulations of model 1, tethering the actin plus end and unipolar 132	

myosin tail to membrane-bound nodes produced tension temporarily in the absence of crosslinkers. As the 133	

nodes were able to slide on the membrane to aggregate into separated large clusters, however, the ring was 134	

quickly broken (SI Appendix/Fig. S2A), pointing again to the need of crosslinkers for ring constriction. 135	

 136	

 137	

Figure 1: Coarse-graining the actomyosin system: (A) Models of F-actin (green), myosins (tail in orange, heads in red), actin 138	

crosslinkers (pink), and membrane (yellow) (see text for details). Note the same visualizations and colors in the right are used for all 139	

following figures unless otherwise stated. (B) The ATPase cycle of myosin was modeled in five steps: myosin (1) binds ATP and 140	

releases actin, (2) hydrolyzes ATP, (3) binds actin, (4) releases phosphate, and (5) releases ADP. 141	

 142	

F-actin straightness regulatory factors 143	

At this stage, the simulated F-actin did not mimic the consistently straight filaments observed experimentally 144	

(16), but they were highly bent (Fig. 2D, F, SI Appendix/Fig. S1). To study how the myosin processivity 145	

would influence bending, we reduced the myosin duty ratio (see Methods/Myosin ATPase cycle for the 146	

definition). As the first step of the ATPase cycle was slowed down 5 and 10 times, the duty ratio was reduced 147	

from the original value of ~ 0.72 to 0.35 and 0.21, slowing down ring constriction and delaying filament 148	
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bending, but this did not eliminate bending. Inspecting the simulation results, we identified at least two factors 149	

that contributed to filament bending. First, if an F-actin was crosslinked close to its minus end while myosin 150	

was walking toward its free plus end, the plus end was pulled toward the minus end, bending the filament 151	

(Movie S1, at 3:42). As one proposed ability of F-actin is tension sensing (38), and myosin is known to bind 152	

preferentially to F-actin under tension (39), we added a rule that myosin could bind to actin only if the 153	

filament was crosslinked upstream. Note that even if we had tracked them in the simulation, other binding 154	

events would not have contributed tension since loose filaments simply move when pulled. 155	

 156	

 157	

Figure 2: Setting up basic components of the simulated constriction system: F-actin (opposing polarities in green and cyan), bipolar 158	

myosin, crosslinkers, and membrane. Italic fonts indicate simulation times. (A) The initial ring was composed of F-actin, bipolar 159	

myosin and membrane. (B) The actomyosin ring did not contract in the absence of crosslinkers. (C) In the presence of crosslinkers, 160	

the ring did contract. (D) Adding tethers between F-actin and the membrane caused the ring to constrict the membrane. (E) Adding 161	

regulatory factors (tension-dependent interaction between actin and myosin, filament orientation-dependent crosslinking, cofilin 162	
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function, and actin turnover) reduced F-actin bending. (F) Histogram of straightness factors for filaments visualized by ECT (16) 163	

(blue), simulations without regulatory factors (red), and with regulatory factors (green). 	164	

 165	

Second, if an actin filament had each of its ends crosslinked to two different filaments sliding toward one 166	

another, the filament would bend (Movie S1, at 4:03). We reasoned that bending was not seen in vivo because 167	

either (i) crosslinks were released on the bent filament or (ii) the filament was broken. Hypothesizing that 168	

torque facilitates crosslink release, we added a rule that the probability of crosslink release increases with the 169	

angle between two filaments at their crosslinked location (Methods/Torque-facilitated crosslinker release 170	

for details). Next, considering that the actin-depolymerizing factor cofilin preferentially severs F-actin that is 171	

not under tension (40), we introduced its function into the simulation by stipulating that the probability of 172	

filament breaking increases with bending angle (Methods/Cofilin function for details). 173	

 174	

Another factor that might affect F-actin bending is actin depolymerization, which has been shown to occur 175	

rapidly during constriction (41). Actin turnover was therefore added (Methods/Protein turnover for details). 176	

Further, turnover of myosin and crosslinkers was also implemented (Methods/Protein turnover for details) 177	

since this occurs in fission yeast (29, 41, 42). In the presence of these regulatory rules, F-actin bending was 178	

prevented in silico (Movie S1, at 5:04; Fig. 2E, F), thus recapitulating the filament straightness observed 179	

experimentally (16). 180	

 181	

Exploration of actomyosin architecture models 182	

Having established a working core model, we explored fifteen plausible configurations and arrangements of F-183	

actin and myosin to study how they would constrict the membrane (Fig. 3). We reasoned that the membrane 184	

must be tethered to either actin or myosin, or both, to enable membrane constriction. The four configurations 185	

of actin are illustrated in Fig. 3 (panels A1–A4). In (A1), F-actin plus ends were tethered to 64 membrane-186	

bound nodes, as shown for ring assembly (20, 43). In (A2), the plus end of each F-actin was tethered to a 187	

random membrane bead. In (A3), tethering could occur on any actin bead along the filament, and in (A4) F-188	
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actin was not tethered to the membrane. The four configurations of myosin are illustrated in Fig. 3 (panels 189	

M1–M4). In (M1), unipolar myosins were tethered by their tails to 64 membrane-bound nodes, again, as 190	

shown for ring assembly (20, 43). In (M2), unipolar myosins were tethered to the membrane in pairs. In (M3), 191	

each unipolar myosin was tethered to a random membrane bead and in (M4), myosins were modeled as 192	

bipolar molecules, randomly distributed throughout the ring, unattached to the membrane. The basic principles 193	

of constriction that were discovered are presented below.  194	

 195	
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 196	

Figure 3: Exploration of different actomyosin models resulting from combining four actin configurations (A1–A4) with four myosin 197	

configurations (M1–M4). Resultant snapshots of the fifteen plausible models are presented. Note that the combination of A4 and M4 198	

is not plausible since there are no tethers between the contractile ring and the membrane.  199	

 200	

 201	

 202	
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Ring tension 203	

First we calculated the ring tension of all the models (Fig. 4). In models where actin and myosins were 204	

anchored to pull on one another in a tug-of-war fashion (e.g., model 1–4 where actin was connected in nodes, 205	

model 3 being an exception), the ring produced a large tension. Meanwhile the ring produced a small tension 206	

if myosins were unipolar and individually attached to the fluidic membrane (models 3, 7, 11, 15). All models, 207	

however, produced tensions of similar order to the ring tension observed experimentally (24). This suggests 208	

that, at least within our models, comparison of the ring tension is not a definitive criterion to rule out certain 209	

models. 210	

 211	

 212	

Figure 4: The ring tension was calculated: (left) representative individual time courses of the ring tensions, and (right) their averages 213	

over 5 simulations produced by 16 models with number 16 representing the final model. Error bars represent standard deviations.  214	

