Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Spatially uniform establishment of chromatin accessibility in the early Drosophila embryo

View ORCID ProfileJenna E. Haines, View ORCID ProfileMichael B. Eisen
doi: https://doi.org/10.1101/195073
Jenna E. Haines
1Department of Molecular and Cell Biology, University of California, Berkeley, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jenna E. Haines
Michael B. Eisen
1Department of Molecular and Cell Biology, University of California, Berkeley, CA
2Department of Integrative Biology, University of California, Berkeley, CA
3Howard Hughes Medical Institute, University of California, Berkeley, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael B. Eisen
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

As the Drosophila embryo transitions from the use of maternal RNAs to zygotic transcription, domains of open chromatin, with relatively low nucleosome density and specific histone marks, are established at promoters and enhancers involved in patterned embryonic transcription. However, it remains unclear whether open chromatin is a product of activity - transcription at promoters and patterning transcription factor binding at enhancers - or whether it is established by independent mechanisms. Recent work has implicated the ubiquitously expressed, maternal factor Zelda in this process. To assess the relative contribution of activity in the establishment of chromatin accessibility, we have probed chromatin accessibility across the anterior-posterior axis of early Drosophila melanogaster embryos by applying a transposon based assay for chromatin accessibility (ATAC-seq) to anterior and posterior halves of hand-dissected, cellular blastoderm embryos. We find that genome-wide chromatin accessibility is remarkably similar between the two halves. Promoters and enhancers that are active in exclusively one half of the embryo have open chromatin in the other half, demonstrating that chromatin accessibility is not a direct result of activity. However, there is a small skew at enhancers that drive transcription exclusively in either the anterior or posterior half of the embryo, with greater accessibility in the region of activity. Taken together these data support a model in which regions of chromatin accessibility are defined and established by ubiquitous factors, and fine-tuned subsequently by activity.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted September 27, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Spatially uniform establishment of chromatin accessibility in the early Drosophila embryo
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Spatially uniform establishment of chromatin accessibility in the early Drosophila embryo
Jenna E. Haines, Michael B. Eisen
bioRxiv 195073; doi: https://doi.org/10.1101/195073
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Spatially uniform establishment of chromatin accessibility in the early Drosophila embryo
Jenna E. Haines, Michael B. Eisen
bioRxiv 195073; doi: https://doi.org/10.1101/195073

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Developmental Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3520)
  • Biochemistry (7373)
  • Bioengineering (5357)
  • Bioinformatics (20357)
  • Biophysics (10059)
  • Cancer Biology (7790)
  • Cell Biology (11361)
  • Clinical Trials (138)
  • Developmental Biology (6457)
  • Ecology (9995)
  • Epidemiology (2065)
  • Evolutionary Biology (13376)
  • Genetics (9379)
  • Genomics (12625)
  • Immunology (7735)
  • Microbiology (19122)
  • Molecular Biology (7482)
  • Neuroscience (41201)
  • Paleontology (301)
  • Pathology (1236)
  • Pharmacology and Toxicology (2146)
  • Physiology (3191)
  • Plant Biology (6887)
  • Scientific Communication and Education (1277)
  • Synthetic Biology (1901)
  • Systems Biology (5332)
  • Zoology (1091)