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Abstract  
 
Peptide binding to MHC class I molecules is the single most selective step in antigen 
presentation and the strongest single correlate to peptide cellular immunogenicity. 
The cost of experimentally characterizing the rules of peptide presentation for a given 
MHC-I molecule is extensive, and predictors of peptide-MHC interactions constitute 
an attractive alternative.  
 
Recently, an increasing amount of MHC presented peptides identified by mass 
spectrometry (MS ligands) has been published. Handling and interpretation of MS 
ligand data is in general challenging due to the poly-specificity nature of the data.  We 
here outline a general pipeline for dealing with this challenge, and accurately annotate 
ligands to the relevant MHC-I molecule they were eluted from by use of 
GibbsClustering and binding motif information inferred from in-silico models.  We 
illustrate the approach here in the context of MHCI molecules (BoLA) of cattle. Next, 
we demonstrate how such annotated BoLA MS ligand data can readily be integrated 
with in-vitro binding affinity data in a prediction model with very high and 
unprecedented performance for identification of BoLA-I restricted T cell epitopes.  
 
The approach has here been applied to the BoLA-I system, but the pipeline is readily 
applicable to MHC systems in other species.   
 
Keywords MHC, Antigen presentation, BoLA, Mass Spectrometry, T cell epitopes, 
Bioinformatics, Prediction, GibbsClustering, NetMHCpan 
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Introduction 
 
Binding to MHC class I molecules (MHC-I) is a prerequisite for antigen presentation 
and induction of cytotoxic T cell responses 1. MHC-I molecules are highly specific, 
binding only a very small part of the possible peptide space. This high specificity 
combined with its essential role of antigen presentation has placed MHC in the focal 
point of research related to rational T cell epitope discovery and vaccine design.   
 
Traditionally, the specificity of MHC molecules has been characterized using in-vitro 
binding assays 2. Using such assays, binding affinity values for large sets of single 
peptides have allowed very accurate experimental characterization of the binding 
motifs for a large panel of MHC-I molecules including the most prevalent human and 
several non-human primate MHC-I molecules. Recent studies have further extended 
the approach to livestock species including pig (SLA) 3 and cattle (BoLA) 4. 
However, the cost of applying an in-vitro approach to the characterization of MHC-I 
molecules is substantial and using it to characterise all MHC molecules within a given 
species remains unfeasible.  
 
Given this, large efforts have been dedicated to the development of accurate in-silico 
models capable of characterizing the specificity of MHC-I molecules that not only 
allow the prediction of peptide binding to MHC-I molecules outside the very small set 
of peptides with measured binding affinity (i.e. extrapolating the peptide-space) but 
also make predictions for MHC-I molecules with limited or even no experimental 
binding data (i.e. extrapolating the MHC-I space). One method capable of both these 
types of extrapolations is NetMHCpan 5,6,7. This method is pan-specific in the sense 
that it allows prediction of peptide binding to any MHC-I molecule with known 
protein sequence, and the method has in several benchmark studies been shown to be 
‘state-of-the-art’ 8.   
 
One inherent problem with most MHC-I binding prediction methods available, 
including NetMHCpan, is that they reflect the nature of the data used in the training of 
the underlying models. Since most prediction methods are trained on in-vitro binding 
data, the predictive power of the models is restricted by any bias present in the in-
vitro binding data. It is clear that several biases are present in the currently available 
in-vitro binding data, compromising their relevance as a descriptor of the biological 
event of antigen presentation: Binding data does not address the fact that antigen 
presentation is a complex integrative physiological process that combines antigen 
processing and transport as well as binding affinity and binding stability of the 
peptide to the MHC-I binding groove. Additionally, in vitro data fails to reflect any 
peptide length preference of different MHC-I alleles. 
 