 215	

Individually, homogeneously distributed unipolar myosins maintain membrane smoothness 216	

Several scenarios led to loss of membrane smoothness and circularity. One obvious cause was focusing the 217	

constriction force on only a small number of membrane sites. The most severe distortion occurred when the 218	

ring was connected to the membrane via only 64 nodes, as in models 1, 4, and 13, which resulted in membrane 219	

puckering during constriction (Fig. 3; SI Appendix/Fig. S2 & S3; Movie S1, at 7:08). As new cell wall 220	

material filled the gap between the membrane and the cell wall, puckering also occurred on the leading edge of 221	
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the septum (SI Appendix/Fig. S2B, right panel), supporting the membrane puckers against turgor pressure. We 222	

found that our fluidic membrane model allowed nodes to slide (Fig. S4) with speeds comparable to those 223	

during ring assembly reported experimentally and via simulations (15, 37). As a result of node sliding, in 224	

several cases, puckers coalesced making large membrane deformations (Fig. S2C; Movie S1, at 7:50). Neither 225	

reducing the concentrations of actin, myosin, and crosslinkers in half (SI Appendix/Fig. S2C) nor doubling 226	

them (SI Appendix/Fig. S2D) mitigated puckering. The defects persisted even as the number of nodes 227	

increased from 64 to 140 (SI Appendix/Fig. S2E); the latter was recently reported by Laplante et al (27). We 228	

then studied how puckering depended on the mechanosensitivity of cell wall growth by varying 𝐹!, the 229	

minimal radial force on a membrane bead that induces cell wall growth (defined in Methods/Cell wall and 230	

turgor pressure). Increasing 𝐹! 100 times suppressed cell wall growth when unipolar myosins were 231	

individually connected to the membrane, but this low mechanosensitivity did not prevent nodes-induced 232	

puckering (SI Appendix/Fig. S5). Because the membrane in every cryotomogram appeared smooth (16), we 233	

know small puckers do not form in vivo, noting however that puckers larger than the 200 nm-thick 234	

cryosections cannot be ruled out. In our simulations, the presence of membrane puckers often caused actin 235	

filaments to lie at large angles with respect to the membrane (Fig. 5A; SI Appendix/Fig. S2B; S3B; S3C). By 236	

contrast, in other models which did not produce membrane puckers, filaments remained parallel to the 237	

membrane (Fig. 6), which is consistent with experimental observation (16). Smaller membrane puckers were 238	

observed in model 2, where unipolar myosins were attached to the membrane in pairs (Fig. 3; SI 239	

Appendix/Fig. S3A; Movie S1, at 8:11). On the other hand, in models 3, 7, 11 and 15, where unipolar myosin 240	

was individually attached to the membrane, providing an abundance of attachments, the membrane constricted 241	

without losing smoothness and actin filaments stayed parallel to the membrane (Fig. 3; Fig. 6; SI 242	

Appendix/Fig. S6; Movie S1, at 11:27). Therefore, if unipolar myosins exist during constriction, they are 243	

likely attached to the membrane individually. 244	

 245	
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 246	

Figure 5: Representative features produced by the fifteen models. (A) Membrane puckering, as occurred in model 1, and large 247	

angles between filaments and membrane. (B) Tethering membrane-bound unipolar myosins in nodes or pairs, as in columns 1 and 2 248	

of Fig. 3, resulted in aggregation. (C) Individual unipolar myosins, as in model 11, pulled filaments close to the membrane. (D) 249	

Bipolar myosins, as in model 12, pulled filaments away from the membrane.	250	

 251	

Since a previous study observed that during ring assembly, actin and myosins in a broad band of nodes could 252	

coalesce into different structures when the crosslinker concentration varied (37), we explored whether 253	

changing the crosslinker concentration influenced the ring architecture in our simulations. Doubling or halving 254	

the crosslinker concentration did not change the ring architecture or basic outcome of any of our constriction 255	

models. 256	
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 257	

Attaching unipolar myosin individually to the membrane prevents aggregation 258	

Among models with abundant membrane attachments, in 5, 6, 9, 10 and 14 membrane deformation still 259	

occurred due to myosin aggregation. In contrast to fluorescence microscopy observations (44, 45, 22), 260	

myosins in these models gradually clumped together into a few large aggregates along the ring (Fig. 5B). 261	

Aggregation of unipolar myosins occurred through entanglement as either membrane nodes (models 5 and 9; 262	

Fig. 3; SI Appendix/Fig. S7; Movie S1, at 8:31) or pairs of myosins (models 6, 10 and 14; Fig. 3; SI 263	

Appendix/Fig. S8; Movie S1, at 9:12) became caught on each other due to steric hindrance while sliding along 264	

the membrane. Entangled myosin clusters were in turn larger, increasing the chance for further entanglement 265	

and creating a positive feedback that exaggerated the defect as constriction proceeded. As aggregation 266	

eventually concentrated the constrictive force, membrane circularity was lost. Varying the myosin turnover 267	

rate in models 6, 10, and 14, we found that myosin aggregation was mitigated when the myosin turnover rate 268	

was increased to 15 times faster or more than the rate we observed experimentally (SI Appendix/Fig. S9; 269	

Table S1). In model 8, where actin plus-ends were tethered to the membrane and bipolar myosin was not, 270	

clustering of plus-end tethers also led to myosin aggregation at these locations (Fig. 3; SI Appendix/Fig. S10; 271	

Movie S1, at 10:23). In contrast, in models 3, 7, 11 and 15, the uniform distribution of myosin provided a 272	

persistent, homogenous distribution of constrictive force that preserved membrane smoothness and circularity 273	

(Fig. 3; SI Appendix/Fig. S6; Movie S1, at 11:27) further supporting the notion that unipolar myosins are 274	

individually tethered to the membrane. 275	

 276	

Bipolar myosins pull actin filaments away from the membrane 277	

Next, we focused on the five models where the membrane remained smooth (models 3, 7, 11, 12 & 15) and 278	

measured the distance between F-actin and the membrane (SI Appendix/Fig. S11). The four models containing 279	

individually tethered unipolar myosins (models 3, 7, 11 & 15) restricted filaments to ~21 nm from the 280	

membrane (Fig. 5C; SI Appendix/Fig. S6; Fig. S11), while ECT showed an average distance of ~60 nm (16). 281	
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Due to membrane-tethering and pulling forces from the unipolar myosins, less than 0.2% of the actin beads in 282	

these four models were at a distance larger than 60 nm. In model 12, untethered bipolar myosins tended to pull 283	

actin away from the membrane, producing a larger average distance of 32 nm with nearly 10% of the actin 284	

beads at a distance larger than 60 nm (Fig. 5D; SI Appendix/Fig. S11). This suggested the presence of bipolar 285	

myosin within the ring in real cells. In some cases, actomyosin bundles consisting of unattached F-actin and 286	

bipolar myosins peeled off from the ring and depolymerized (Fig. 5D; Movie S1, at 10:51). This is consistent 287	

with previous observations by fluorescence microscopy (22), further supporting the presence of bipolar 288	

myosins and suggesting that actin filaments are not attached to the membrane. 289	

