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Abstract 

Protein kinases are at the heart of cell signalling processes, constitute one of the largest 

human domain families and are often mutated in disease. Kinase target recognition at the 

active-site is in part determined by a few amino-acids around the phosphoacceptor 

residue. These substrate preferences vary across kinases and despite the increased 

knowledge of target phosphosites little is known about how most preferences are encoded 

in the kinase sequence. Here, we used alignment-based approaches to identify 30 putative 

target sequence determinant residues (SDRs) for 16 substrate preferences that were 

further studied using structural models and 2 validated through activity assays of mutant 

kinases. Mutation data from patient cancer samples revealed that SDRs are often targeted 

in cancer to a higher extent than catalytic residues. Throughout evolution we observed that 

kinase specificity is strongly conserved across 1-to-1 orthologs but can diverge after gene 

duplication as illustrated by a reconstruction of the evolution of the G-protein coupled 

receptor kinase family. The identified SDRs can predict kinase specificity from sequence 

and aid in the interpretation of evolutionary or disease related genomic variants.  
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Introduction 

 

Protein post-translational modifications (PTMs) constitute one of the fastest mechanisms 

of control of protein function. Among these, protein phosphorylation is the most extensive 

and well characterized PTM, with over 90,000 phosphosites discovered to date for human 

proteins alone (Lawrence et al., 2016). Protein kinases catalyse the phosphorylation of 

their target substrates, including other kinases, working in complex signalling networks that 

are capable of information processing and decision making. These signalling networks are 

involved in almost all cellular processes and mutations in protein kinases are often 

associated with disease (Brognard and Hunter, 2011; Lahiry et al., 2010; Stenberg et al., 

2000). In addition, cross-species studies have shown that protein phosphorylation and 

kinase-substrate interactions can diverge at a very fast pace, suggesting that changes in 

post-translational control can be a driver of phenotypic diversity (Beltrao et al., 2009; 

Freschi et al., 2014; Studer et al., 2016). Understanding kinase signalling networks 

remains a difficult challenge, in particular because only a small fraction of the known 

phosphorylation sites can be assigned to their effector kinases.  

 

There are 518 known human protein kinases (Manning et al., 2002), and their specificity of 

substrate recognition is shaped by the structural and chemical characteristics of both 

kinase and substrate (Ubersax and Ferrell, 2007). The general structure or fold of different 

kinases is quite similar and their specificity is, in part, determined by changes near the 

binding pocket. Kinases are thought to recognise a contiguous motif around the 

phosphosite (four/five amino acids on either side of the P-site) (Amanchy et al., 2007; 

Knighton et al., 1991; Pearson and Kemp, 1991; Pinna and Ruzzene, 1996) usually 

termed the kinase target motif. These target motif preferences are most often very 

degenerate with only a small number of key residues strongly contributing to the 

recognition. While these sequence preferences are thought to be important for target 

recognition, additional mechanisms contribute to specificity including: docking motifs; 

interaction with protein scaffolds; co-expression and co-localization (Biondi and Nebreda, 

2003; Holland and Cooper, 1999). Sequence analysis has identified 9 kinase groups 

(AGC, CAMK, CMGC, RGC, TK, TKL, STE, CKI and other) but only a few kinase groups 

have clear differences in target preferences that are shared with most members of the 

group. For example the CMGC kinases tend to phosphorylate serine and threonine 

residues that have proline at position +1 relative to the phosphoacceptor (Kannan and 

Neuwald, 2004). However, for most kinase groups the preferences for residues around the 

target phosphoacceptor cannot be easily predicted from the primary sequence.  