Recent	advances	in	liquid	chromatography	tandem	mass	spectrometry	(LC-MS2)	
have	allowed	this	technique	to	become	a	powerful	alternative	to	in-vitro	binding	
assays	for	the	identification	of	MHC	ligands,	T	cell	epitopes	9,10	and	
characterization	of	MHC	binding	specificities	11.	The	use	of	LC-MS2	to	identify	
MHC	ligands	has	several	clear	advantages	over	in-vitro	binding	assays.	First	and	
foremost	the	data	obtained	suffers	to	a	much	lesser	degree	from	the	biases	
described	above	for	the	in-vitro	generated	binding	data.	However,	a	limiting	
factor	of	the	LC-MS2	approach	for	identification	of	MHC	ligands	is	the	sensitivity	
with	which	peptides	can	be	reliably	identified.	It	is	inherent	to	the	technology	
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that	the	most	abundant	peptides	in	the	sample	are	prioritised	for	identification	
using	standard	LC-MS2	acquisition	methods.	This	is	hallmarked	by	the	fact	that	
only	a	minor	proportion	of	known	T	cell	epitopes	are	identified	as	MHC	ligands	
in	standard	LC-MS2	assays.	Hence,	in	the	foreseeable	future,	LC-MS2	will,	in	line	
with	in-vitro	assays,	serve	as	a	guide	and	not	a	solution	for	rational	identification	
of	T	cell	epitopes.		
 
Recent studies have suggested that training prediction engines on LC-MS2-determined 
MHC ligand data (further referred to as MS ligand data) rather than binding affinity 
data improves the ability to accurately identify MHC ligands 11,12,13. This observation 
strengthens the assumption that MS ligand data may provide a better representation of 
the presented peptide antigen pool compared to in-vitro binding affinity data. 
 
However, since the number of different MHC-I molecules characterized by MS 
ligands compared to in-vitro binding data remains small, we have in a recent 
publication outlined an approach that permits the inclusion of both MS ligand data 
and binding affinity data into a framework for learning MHC-I peptide interactions 8. 
In this earlier work, we demonstrated how this approach increased predictive 
performance compared to the previous ‘state-of-the-art’ techniques with regards to 
identification of naturally processed ligands, cancer neo-antigens, and T cell epitopes.  
 
Here, we extend the approach to livestock. We outline a general pipeline for analysis 
and interpretation of MS ligand data. The pipeline consists of three steps; i) clustering 
of MS ligand data into MHC specificity groups, ii) association of specificity groups to 
specific MHC molecules, and iii) integration of MS ligand data into a framework for 
prediction of MHC-restricted T cell epitopes. We describe this pipeline in the context 
of bovine leukocyte antigen class I (BoLA-I) ligand data, and demonstrate how the 
approach can readily be applied to construct a predictive model with very high and 
unprecedented performance for identification of BoLA-I restricted T cell epitopes.  
 
Material and methods 
 
BoLA-I-associated peptide purification. Cells were washed and then lysed using 10 
ml lysis buffer (1% Igepal 630, 300 mM NaCl, 100 mM Tris pH 8.0 and protese 
inhibitors) per 109 cells. Lysates were cleared by centrifugation at 500 g for 10 min 
followed by 15,000 g for 60 min. BoLA complexes were captured using a pan anti-
BoLA class I antibody IL-88 that was covalently conjugated to protein A sepharose 
immunoresin (GE healthcare) at a concentration of 5mg/ml. Bound complexes were 
washed sequentially using buffers of 50 mM Tris buffer, pH 8.0 containing 150 mM 
NaCl, then 400 mM NaCl, and finally 0mM NaCl. BoLA-associated peptides were 
eluted using 5 ml 10% acetic acid and dried.  
  
High performance liquid chromatography (HPLC) fractionation. Affinity 
column-eluted material was re-suspended in 120 µl loading buffer (0.1% formic acid, 
1% acetonitrile in water). Samples were loaded onto on a 4.6 x 50 mm ProSwiftTM 
RP-1S column (Thermo Scientific) and eluted using a 500 µl/min flow rate over 10 
min from 2-35 % buffer B (0.1% formic acid in acetonitrile) in buffer A (0.1% formic 
acid in water) using an Ultimate 3000 HPLC system (Thermo Scientific). Sample 
fractions were collected from 2-15 min. Protein detection was performed at 280 nm. 
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Fractions up to 12 min that did not contain ß2-microglobulin were combined, dried 
and further analysed by LC-MS2. 
  
LC-MS2 analysis. Samples were suspended in 20 µl loading buffer and analysed on 
an Ultimate 3000 nano UPLC system online coupled to a QExactive-HF mass 
spectrometer (Thermo Scientific). Peptides were separated on a 75 µm x 50 cm 
PepMap C18 column using a 2h linear gradient from 5% buffer A to 35% buffer B at 
a flow rate of 250 nl/min (approx. 600 bar). Peptides were introduced into the mass 
spectrometer using a nano Easy Spray source (Thermo Scientific). Subsequent 
isolation and higher-energy C-trap dissociation (HCD) was induced on the 20 most 
abundant ions per full MS scan with an accumulation time of 128 ms and an isolation 
width of 1.0 Da. All fragmented precursor ions were actively excluded from repeated 
selection for 8 s. 
 