 290	

	291	

Figure 6: Angles between actin filaments and the membrane calculated after 60 sec of simulated time: (left) representative 292	

histograms of angles in individual simulations and (right) averages over five simulations for each model with error bars representing 293	

standard deviation and the red horizontal line indicating the average angle (7.8°) measured from electron tomograms for a reference. 294	

The presence of puckers, as in models 1, 4, and 13, causes filaments to form angles larger than observed experimentally.  295	

 296	

Final model: dual myosin configurations 297	

We therefore built a final model consisting of untethered F-actin, individual unipolar myosins, and bipolar 298	

myosins (Fig. 7A). Simulating the final model resulted in normal constriction without visible defects of the 299	

membrane or ring (Fig. 7B; Movie S1, at 13:27). In this model, unipolar myosins remained at the outer edge 300	
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of the ring due to their membrane attachment, while the bipolar form drifted inward, pulled toward the center 301	

by interaction with F-actin (Fig. 7C; Movie S2, at 13:54), matching the fluorescence microscopy result of the 302	

two myosin isoforms Myo2p and Myp2p (22). In our simulations, interactions with bipolar myosins pulled 303	

actin filaments away from the membrane (Fig. 7B, zoomed-in view; Fig. 7D), approximately recapitulating the 304	

distances observed by ECT (16), and occasionally caused actin/bipolar myosin bundles to peel off, as reported 305	

previously for actin/Myp2p bundles (22). Reducing the ATPase rate of the unipolar myosin in the simulation 306	

caused actin/bipolar myosin bundles to peel off more frequently, again in agreement with fluorescence 307	

microscopy results in which the loss of actin/Myp2p bundles occurred at higher frequency when the 308	

biochemical activity of Myo2p was reduced (22). 309	

 310	

Reasoning that the balance of force between unipolar myosins pulling F-actin close to the membrane and 311	

bipolar myosins pulling it away would dictate its average distance to the membrane, we investigated how the 312	

average distance between F-actin and the membrane depended on the ATPase rate of the unipolar myosin by 313	

scaling it with a factor 𝜆. As expected, the average distance between F-actin and the membrane increased as 314	

the ATPase rate of the unipolar myosin decreased, reaching the experimentally measured value of 60 nm at 315	

𝜆~0.005 (Fig. 7D).  316	

 317	

To further dissect the roles of the two forms of myosin, we studied the simulated constriction rate, 𝜈 = ∆𝑟/∆𝑡, 318	

defined as the ratio of average inward radial growth of the cell wall ∆𝑟 to constriction time ∆𝑡, as a function of 319	

the unipolar myosin’s ATPase rate (scaled with factor λ) (Fig. 7E). For simplicity, 𝜈 was considered a linear 320	

combination of contributions from the bipolar myosin 𝜈! and the unipolar myosin 𝜈!. Fitting 𝜈 = 𝜈!+𝜈!𝜆 to 321	

the simulated data yielded 𝜈! = 2.8 nm/s and 𝜈! = 1.4 nm/s. Since there were 2,000 bipolar and 3,200 322	

unipolar myosin heads, on average, each bipolar head contributed an amount of ~1.4 pm/s to the constriction 323	

rate while each unipolar head contributed ~0.4 pm/s. The efficiency of the bipolar myosins in our simulations 324	

was therefore several times that of the unipolar myosins, likely due to the fact that unipolar myosins were 325	
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attached to the fluidic membrane. This is in agreement with the experiments that showed Myp2p contributes 326	

more to the constriction rate of real cells than Myo2p (22).  327	

 328	

 329	

Figure 7: The final model. (A) A zoomed-in view shows initial configuration of the ring, including untethered F-actin (green and 330	

cyan), membrane-attached unipolar myosins (red), and bipolar myosins (orange). During constriction, (B) membrane smoothness 331	

and circularity were preserved and distances between F-actin and the membrane as observed in tomograms were recapitulated (as 332	

shown in a zoomed-in view), and (C) the membrane-attached unipolar myosins (red) occupied the outer edge of the ring while the 333	

unattached bipolar myosins (orange) occupied the inner edge. (D) Average distance between the simulated F-actin and the 334	

membrane (arrow indicates the average distance measured in tomograms) and (E) constriction rate as a function of the unipolar 335	

myosin’s ATPase rate scaling factor, λ. Error bars represent standard deviations (n = 5). 	336	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 18, 2017. ; https://doi.org/10.1101/194910doi: bioRxiv preprint 

https://doi.org/10.1101/194910


	 20	

Discussion 337	

 338	

From a methodological standpoint, we have demonstrated how 3D coarse-grained simulations can be used to 339	

explore complex models and hypotheses. The ring components were modeled in individual molecular detail, 340	

exerting force on a flexible membrane. Individual steps of myosin II's ATPase cycle were also modeled to 341	

produce power-stroke-driven movement of myosin along actin filaments. While we could not of course 342	

include all relevant molecules (only ~4 of the more than 100 proteins involved were modeled) or fully explore 343	

parameter space, our results did nevertheless suggest several interesting principles. 344	

 345	

The role of crosslinkers  346	

Previous experimental studies have shown that crosslinkers such as α-actinin and fimbrin are essential for 347	

assembly of the fission yeast’s AMR ring, but their role during constriction has not been clear (28–30). Earlier 348	

simulations showed that end-tracking crosslinkers and actin filament depolymerization could together drive 349	

contraction (36), but α-actinin and fimbrin are not end-tracking, and it remains unclear whether end-tracking 350	

crosslinkers are present in the ring. It was also previously suggested that contractility could arise in the 351	

presence of thick myosin filaments if they functioned as crosslinkers by remaining bound to the barbed end of 352	

F-actin (46). Although this might promote connectivity for long-range propagation of tension, it was unclear 353	

how such binding would be maintained, and thick myosin filaments were not seen in the cryotomograms (16). 354	