MS data analysis. Sequence interpretations of MS2 spectra were performed using a 
database containing all bovine UniProt entries combined with the all annotated 
Theileria parva proteins (35,992 entries total; bovine SwissProt entries: 5,995, bovine 
Trembl entries: 25,911, Theileria parva entries: 4,084). Spectral interpretation was 
performed using PEAKS 7.5 (Bioinformatics Solutions Inc.).  
 
NetMHCpan retraining and data preparation. MHC binding affinity data were 
obtained from the IEDB 14 (http://tools.immuneepitope.org/main/datasets; dataset 
used for retraining the IEDB class I binding prediction tools). This dataset consists of 
186,684 peptide- MHC binding affinity measurements covering 172 MHC molecules 
from human, mouse, primates, cattle, and swine. IEDB eluted ligands were also 
obtained from the IEDB applying the filtering procedure described in 8. This data set 
contains 85,217 entries in total restricted by 55 unique MHC molecules. Random 
artificial negatives were added for each MHC molecule covered by eluted ligand data 
by sampling randomly 10*N peptides of each length 8-15 amino acids from the 
antigen source protein sequences, where N is the number of 9mer ligands for the 
given MHC molecule. A similar procedure was applied for the BoLA-I restricted 
eluted ligands. Here, however the artificial negatives were obtained from a set of 
random natural proteins.  
 
Results 
 
The raw MS ligand data 
We first analysed the accuracy and consistency of the raw MS BoLA-I ligand data 
generated. MS ligand data were obtained from 5 BoLA-I homozygous cell lines 
describing 3 BoLA haplotypes; A10, A14, and A18. More than 94% of the peptides 
identified had lengths of between 8 and 14 amino acids. Focusing on this peptide 
subset, the number of ligands obtained in each experiment varied between 6,615 and 
7,755 (Fig. 1A). The overlap in ligands identified between cell-lines expressing the 
same BoLA-I haplotype was large, with more than 50% of the unique peptides for 
each haplotype data set found in both samples (reflected in the total number of ligands 
for each haplotype being smaller than the sum of the counts from each cell line) (Fig. 
1B). 
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Figure	1.	(A)	Number	of	peptides	obtained	from	each	cell	line,	and	for	the	combined	set	
(all)	of	peptides	for	each	of	the	BoLA-A10,	-A14	and	–A18	haplotypes.	(B)	Overlap	of	
peptide	sequences	for	A10	and	A14	samples.	(C)	Distribution	of	ligand	lengths	within	the	
different	data	sets.			

The length distribution of the peptides was highly consistent between data sets from 
each haplotype, but varied substantially between haplotypes (Fig. 1C). The extreme 
examples being the data from cell lines expressing the A14 haplotype, with a 
relatively high preference for 8mers, and the cell lines expressing the A18 haplotype, 
with a preference for 10 and 11mer peptides.  
 
Identification of MHC-I allele specificity groups 
One first challenge faced when interpreting and analysing MS ligand data obtained 
from a given cell line that expresses more than a single MHC allele, is assigning the 
peptides to the relevant MHC-I molecule they were eluted from. We have earlier 
demonstrated that this challenge can be readily and accurately solved using the 
GibbsCluster method 15. In short, this method takes the complete list of eluted ligands 
from a given experiment as input, and seeks to cluster the ligands into groups so that 
similarity within each group is high and the similarity between groups is low. The 
algorithm includes an option to place ligands into a trash cluster if they demonstrate 
poor similarity to all defined clusters. This trash cluster option has proven very 
powerful for removal of false positive ligand data. The recent update to the tool 
allows the clustering to be performed on peptides of variable length 16. The outcome 
of the algorithm is a solution defined by an optimal number of clusters, with each 
ligand associated to one such cluster (or the trash cluster). 
  