Our simulations suggest that crosslinkers like α-actinin and fimbrin allow long-range propagation of tension 355	

around the ring. This is consistent with findings on the contractility of in vitro ring-like (47) and disordered 356	

networks of actin (48).  357	

 358	

F-actin straightness 359	

ECT revealed that F-actin filaments in dividing cells are remarkably straight (16). While in our first 360	

simulations involving only F-actin and myosin, the actin filaments became highly bent, here we identified two 361	
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factors that likely reduce this bending in vivo. First, it has been shown in vitro that myosin binds preferentially 362	

to F-actins under tension (39). Biasing myosins to preferentially bind stretched F-actin filaments in our 363	

simulations reduced bending, and also helped maintain ring tension. It has also been shown in vitro that cofilin 364	

preferentially severs F-actins not under tension (40). Biasing cofilin's activity to bent filaments here promoted 365	

filament straightness. Our simulations therefore suggest one rationale for the otherwise puzzling presence in 366	

the ring of an actin severing factor (32, 33).  367	

 368	

Comparisons to previous simulations/treatments of actomyosin systems 369	

Dasanayake et al. (49) studied 2D disordered networks of actin, myosin, and crosslinkers and found that they 370	

were by nature contractile, in agreement with our findings for the interplay of these three basic elements.  371	

Lenz also explored the behavior of disordered 2D networks, and found analytically that “contractile forces 372	

result mostly from motors plucking the filaments transversely” (50). The architecture of the AMR is very 373	

different, since the actins are parallel and bundled into a ring. As a result, contractile forces in our simulations 374	

arose from motors sliding parallel filaments past each other. Stachowiak et al. simulated a 2D actomyosin 375	

band where nodes containing 40 bipolar myosins each were modeled as single beads (24). The authors 376	

observed clustering of myosin beads when protein turnover was stopped, but the cause of aggregation was 377	

very different than seen here because in their model volume exclusion was not applied to all elements (e.g., 378	

objects could pass though actin filaments). In contrast, by modeling all the basic elements (including the 379	

membrane) in 3D and applying volume exclusion to all objects, we found aggregation occurred when actin 380	

filaments and unipolar myosins were connected to the membrane in nodes or pairs, throughout a range of 381	

physiologically relevant turnover rates.  Further, our simulations allowed the characteristics and consequences 382	

of different actomyosin configurations to be assessed in 3D, and compared directly with those observed in 383	

cryotomograms (16). This revealed that concentrating force at nodes produces puckers in the membrane. 384	

Moreover, while Stachowiak et al.’s simulations produced tension similar to that measured in fission yeast 385	

protoplasts, our results showed that other actomyosin configurations can also produce ring tension of similar 386	
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order. The most closely related previous work was that of Bidone et al., (37), who simulated how actin nodes 387	

placed on a 3D cylindrical surface can be drawn together into a tight ring by myosin filaments. The major 388	

difference with our work is that while Bidone et al. explored assembly of the ring, ours explored contraction, 389	

including changes in the shape of the cell wall boundary, and we found that concentrating force at nodes 390	

results in puckers. Thiyagarajan et al. simulated septum closure with a 2D representation of the cell wall (45). 391	

Assuming that the ring follows the shape of the septum leading edge, a condition we interpret as requiring an 392	

intimate and uniform connection to the membrane, and that the rate of cell wall growth was proportional to 393	

radial force, Thiyagarajan et al. showed that cell wall growth in local depressions would be faster than in 394	

flatter regions, and this could maintain circularity. This is most like our model in which myosins were 395	

connected to the membrane individually, since then force was distributed across thousands of connections, and 396	

in our case, this architecture also maintained circularity. Our simulation went on to show, however, that when 397	

force was concentrated at nodes, the basic assumption of uniform connection broke down and puckers 398	

resulted. 399	

 400	

Do nodes exist during constriction? 401	

Actin filaments and myosins have been shown to form nodes during the assembly of the ring (11–15, 51), but 402	

a more recent study reported that the head domain of Myo2p distributed along pre-constriction rings (52), 403	

reflecting a discrepancy in the literature. While Laplante et al. recently suggested nodes persist during 404	

constriction (27), our results call into question whether this is the case. In our simulations, whenever 405	

constrictive force was concentrated on nodes or aggregates, membrane puckers formed, which is intuitively 406	

reasonable and we are not surprised this is invariant across crosslinker concentrations, myosin processivity, 407	

turnover rates, etc. As a consequence, large angles were frequently created between F-actin and the membrane 408	

(Fig. 5A, SI Appendix/Fig. S2B; S3B; S3C), features not seen in the cryotomograms (16). We conclude that 409	

either nodes are not present during constriction or we don’t understand yet what other cellular forces maintain 410	
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smooth membranes when constrictive force is concentrated at nodes. Perhaps future experiments will provide 411	

new insight into how membrane puckers are prevented. 412	

 413	

Actomyosin architecture 414	

Instead of being directly attached to the membrane in nodes, our simulations suggest that actin filaments are 415	

not attached to the membrane. This rationalizes how bundles of actomyosin were able to separate from the 416	

membrane in fluorescence microscopy experiments (22). Our simulations also favored models where unipolar 417	

myosins link the ring and the membrane. While no clear evidence of such connections were seen in 418	

cryotomograms (16), the coiled-coil tail of a unipolar myosin is too thin and flexible to be resolved by ECT. 419	

Considering that Myo2p is the only myosin essential for viability (6, 21), it is a reasonable candidate for this 420	

role. Unipolar Myo2p molecules have already been proposed to attach to the membrane at nodes during ring 421	

assembly (20), but our results suggest they are more likely attached to the membrane individually to prevent 422	

aggregation and preserve membrane smoothness and circularity. Further, our results suggest that the myosin 423	

isoform Myp2p may exist in a bipolar configuration within the ring. This would explain fluorescence light 424	

microscopy experiments that showed that Myp2p primarily drives constriction, occupies the inner subdomain 425	

of the ring, and causes actomyosin bundles to peel away from the ring (22). 426	

  427	
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Methods 428	

For convenience, the key parameters of our simulations are listed in SI Appendix/Table S2. 429	

 430	

Actin filament 431	

We modeled the actin filament (F-actin) as a chain of beads connected by springs (Fig. 1). Considering the 432	

double-helical nature of the filament, for convenience, each model bead represented two globular actin 433	

monomers (G-actin). Since 13 G-actins, corresponding to 6.5 model beads, cover a length of 35.9 nm (53), the 434	

relaxed length of the connecting spring is 𝑙! = 5.5 nm. The tensile modulus of F-actin has been measured to 435	

be 𝐸 = 1.8 nN/nm2 (54). Estimating the cross-section of F-actin to be 𝐴~30 nm2 we derived the force 436	

constant of our model springs to be 𝑘! = 𝐸𝐴/𝑙!~10 nN/nm, reflecting that F-actin is not easily stretched. To 437	

reduce the computational cost of simulating such stiff springs, however, we used a force constant of 1 nN/nm 438	

considering the fact that the stretching of the F-actin was still negligible with this constant. To recapitulate 439	

actin’s semi-flexibility, bending at a bead with an angle 𝜃 was penalized with an energy of 𝐸!! = 𝑘!!(𝜃 −440	