We hence applied the GibbsCluster method (version 2.0) to deconvolute the BoLA-I 
restriction of the ligands in the data sets corresponding to the three haplotypes. The 
method was run with default options for MHC class I ligand clustering except for the 
number of seeds, which was set to 10 to allow for improved sampling (Fig. 2). 
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Figure	2.	GibbsCluster	analysis	of	the	three	combined	data	sets.	Each	row	displays	the	
results	from	one	haplotype	data	set.	Left	panels	give	the	barplot	of	the	Kullback-Leibler	
Distance	(KLD)	as	a	function	of	the	number	of	clusters.	The	relative	size	of	each	black	
block	within	a	bar	is	proportional	to	the	size	of	each	of	the	clusters.	The	right	panels	give	
the	sequence	motifs	derived	from	the	best	solution	(i.e.	the	solution	with	highest	KLD)	
displayed	in	the	form	of	sequence	logos	generated	with	Seq2Logo	17.	

The GibbsCluster method selects the solution with the highest KLD value (the central 
column of Fig. 2) and in all three cases, we find a perfect correspondence between the 
number of known functional BoLA-I alleles expressed by each cell line and the 
number of clusters identified by the GibbsCluster method. The number of peptides 
assigned to the trash cluster was in the three cases; 3.4% (BoLA A10: 347 out of 
10,188), 2.1% (BoLA A14: 201 out of 9,509), and 2.5% (BoLA A18: 164 out of 
6,615). These low proportions confirm the very high purity of the eluted ligand data 
sets.  
 
Annotation of BoLA-I restrictions to specificity groups 
The next challenge of analysing the MS ligand data set is the association of each 
identified ligand clusters to a BoLA-I molecule expressed in the given cell line.  Here, 
we used the motifs predicted by NetMHCpan (version 3-0) 7 as a qualitative guide to 
make this association.  This approach allowed in all cases a clear and unambiguous 
association of a single BoLA-I restriction to each cluster (Fig. 3).  
 

A10: 
BoLA-2*01201,
BoLA-3*00201

A14: 
BoLA-1*02301,
BoLA-4*02401,
BoLA-2*02501

A18: 
BoLA-6*01301
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Figure	3.	Mapping	of	GibbsClustered	peptides	to	BoLA-I	molecule	specificities.	Each	
haplotype	is	shown	separated	by	the	vertical	lines	as	indicated.	In	each	column	the	
binding	motif	logos	for	each	of	the	optimal	GibbsCluster	solutions	(upper	row)	together	
with	the	best	matched	NetMHCpan	predicted	binding	motif	for	the	BoLA-I	molecules	
(lower	row)	expressed	by	the	relevant	haplotype	are	shown	(as	determined	by	visual	
comparison).		

Based on this mapping, we unambiguously assigned each cluster to one BoLA-I 
molecule as shown in Table 1. 
 
Cell line Group BoLA-I 

A10 G1 BoLA-3*00201 
G2 BoLA-2*01201 

A14 
G1 BoLA-4*02401 
G2 BoLA-1*02301 
G3 BoLA-2*02501 

A18 G1 BoLA-6*01301 
Table	1.	Association	of	GibbsCluster	clusters	to	BoLA-I	restrictions.		

Given this mapping of ligands to individual BoLA molecules we were able to conduct 
an allele-specific analysis of the length distribution of MHC-I ligands. As expected 
most of the BoLA molecules had a length preference for 9mer peptides (Fig. 4). 
However, clear differences in the ligand length distribution between the different 
BoLA-I molecules was evident. The most extreme cases were BoLA-1*02301 (A14), 
with a high preference for binding 8mer peptides (>30%), and BoLA-6*01301 (A18) 
with an increased preference for binding 10 and 11mer peptides (>65%).  
 

	
Figure	4.	Length	distribution	of	ligands	restricted	to	each	BoLA	molecule.		

A10 A14 A18

BoLA-3*00201 BoLA-2*01201	 BoLA-1*02301	 BoLA-2*02501	BoLA-4*02401	 BoLA-6*01301	
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Construction of a prediction model 
Having mapped the likely BoLA-I restriction of the individual ligands, we sought to 
use this information to (re)train the NetMHCpan prediction method combining the 
BoLA MS eluted ligand (EL) data with BoLA binding affinity (BA) data contained 
within the IEDB. The retraining of the NetMHCpan prediction method was performed 
as described earlier 8. In short, the method was trained on the two data types (BA and 
EL) in a conventional three-layer feed forward artificial neural network. The weights 
between the input layers and the hidden layer are shared between the two input types, 
and the output layer has two output neurons; one for each input type. During training, 
examples of the two data types (EL and BA) are shown at random to the network, and 
weights are adjusted using stochastic gradient descent along the gradient of the output 
neuron corresponding to the input type. Variations in peptide length are handled 
allowing insertions and deletions as described in 18.   
 
The IEDB binding affinity peptide data set for 7 BoLA molecules (listed in table 2) 
contains exclusively 9mer peptide data. By integrating the MS ligand, we would 
hence expect that the updated NetMHCpan method would achieve an improved 
predictive performance for the BoLA system due to i) the method being informed of 
the differences in length preference of the different BoLA molecules as illustrated in 
Fig. 4, and ii) the inclusion of peptide data for additional BoLA molecules expanding 
the knowledge of BoLA binding specificities. Examples of i) are shown in Fig. 5. 
Here, the top 1% percent strongest predicted binders from a set of 700,000 random 
natural 8-14mer peptides (100,000 of each length) predicted using NetMHCpan-2.8, 
NetMHCpan-3.0, and the two individual output values of the method trained on the 
combined BoLA-eluted MS ligand data (EL) and binding affinity data (BA) (method 
4.0) are shown in comparison to the measured length distribution of the MS ligand 
data.  
 

  
Figure	5.	Predicted	length	preference	for	the	BoLA-3*00201	(left)	and	BoLA-1*02301	
(right)	molecules.	The	solid	line	show	the	length	distribution	for	the	MS	eluted	ligands	in	
both	panels	and	bars	shown	the	length	distribution	predicted	by	NetMHCpan-2.8	(2.8	-	
light	grey),	NetMHCpan-3.0	(3.0	-	white),	the	eluted	ligand	output	value	of	NetMHCpan-4.0	
(4.0_EL	-	black),	and	the	binding	affinity	output	value	of	NetMHCpan-4.0	(4.0_BA	-	grey).	

The figure shows that the MS eluted ligand likelihood score (4.0 EL) and to a lesser 
degree the binding affinity score (4.0 BA) of the NetMHCpan-4.0 model trained on 
the combined BoLA-eluted MS ligand and IEDB MHC binding affinity data 
accurately captures the length preference of the two BoLA molecules as described 
from the MHC-elution MS ligand data. The figure also confirms earlier observation 
that NetMHCpan-2.8 has no power to predict peptide length preferences of different 
MHC molecules, and that NetMHCpan-3.0 in most cases (included the two shown 
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here) predicts a strong preference for 9mers followed by 10mers but has very limited 
predictive potential for peptides of other lengths 7. 
 
Turning next to the evaluation of how the inclusion of the MS ligand data impacts the 
performance when it comes to predicting peptide-BoLA interactions, we show in 
Table 2 the performance of models trained with and without MS ligand data 
(NetMHCpan-3.0 and NetMHCpan-4.0, respectively) when evaluated on the set of 
peptides with measured binding affinity data from the IEDB (performance is 
evaluated using 5-fold cross validation). From this evaluation, it is apparent that 
adding MS ligand data improves the predictive performance of the model with a 
consistent increase in the predictive power as measured in terms of both the Pearson’s 
correlation coefficient (PCC) and area under the receiver operator curve (AUC) across 
all 6 BoLA molecules.  

	 	 	 NetMHCpan-4.0_BA	 NetMHCpan-3.0	
BoLA-I	 #peps	 #bind	 PCC	 AUC	 PCC	 AUC	
BoLA-3*00101	(BoLA-AW10)	 166	 8	 0.497	 0.816	 0.381	 0.792	
BoLA-1*02301	(BoLA-D18.4)	 258	 182	 0.648	 0.832	 0.551	 0.747	
BoLA-6*01301	(BoLA-HD6)	 268	 219	 0.622	 0.815	 0.482	 0.728	
BoLA-3*00201	(BoLA-JSP.1)	 158	 32	 0.464	 0.703	 0.277	 0.622	
BoLA-T2c	 90	 84	 0.485	 0.833	 0.455	 0.813	
BoLA-2*01201	(BoLA-T2a)	 167	 47	 0.691	 0.852	 0.635	 0.812	
BoLA-6*04101	(BoLA-T2b)	 157	 38	 0.631	 0.835	 0.566	 0.816	
Ave	 	 	 0.577	 0.812	 0.478	 0.761	