𝜃!)!/2 where 𝜃! = 180∘ was the relaxed angle, and the bending stiffness constant 𝑘!! was derived using the 441	

measured persistence length, 𝐿!~10 µm (55), to be 𝑘!! = 𝑘!𝑇𝐿!/𝑙! = 7.4 ∙ 10!!" J where 𝑘! is the 442	

Boltzmann constant, and 𝑇 = 295 K is the room temperature. Note that in initial simulations (see F-actin 443	

straightness regulatory factors) filaments became highly bent with the original bending stiffness 𝑘!! = 7.4 ∙444	

10!!" J, but bending was prevented in the presence of straightness regulatory factors (SI Appendix/Fig. S1). 445	

Bending was also prevented even after 𝑘!! was reduced three times to 2.4 ∙ 10!!" J, confirming that this 446	

reduction did not change the outcome of our simulations. Again, to reduce the computational cost, we then 447	

used 𝑘!! = 2.4 ∙ 10!!" J for the rest of our simulations.  448	

 449	

Myosin configuration 450	

Myosin was modeled to be either unipolar or bipolar and the same parameters were used for both 451	

configurations. Unipolar myosin was modeled as an 8-bead tail (representing the elongated C-terminal coiled-452	
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coil tail domain of two myosin heavy chains) connected to two head beads representing the N-terminal motor 453	

domains of the two heavy chains (Fig. 1). Bipolar myosin was composed of two unipolar molecules connected 454	

at the tails. Like the actin filament, the beads were connected by springs of force constant 𝑘! = 1 nN/nm, and 455	

relaxed length 𝑙! = 10 nm, which was chosen to reproduce a length of ~80 nm reported for the fission yeast 456	

conventional myosin II (56). To recapitulate the experimentally reported pulling force of 3–4 pN by a single 457	

myosin head (57), simulations were done where a unipolar myosin interacted with an actin filament from 458	

which the bending stiffness constant was determined to be 𝑘!! = 0.5 ∙ 10!!" J (SI Appendix/Fig. S12). The 459	

relaxed angle was 180∘ on the tail, but at the head-to-tail junction it varied depending on the ATPase status of 460	

the head bead (see below for details). 461	

 462	

Myosin ATPase cycle 463	

To model interaction with actin, each myosin head was allowed to exist in five phases: bound to (i) ATP, (ii) 464	

ADP and the hydrolyzed Pi, (iii) ADP, Pi and actin, (iv) ADP and actin (Pi was released), and (v) actin (ADP 465	

was released). The relaxed angle at the head-tail junction was 120∘ if the myosin head was in phases (ii) or 466	

(iii) and 60∘ if in phases (i), (iv), or (v). Since ATPase rates for the individual phases of myosin II in fission 467	

yeast are not known, the probabilities of each phase transition were calculated based on studies from different 468	

species (58, 59). Specifically, ATP hydrolysis (phase (i) to (ii) transition) occurred with a probability of 𝑝! = 469	

25/s. If a myosin head in phase (ii) was within an interaction distance 𝐷 = 15 nm from an unbound actin bead, 470	

actomyosin binding (phase (ii) to (iii) transition) occurred with a probability of 𝑝! = 50/s. If there were more 471	

than one actin bead within 𝐷, the probability of being chosen for actin bead 𝑖 was calculated as 472	

𝑃! = 𝑓!/ 𝑓! [1] 473	

where 𝑓! = 𝑑!
!(𝐷! − 𝑑!)/[𝑑! 𝐷! − 𝑑!

! ] was a function of the distance 𝑑 between the myosin head and 474	

actin bead 𝑖 and 𝑑! = 5 nm was the relaxed distance between them once they were bound to each other. 475	

Myosin II is known to walk on F-actin directionally from the pointed end to the barbed end. To model this 476	

property, for simplicity, binding between myosin and actin was allowed only if the angle 𝜃 formed by the 477	
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head-to-tail myosin vector and the plus-to-minus end actin vector was smaller than 90∘ (SI Appendix/Fig. 478	

S13A). Release of Pi (phase (iii) to (iv) transition) occurred with a probability of 𝑝! = 25/s, generating a 479	

pulling force in a power stroke fashion as the head-tail angle relaxed from 120∘ to 60∘. ADP release (phase 480	

(iv) to (v) transition) occurred with a probability of 𝑝! = 25/s. Finally ATP binding and actin release (phase 481	

(v) to (i) transition) occurred with a probability of 𝑝! = 150/s. Our implemented rates of the myosin ATPase 482	

cycle resulted in an average myosin duty ratio of ( 1/𝑝!!
!!! )/( 1/𝑝!!

!!! ) = 0.72. While these rates set the 483	

upper limit of the load-free velocity of a myosin molecule to 𝑙!/( 1/𝑝!!
!!! ) = 70 nm/s, a previous 484	

experimental study reported a myosin load-free velocity of 500 nm/s (60), reflecting a discrepancy in the 485	

literature. 	486	

 487	

Actin Crosslinkers 488	

Crosslinkers were modeled as two actin-binding domain (ABD) beads connected to a central bead by two 489	

springs of a force constant 𝑘! and relaxed length 𝑙! (Fig. 1). To account for the existence of different potential 490	

crosslinkers in real cells, namely 𝛼-actinin and fimbrin (30), two types of crosslinkers were modeled. The one 491	

representing 𝛼-actinin had a length of 2𝑙!! = 22 nm, the combined length of two ABDs (5 nm each) and two 492	

spectrin repeats (6 nm each) estimated from PDB structure 4D1E (while human 𝛼-actinin has four, 𝛼-actinin 493	

of fission yeast has only two spectrin repeats (61)), and 𝑘!! = 0.5 nN/nm. The other representing fimbrin had 494	

2𝑙!
! = 10 nm (estimated from PDB structure 1RT8) and 𝑘!