Table	2.	Comparison	of	the	predictive	performance	of	NetMHCpan-4.0_BA	(the	binding	
affinity	prediction	score	of	the	NetMHCpan-4.0	method	trained	on	both	eluted	ligand	and	
peptide	binding	affinity	data)	and	NetMHCpan-3.0	models	on	quantitative	binding	affinity	
data	from	the	IEDB	affinity	data	set.	Names	in	parentesis	in	the	first	column	refer	to	the	
historial	names	for	the	dfferent	alleles.	Performance	was	estimated	in	terms	of	Pearson’s	
correlation	coefficient	(PCC)	and	AUC	(area	under	the	receiver	operator	curve).	Both	these	
performance	measures	take	a	value	of	1	for	the	perfect,	and	values	of	0.0	(PCC)/0.5	(AUC)	
for	a	random	prediction.	

Identification of BoLA-I restricted T cell epitopes 
Finally, we evaluated the combined impact of the above two effects (improved 
prediction of the preferred peptide length, and expanded knowledge of BoLA binding 
specificities) for the capacity to enhance prediction of BoLA-I restricted T cell 
epitopes. We performed this evaluation on a set of previously described epitopes with 
known BoLA-I restrictions 19,20. Here, we predict binding for all overlapping 8-11mer 
peptides from the source protein of the epitopes to the known BoLA-I restriction 
molecule using the NetMHCpan-3.0 and NetMHCpan-4.0_EL (the eluted ligand 
prediction score of the NetMHCpan-4.0 method trained on both eluted ligand and 
peptide binding affinity data) prediction methods, and report the performance of each 
method as a Frank score (i.e. the fraction of peptides with predicted binding values 
greater than the epitope). Using this measure, a value of 0 corresponds to a perfect 
prediction (the known epitope is identify with the highest predicted binding value 
among all peptides found within the source protein), and a value of 0.5 to random 
prediction. The result of this evaluation is shown in Table 3. 
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	 BoLA-I	 Epitope	 Protein	 #p	 3.0	 4.0_EL	 3.0	Alt	 3.0	 4.0_EL	Alt	 4.0_EL	

TP	

BoLA-6*01301	 VGYPKVKEEML	 Tp1	 2138	 0.261	 0.010	 VGYPKVKEEML	 0.261	 VGYPKVKEEML	 0.010	
BoLA-6*04101	 SHEELKKLGML	 Tp2	 662	 0.005	 0.000	 EELKKLGML	 0.000	 EELKKLGML	 0.000	
BoLA-6*04101	 DGFDRDALF	 Tp2	 662	 0.103	 0.063	 DGFDRDALF	 0.103	 GDGFDRDALF	 0.017	
BoLA-2*01201	 KSSHGMGKVGK	 Tp2	 662	 0.020	 0.023	 SSHGMGKVGK	 0.012	 SSHGMGKVGK#	 0.006	
BoLA-T2c	 FAQSLVCVL	 Tp2	 662	 0.008	 0.014	 FAQSLVCVL	 0.008	 FAQSLVCVL	 0.014	
BoLA-2*01201	 QSLVCVLMK	 Tp2	 662	 0.003	 0.002	 QSLVCVLMK	 0.003	 QSLVCVLMK	 0.002	
BoLA-2*01201	 KTSIPNPCKW	 Tp2	 662	 0.033	 0.060	 KTSIPNPCK	 0.000	 TSIPNPCKWK	 0.005	
BoLA-AW10	 TGASIQTTL	 Tp4	 2282	 0.000	 0.000	 TGASIQTTL	 0.000	 TGASIQTTL	 0.000	
BoLA-1*00902	 SKADVIAKY	 Tp5	 586	 0.000	 0.000	 SKADVIAKY	 0.000	 SKADVIAKY	 0.000	
BoLA-T7	 EFISFPISL	 Tp7	 2850	 0.034	 0.017	 FISFPISL	 0.028	 EFISFPISL	 0.017	
BoLA-3*00101	 CGAELNHFL	 Tp8	 1726	 0.000	 0.003	 CGAELNHFL	 0.000	 CGAELNHFL	 0.003	
BoLA-1*02301	 AKFPGMKKSK	 Tp9	 1302	 0.074	 0.025	 AKFPGMKKS	 0.058	 AKFPGMKKS$	 0.005	