! = 1.1 nN/nm, which was chosen so that the two 495	

crosslinkers had the same Young’s modulus, meaning 𝑘!!𝑙!! = 𝑘!
!𝑙!
!. To promote stiffness, bending with an 496	

angle 𝜃 was penalized with an energy of 𝐸!!" = 𝑘!!" 𝜃 − 𝜃! !/2, where 𝜃! = 180∘ was the relaxed angle and 497	

the bending stiffness constant was 𝑘!!" = 0.5 ∙ 10!!" J. Note that the spring constant for crosslinkers in our 498	

model was four orders of magnitude larger than that used in a previous simulation work by Stachowiak et al. 499	

(24) where the authors sourced an experimental work by Claessens et al. (62). In our opinion, Stachowiak et 500	

al. misinterpreted 𝑘|| = 0.025 pN/nm (which was defined by Claessens et al. as the crosslinker’s effective 501	
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shear stiffness at very small deformations) as the crosslinker’s extensional stiffness. Thermal forces would 502	

unrealistically stretch crosslinkers of this small spring constant tens of nm. 503	

 504	

The binding of crosslinkers to actin was modeled to be stochastic. The binding of a crosslinker ABD bead to 505	

an actin bead within the interaction distance 𝐷 = 15 nm occurred with a probability of 100/s. Similar to 506	

myosin-actin binding, if there were more than one actin bead within 𝐷, the probability of being chosen for 507	

actin bead 𝑖 was calculated using equation [1]. Actin release from 𝛼-actinin and fimbrin occurred with 508	

probabilities of 3/s (63, 64) and 0.05/s respectively (28). 509	

 510	

Membrane 511	

The membrane was modeled as a single layer of beads initially forming a cylinder (Fig. 1). To preserve 512	

membrane integrity, attractive forces were introduced between neighboring beads. To do this, a mesh of non-513	

overlapping triangles with vertices on the beads was calculated from which non-redundant pairs of neighbor 514	

beads were determined. If a pair of beads were separated at a distance 𝑑 larger than 𝑑!"#$ = 20 nm, they were 515	

pulled together with a force of 𝐹!"## = 𝑘!"#$(𝑑 − 𝑑!"#$)! where 𝑘!"#$ = 20 pN/nm2 was a force constant. To 516	

prevent the beads from being too close to each other, they were pushed apart with a force of 𝐹!"#! =517	

𝑘!"#$(𝑑!" − 𝑑)! if 𝑑 was smaller than a distance 𝑑!" = 10 nm. Since a permanent pairwise interaction 518	

would have prevented membrane beads from moving away from one another, blocking fluidity, the non-519	

overlapping triangle mesh and therefore the non-redundant pair list were recalculated every 10! steps. This 520	

allowed new pairs of beads to form based on their updated positions and made the membrane fluidic. 521	

 522	

To generate membrane bending stiffness, a mesh of tetragons with vertices on the beads was calculated. If the 523	

four beads on each tetragon were not on the same plane such that the two diagonals were separated by a 524	

distance 𝑑, a spring-like force, 𝐹!" = 𝑘!"𝑑, was exerted on the beads to pull the two diagonals towards each 525	

other (SI Appendix/Fig. S13B). Based on the reported membrane bending stiffness (65), the force constant 526	
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was calculated to be 𝑘!" = 2 pN/nm. To prevent boundary artifacts, we applied a periodic boundary condition 527	

by translating the images of the beads of one edge to the other. 528	

 529	

Torque-facilitated crosslinker release 530	

If two filaments were crosslinked at an angle 𝛼 that was larger than 60° (SI Appendix/Fig. S13C) then once 531	

every 10! time steps the crosslink was released with a probability 𝑃!" = 0.5− 𝑐𝑜𝑠(𝛼). 532	

 533	

Cofilin function 534	

If at an actin bead, the angle 𝛼 between the tangent and the position vector from the barbed end (SI 535	

Appendix/Fig. S13D) was larger than 60°, once every 10! time steps (the number was arbitrarily chosen since 536	

the rate in real cells is not known) the filament was broken into two segments with a probability 𝑃!" = 1.0−537	

𝑐𝑜𝑠(𝛼). 538	

 539	

Protein turnover 540	

To model the turnover of ring components, actin depolymerization, addition of new F-actin, myosin removal 541	

and addition, and crosslinker removal and addition were included. At the beginning the G-actin pool was set 542	

empty for simplicity. Actin depolymerization was modeled to be stochastic, which removed an actin bead at 543	

the minus end to the G-actin pool with a probability of once every second, considering that F-actin turnover 544	

was reported to occur in about 1 min (41). A new filament of a randomly-selected length was added to a 545	

random location along the ring with a probability of once every 10! time steps if the G-actin pool had more 546	

than 100 monomers. If membrane-bound nodes were present, the barbed end of the added F-actin was tethered 547	

to a random node. 548	

 549	

A simple turnover mechanism was modeled for myosin. If all the heads of a myosin molecule were unbound, 550	

it was removed and a new one was added to a random location along the ring with a rate 𝑟! = 1/𝜏, where 𝜏 551	
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was the resident time of unbound myosins. For each model, we varied 𝜏 and measured the resultant average 552	

resident time of all myosins (bound and unbound). We report the resultant average resident times (SI 553	

Appendix/Table S1) that were close to 14 s, our experimentally-measured resident time (SI Appendix/Fig. 554	

S9), which is half of the previously reported value (41, 42). To explore the role of myosin turnover, multiple 555	

simulations of each model were run with different values of 𝜏.  The particular values used to produce each 556	

figure shown are listed in Table S1. 557	

 558	

Similarly, to model crosslinker turnover, if both the ABD beads of a crosslinker were unbound, it was 559	

removed and a new one was added to a random location along the ring with a probability of once every 20 s 560	

(29). 561	

 562	

Protein binding force 563	

If an actin bead and its binding partner (either a myosin head or a crosslinker ABD bead) were “bound” to 564	

each other at a given time step (see rules above for when they were considered bound), they exerted force on 565	

one another through a spring-like force 𝐹! = 𝑘!(𝑑 − 𝑑!), where 𝑘! = 0.1 nN/nm was the force constant and 566	

𝑑! = 5 nm was the relaxed distance. 567	

 568	

Volume exclusion 569	

To prevent the beads from overlapping with one another, if the distance 𝑑 between any two beads was smaller 570	

than 𝑟!"" = 5 nm, they were pushed apart with a force 𝐹! = 𝑘!(𝑟!"" − 𝑑)!/(𝑑 − 𝑟!")! to prevent them from 571	

approaching each other closer than 𝑟!" = 4 nm, where 𝑘! = 0.1 nN. 572	

 573	

Membrane tethering 574	

How tethering the ring to the membrane was modeled depended on the actomyosin configuration. In the node 575	

models, in which either F-actin plus ends or unipolar myosin tails (or both) were tethered to the membrane-576	
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bound nodes, each node was modeled as a bead connected to 10 nearest-neighbor membrane beads determined 577	

at the beginning. If the distance 𝑑 between a node and a tethering counterpart, either an actin plus end, a 578	

unipolar myosin tail end, or a neighboring membrane bead, was larger than 𝑑! = 20 nm, the pair were pulled 579	