BHV	

BoLA-1*00901	 FVEGEAASH	 ICP4	 5350	 0.076	 0.121	 FVEGEAASH	 0.076	 FVEGEAASH	 0.121	
BoLA-3*00201	 GPDLQLARL	 ICP4	 5350	 0.091	 0.121	 AGPDLQLARL	 0.016	 AGPDLQLARL	 0.000	
BoLA-3*00201	 TTPEILIEL	 Circ	 1006	 0.001	 0.000	 TTPEILIEL	 0.001	 TTPEILIEL	 0.000	
BoLA-3*01701	 TGARAGYAA	 ICP4	 5350	 0.009	 0.035	 TGARAGYAA	 0.009	 TGARAGYAA	 0.035	
BoLA-4*02401	 PGAFCPEDW	 ICP22	 1214	 0.148	 0.113	 GAFCPEDW	 0.077	 GAFCPEDW	 0.007	
BoLA-2*01801	 APAPSPGAL	 Circ	 978	 0.003	 0.002	 APAPSPGAL	 0.003	 APAPSPGAL	 0.002	

	 Ave    0.048	 0.034	 	 0.036	 	 0.013	

Table	3.	Predictive	performance	of	the	NetMHCpan-4.0	eluted	ligand	likelihood	prediction	
model	(4.0_EL)	compared	to	NetMHCpan-3.0	(3.0)	on	a	data	set	of	known	BoLA-I	restricted	
T	cell	epitopes	from	Theileria	parva	(TP)	and	Bovine	herpes	virus	(BHV).	The	part	of	the	
table	to	the	left	of	the	vertical	line	gives	the	performance	of	the	two	methods	on	the	
original	epitope	data.	The	part	of	the	table	to	the	right	of	the	vertical	line	gives	the	results	
allowing	each	prediction	method	to	suggest	alternative	epitopes	overlapping	with	the	
known	epitopes	(either	contained	within	known	epitopes	or	with	single	amino	acid	
extensions).	In	bold	is	high	lighted	the	case	where	the	two	methods	suggest	alternative	
optimal	epitopes.	#Minimal	epitope	defined	in	21,	$Minimal	epitope	(N.	MacHugh	personal	
communication).	

Also in this data, the improvement in predictive performance when integrating the 
BoLA-MS eluted ligand data in the prediction methods is apparent. When permitting 
the prediction methods to suggest alternative epitopes the average scores for 
NetMHCpan3.0 and 4.0_EL are 0.036 and 0.013 respectively. In the majority of cases 
(16/18), the NetMHCpan-4.0 method identifies the epitopes (or suggests an 
alternative variant) within the top 2% of peptides contained within the source protein 
of the epitope (i.e. has a Frank value less than 0.02). Notably, the worst prediction 
made by NetMHCpan4.0_EL is for the FVEGEAASH epitope presented by BoLA-
1*00901; there is no binding or BoLA-eluted ligand data are available characterizing 
the specificity and ligand length preference of this BoLA-I molecule. The closest 
neighbour, defined in terms of the sequence similarity of the pseudo sequence of 
BoLA-1*00901 to the MHC molecules in the training data, is BoLA-1*02301 with a 
neighbour distance of 0.14. This value is larger than the 0.1 distance value that as rule 
of thumb is defined as the threshold for when NetMHCpan predictions are reliable 22. 
It is hence not unexpected to observe low predictive performance for this molecule 
and its exclusion nearly halves the average score for the NetMHCpan4.0_EL 
predictions to 0.007. In conclusion, in practical terms and in the context of workload 
reduction, this result means that more than 99% of the peptides contained within the 
antigen protein sequences could be discarded by use of peptide binding prioritizations 
prior to experimental validation.  
 
Discussion and Conclusions  
 
In this work, we have outlined a simple yet highly powerful pipeline for the analysis 
and interpretation of LC-MS2-defined MHC-eluted ligand data. We applied the 
pipeline to analyse eluted ligand data obtained from 5 cell lines covering 3 BoLA-I 
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haplotypes each characterized to express between one and three distinct BoLA-I 
molecules. 
 
We demonstrate how the pipeline can effectively deal with several of the important 
challenges when interpreting MS ligand data, including identification of false 
positives, identification of the MHC binding motif and assignment to the regarding 
MHC restriction elements. We also demonstrate how this information can be 
integrated into prediction methods to improve their accuracy for rational epitope 
discovery.  
 
Comparing the set of ligands identified from separate cell lines derived from two 
different animals expressing identical BoLA haplotypes revealed a high level of 
consistency with more than 50% of the ligands shared between both.  Using the 
GibbsCluster method to group the ligands allowed for both the identification of false 
positives and also MHC binding specificity clusters. A very low number of false 
positive peptides were identified (less than 3.4% in all samples), confirming the high 
accuracy of the MS ligand data.  For each of the analysed data sets, we found a 
perfect correspondence between the number of specificity clusters identified and the 
number of known functional MHC molecules included in the corresponding 
haplotype.  Analysing each of the identified clusters revealed large differences not 
only in binding motif of associated ligands but also in the length preference of the 
ligands presented by each of different MHC molecule. This difference in ligand 
length preference between BoLA-I molecule has to the best of our knowledge not 
been characterized before.  
 
A challenge related to the identification of MHC binding specificity clusters is the 
subsequent association of specificity clusters to restricting MHC molecules expressed 
by the given cell. Several approaches have been suggested to deal with these 
challenges including the use of MHC mono-allelic cell lines 13 and co-occurrence of 
MHC alleles across different samples 12. However, in the vast majority of cases, the 
association can readily be obtained by comparing the binding motif of each specificity 
cluster to the motif predicted by state-of-the-art MHC binding prediction methods 
such as NetMHCpan 7. It is clear that this approach is limited by the prediction 
accuracy of the NetMHCpan method, and will fail in situations where NetMHCpan 
has no predictive power for one or more of the MHC molecules in question. However, 
as shown here, applying this approach where some prior information about the BoLA-
I specificities is available, allows clusters to be unambiguously assigned to BoLA-I 
molecules. 
 
Having mapped each ligand to a specific BoLA-I molecule, we analysed how to best 
benefit from these data in terms of development of improved prediction methods for 
BoLA-I restricted T cell epitopes. We have earlier demonstrated that integrating 
binding affinity data covering a range of relevant BoLA-I into the NetMHCpan 
prediction tool led to an improved performance for the identification of known  
BoLA-I restricted T cell epitopes 4. Earlier work moreover suggested that the MHC 
ligand prediction method could benefit from the integration of MS elution data 13,11,23. 
To benefit from both of these observations, we here applied the recently proposed 
approach to train the MHC binding predictor on a combined data set of binding 
affinity and MS ligand data 8. In accordance with the work by Jurtz el al. 8, we find 
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that this approach led to significantly improved performance both for prediction of 
peptide binding affinity, and T cell epitopes.  
 
As mentioned earlier, the different BoLA-I molecules showed very different peptide 
length binding preference. As shown here, including the MS ligand data in the 
training, allows, in agreement with earlier work, the prediction method to learn these 
differences, and hence boost the predictive performance by placing lower binding 
values to peptides with atypical length according to the eluted ligand length profile.  
 
Evaluating the prediction model trained on the combined binding affinity and eluted 
ligand data on a set of validated BoLA-I restricted epitopes, we found a consistent 
improvement in performance compared to current methods. In agreement with earlier 
studies, the vast majority of epitopes are identified within the top 2% of the predicted 
peptides contained within the antigen source protein 7. Only one epitope was very 
poorly predicted by the proposed model. This epitope is restricted to a BoLA-I 
molecule very distinct (in terms of the protein sequence) from the BoLA molecules 
included in the training of the NetMHCpan method, and this most likely accounted for 
the low prediction accuracy for this molecule 22. Further, data on the nature of the 
peptides that bind to this allele is likely to improve the predictive values of 
NetMHCpan. Also, the analysis suggests, in agreement with earlier studies, the 
presence of alternative epitopes overlapping with the known epitopes (either wholly 
contained within the peptide or accommodated by single amino acid extensions) 
strongly suggest that these need to be refined to map the minimal epitope 20,21,24.  
 
In conclusion, the present study confirms the very high accuracy of ‘state-of-the art’ 
proteomic methods for high throughput and accurate identification of MHC-presented 
ligands, and demonstrates how the proposed pipeline combining GibbsClustering and 
advanced data mining techniques allows the intuitive interpretation of MS ligand data 
and also the integration of such data for improved prediction of MHC peptide binding 
and T cell epitopes.  
 
Here, the approach has been applied to the BoLA-I system, but the pipeline is readily 
applicable to MHC systems in other species.   
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