closer to each other with a force 𝐹! = 𝑘!(𝑑 − 𝑑!), where 𝑘! = 0.2 nN/nm was the force constant. In the 580	

paired-unipolar myosin configuration, for simplicity the two tail-end beads were tethered to a small node 581	

including 4 additional nearest-neighbor membrane beads. In the other models, direct tethering between one 582	

membrane bead to actin and/or unipolar myosin was modeled. If the distance 𝑑 between an actin bead and its 583	

membrane tethering counterpart was larger than 𝑑! = 30 nm, the beads were pulled closer to each other with a 584	

force 𝐹! = 𝑘! 𝑑 − 𝑑! , where 𝑘! = 0.18 nN/nm was the force constant. If the distance 𝑑 between a unipolar 585	

myosin tail-end bead and its membrane tethering counterpart was larger than 𝑑!" = 5 nm, the beads were 586	

pulled closer to each other with a force 𝐹!" = 𝑘!" 𝑑 − 𝑑!" , where 𝑘!! = 0.2 nN/nm was the force 587	

constant. 588	

 589	

Cell wall and turgor pressure 590	

Cell wall growth is needed to support ingression of the membrane since the tension from the AMR is not 591	

sufficient to counter the effect of large turgor pressure (66). Experiments have shown, however, that septum 592	

assembly slows down four folds (44, 66) and becomes misshapen in the absence of the contractile ring (16), 593	

suggesting ring constriction guides septum assembly in the normal condition. For simplicity, the membrane 594	

was treated as squeezable and the wall was modeled as a semi-rigid layer that expanded inwards following the 595	

membrane (SI Appendix/Fig. S14). The net force from turgor pressure and the cell wall on the membrane was 596	

modeled to follow Hook’s law: a membrane bead at a distance 𝑑 from the wall surface was pushed by a force 597	

𝐹! = −𝑘! 𝑑 − 𝑑! , where 𝑘! = 0.05 pN/nm was the force constant and 𝑑! = 20 nm was the relaxed 598	

distance between the membrane and the wall. Previously, Thiyagarajan et al. proposed a tension-sensitive cell 599	

wall growth model in which the cell wall grows in proportion to the radial force exerted by the ring on the 600	

membrane (45). Similarly, to model cell wall growth, once every 10! time steps, if the difference between 𝑑 601	
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and 𝑑! was more than 0.1 nm (corresponding to a radial force of 𝐹! = 0.005 pN), the wall moved inward 602	

0.01 nm.  603	

 604	

Note that because it is not presently known what force would be required to initiate cell wall growth, this 605	

minimal radial force required to initiate cell wall synthesis (0.005 pN) was simply chosen as a value 20x 606	

smaller than the typical force from the ring (~ 0.1 pN). To explore the role of this mechanosensitivity 607	

parameter, simulations were also run with much larger 𝐹! values. We found that at 𝐹! = 0.5 pN (increased 608	

100 times), there was essentially no cell wall growth in the model where unipolar myosins were individually 609	

connected to the membrane (distributing the ring constriction force homogeneously), but in the model where 610	

nodes were present, cell wall growth did occur, but puckers still formed (Fig. S5). Therefore, puckers were 611	

consistently the result of force concentration at nodes, not an artifact of a high mechanosensitivity. 612	

 613	

Diffusion 614	

To model thermal motion of the system we introduced random forces on the beads. Each Cartesian component 615	

was generated following a Gaussian distribution using the Box-Muller transformation (67). Each 616	

transformation converted two random numbers from a uniform 0 – 1 distribution, 𝑢! and 𝑢!, into two random 617	

numbers of a Gaussian distribution: 618	

𝑟! = cos 2𝜋𝑢! −2 𝑙𝑛 𝑢!   

𝑟! = sin 2𝜋𝑢! −2 𝑙𝑛 𝑢!   

For a system of N particles, 3N/2 transformations were used to generate 3N numbers. While a pseudo random 619	

force can be generated by integrating a Gaussian random distribution with the time step, to reduce the 620	

computational cost, the random force was simply obtained by scaling the Gaussian random number with a 621	

force constant 𝑘!. To determine 𝑘! for actin we ran simulations of free individual actin filaments in the 622	

presence of the random force and compared the simulated tangent correlation, 𝑐𝑜𝑠𝜃 , over distance 𝐿 to the 623	

theoretical value 𝑒!!/!! where 𝐿! was the persistence length of the filament (SI Appendix/Fig. S15). We 624	
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found that the simulated tangent correlation matched the theory best at 𝑘! = 20 pN. We then used the same 625	

𝑘! = 20 pN for the random force on myosins and crosslinkers considering they were also cytoplasmic 626	

proteins. In the absence of relevant experimental measurements, we arbitrarily chose 𝑘! = 5 pN for the 627	

random force on the membrane. 628	

 629	

Initial ring configuration 630	

To determine a minimal list of basic components of the ring, our model started with an actomyosin ring 200 631	

nm wide (dimension along the long axis of the cell) and 30 nm thick (dimension along the radial direction) 632	

inside a membrane 300 nm wide and 1,000 nm in radius. The ring was composed of 400 F-actins of length 633	

chosen randomly in the range of 270 – 810 nm long (50 – 150 beads) resulting in ~30 – 40 filaments per ring 634	

cross-section, well within the range of 14 – 60 filaments observed by ECT (16)). 800 bipolar myosins were 635	

included. To study the role of crosslinkers, 600 𝛼-actinins and 1,000 fimbrins were added to the ring. Note 636	

that these protein concentrations were within the ranges reported experimentally (68). 637	

 638	

The same parameters for the membrane and crosslinkers were used for all 15 actomyosin configurations. The 639	

ring started 200 nm wide and 60 nm thick. Note that bundles of actomyosin peeled off the ring during 640	

constriction in model 12, where actin filaments were directly tethered to the membrane (see Membrane 641	

tethering) and myosin was bipolar, and this was also observed in the ring that started 30 nm thick. Either 800 642	

bipolar (model 4, 8, 12) or 1,600 unipolar myosins (the other models) were present. The same ring 643	

configuration was used in simulations of the final working model except there were 1,600 unipolar and 500 644	

bipolar myosins coexisting in the system. In all modeled rings, F-actin existed in two opposing polarities. 645	

 646	

Ring boundary 647	

ECT showed that F-actins were strictly localized to the leading edge of the septum (16). This might be the 648	

result of either the ring tension or some physical barrier that was not distinguishable in the tomograms or both. 649	
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The septin cytoskeletal proteins were thought to serve as such a barrier as they form a pair of rings flanking 650	

the actomyosin ring during constriction (69). This proposal was challenged later as the septin rings were 651	

reported to be dispensable for cytokinesis in budding yeast (70). In addition, the barrier function of septins is 652	

unlikely in fission yeast since the two rings do not contract during contraction of the actomyosin ring (12, 71, 653	

72). Another barrier candidate, if required at all, could be the F-BAR protein Cdc15, as it was reported to form 654	

long filaments likely wrapping around the division site several times (73). This stable scaffold might restrict 655	

movement of partner proteins in the ring. To implement a diffusion barrier in our model, if a ring component 656	

bead moved a distance ∆𝑥 outside the ring boundary, chosen to be 200 nm wide along the ring axis, it was 657	

simply pulled back with a force of 𝑘!"∆𝑥, where 𝑘!" = 10 pN/nm was the force constant. 658	

 659	

System dynamics 660	

To track the evolution of the system we used a simple molecular dynamics simulation. Specifically, the 661	

coordinate 𝑋(𝑡) of each bead changed following the Langevin equation: 662	

𝑀
𝑑!𝑋
𝑑𝑡! = −∇𝑈 𝑋 − 𝛾

𝑑𝑋
𝑑𝑡 + 𝑅(𝑡) 

where 𝑀 is the mass of the bead, 𝑈 the interaction potential, 𝛾 = 6 ∙ 10!! Ns/m the damping constant and 𝑅 663	

the random force on the bead (see Diffusion above). To select a large damping constant that made simulations 664	

computationally efficient, we ran simulations where a single myosin molecule walked on a fixed actin 665	

filament and characterized the myosin load-free velocity with respect to the damping constant (SI 666	

Appendix/Fig. S16). A damping constant of 𝛾 = 6 ∙ 10!! Ns/m was chosen to minimize computational cost 667	

without perturbing the myosin load-free velocity. Since we used the same damping constant for every bead in 668	

the system, the constant for a complex was proportional to the number of beads in the complex. Thus a small 669	

node of ~7 unipolar myosins (having ~70 beads) experienced a damping constant of ~420 pNs/µm, 670	

corresponding to a diffusion constant of ~10 nm2/s, the experimental value reported by Vavylonis et al (15). 671	

Assuming the inertia of the bead was negligible, and thus 𝑀 = 0, the displacement was simply a linear 672	

function of total force 𝐹: 673	
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𝑑𝑋 =
1
𝛾 −∇𝑈 𝑋 + 𝑅 𝑑𝑡 =

1
𝛾 𝐹𝑑𝑡 

To prevent a large force from moving a bead too far, we constrained the maximal displacement of any bead in 674	

any time step (corresponding to the maximal force 𝐹!"#) to 𝐷!"# = 0.01 nm. Displacement 𝐷 of each bead 675	

was then calculated as  676	

𝐷 =
𝐷!"# 
𝐹!"# 𝐹 

Since the time step was not a constant in our simulations, the average time step was calculated at the end of 677	

each simulation, which fell in the range of 0.2 – 0.3 µs. Simulation codes were written in Fortran and the 678	

trajectories of each system were visualized using VMD (Visual Molecular Dynamics) (74). 679	

 680	

F-actin straightness 681	

To compare actin filament straightness in the tomograms and the simulations, we defined “straightness” as the 682	

filament’s contour length 𝐿!"#$"%& divided by the length of a straight line connecting the two ends 683	

𝐿!"#!!"!!"# (SI Appendix/Fig. S13E). Note that we did not compare persistence length, which is usually used 684	

to characterize free filaments not being pulled or acted upon by anything other than random thermal forces. 685	

 686	

Actin-membrane distance 687	

To compare the distances between the actin filaments and membranes in the tomograms and the simulations, 688	

we defined the distance from an actin bead to the membrane as the smallest distance from the actin bead to 689	

any membrane bead. 690	

 691	

Constriction rate 692	

For simplicity, the constriction rate was calculated as the inward growth of the cell wall, ∆𝑟/∆𝑡, averaged 693	

around its circumference, where ∆𝑟 was the radial displacement of the cell wall leading edge and ∆𝑡 was the 694	

duration of constriction. 695	
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 696	

Ring tension 697	

To calculate the ring tension during constriction, first the ring radius 𝑅! was calculated as the average distance 698	

from the actin beads to the cell axis. The ring tension was then calculated as 699	

𝑇 =
𝑘!(𝑙!! − 𝑙!)𝑙!! 𝑐𝑜𝑠!𝜃!

2𝜋𝑅!!

 

where the sum was over all actin springs 𝑖 which had their length 𝑙!!  larger than the relaxed length 𝑙!, 𝑘! was 700	

the actin spring constant, and 𝜃! was the angle spring 𝑖 deviated from the circumferential direction. 701	

 702	

  703	
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Experimental procedures 704	

Microscopy 705	

Mid-log-phase cells were spotted on a 2% Agar pad supplemented with YES media and observed under a 706	

custom-built spinning disk confocal microscope with an inverted Olympus IX-83,100X/1.4 plan-apo 707	

objective, a deep cooled Hamamatsu ORCA II –ER CCD camera and Yokogawa CSU:X1 spinning disk 708	

(Perkin-Elmer). A stack of 18–20 Z slices of 0.3 mm Z-step-size was collected every 2 min for an hour at 709	

25°C using the Velocity software (Perkin-Elmer). Images were then rotated and cropped using the imageJ 710	

software to align cells and 3D reconstruction was done using the Velocity software. 711	

 712	

Fluorescence Recovery After Photobleaching (FRAP) 713	

Cells were mounted onto a 2% Agar pad supplemented with YES media and observed under a Leica TCS SP8 714	

scanning confocal microscope with a 63x magnification, 1.4 numerical aperture (NA) oil-immersion objective. 715	

The experiments were performed at 25°C unless otherwise indicated. For excitation of GFP, we used a 488 nm 716	

Argon laser. Images were collected with a scan speed of 40 fps, 12x digital zoom, at 256 x 256 pixels. The 717	

laser intensity for photobleaching was adjusted to obtain ~80% loss of fluorescence in the approximately 0.2 718	

µm x 0.2 µm circular bleached region of the cytokinetic ring. To allow rapid bleaching, we used a high laser 719	

intensity with 1–3 iterations of the bleaching scan. The images were collected before and after bleaching, 720	

using low laser intensities and FRAP was monitored for 1.5 to 2 min. Data from the experiment were analyzed 721	

using ImageJ (National Institute Of Health, Bethesda, MD) with FRAP plugin 722	

(www.embl.de/eamnet/frap/FRAP6.html) using the double normalization method (75). Normalized curves 723	

were fitted to single exponential functions to extract the mobile fraction and half-life. 724	
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