 

In previous studies of kinase specificity, the analysis of protein structures (Brinkworth et 

al., 2003; Saunders et al., 2008) and machine learning methods (Creixell et al., 2015a) 

have been used to identify positions within the kinase domain that determine kinase 

specificity  so called specificity determinant residues (SDRs). However, these approaches 

do not attempt to study the structural basis by which specific target preferences are 

determined. Methods based on comparative protein kinase alignments can achieve this, 

but have only been used to study a few kinase substrate preferences so far (Li et al.,2003; 

Kannan and Neuwald, 2004 ), or have been restricted to a single model organism (Mok et 
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al., 2010). Here we have combined alignment and structure based methods to identify and 

rationalize determinants of kinase specificity. We have identified SDRs for 16 target site 

preferences and show that these can be used to accurately predict kinase specificity. 

SDRs for two target preferences were further studied by mutagenesis and kinase activity 

assays. We provide detailed structural characterizations for many determinants and study 

how these are mutated in cancer or during evolution. Finally, we show how the knowledge 

of SDRs can be combined with ancestral sequence reconstruction to study the evolution of 

kinase specificity using as an example the G-protein coupled receptor kinase family. 

 

Results 

 

Identification of kinase specificity-determining residues and modelling of the 

kinase-substrate interface 

 

To study kinase target preferences we compiled a list of 9005 experimentally validated and 

unique kinase-phosphosite relations for human, mouse and yeast kinases. Protein kinase 

specificities were modelled in the form of position probability matrices (PPMs) for 179 

kinases, representing a fraction of the kinome of these species (human: 126/478, mouse: 

35/504, S. cerevisiae: 18/116). For further analysis, we selected 135 high-confidence 

PPMs (87 human, 30 mouse, 18 yeast) that could successfully discriminate between target 

and non-target phosphorylation sites (see Methods). Throughout the text we may refer to 

the substrate amino-acids in single amino-acid letters and their position in the substrate 

relative to the target phosphoacceptor amino-acid (-5 to +5, where 0 is the target 

phosphoacceptor residue). For example, a proline residue at the +1 position may be 

abbreviated as P+1 or an arginine residue at the -3 position as R-3. For serine/threonine 

kinases, consistent evidence of active site selectivity is broadly apparent for the -3 and +1 

positions relative to the phosphoacceptor amino-acid, and to a lesser extent the -2 position 

(Figure 1a). These constraints correspond mainly to the well-established preferences for 

basic side chains (arginine or lysine) at the -3 and/or -2 position, and in most CMGC 

kinases for proline at the +1 position. Tyrosine kinases however show little evidence of 

strong and consistent sequence constraint at the active site, and were excluded from 

further analysis as there were too few predictive PPMs (16) for the reliable detection of 

tyrosine kinase SDRs. These general trends only describe the most common modes of 

recognition shared across all kinases. Individual kinases can show preference for 

individual positions beyond these sites. All 135 high confidence kinase specificity models 

are summarized in Supplementary Table 1.  

 

With the information on kinase specificities, we then attempted to understand more broadly 

the relationship between protein kinases and substrates at the active site by combining 

structural models (Figure 1b) and kinase sequence alignments (Figure 1c). We compiled 

12 serine/threonine non-redundant experimental kinase models in complex with substrates 

in addition to 4 serine/threonine autophosphorylation complexes (Xu et al., 2015) (see full 

list in Supplementary Table 2). Kinase-substrate homology models for kinases of interest 

not present in this compilation of experimental models were also generated. A structural 

profile of substrate binding from position -5 to position +4 is given in Supplementary 
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Figure 1. The kinase positions most frequently in contact with the target peptide are 

highlighted also in Figure 1b. When referring to specific amino acids of the kinase, the 

single-letter code is used followed by the position of the residue based on the Pfam 

domain model that corresponds to the conserved catalytic domain (PF00069).  

 

We developed a sequence alignment-based protocol for the automated detection of 

putative SDRs (Methods, Figure 1c). Briefly, the target preferences described as PPMs 

were clustered to identify groups of kinases with shared preferences at a position of 

interest. Putative SDRs are then inferred as those residues that discriminate all kinases 

with the common substrate preference (e.g. P+1) from those kinases without the same 

preference (Figure 1c). Using this approach we identified 30 positions that were predicted 

as SDRs for 16 preferences represented by more than 5 kinase PPMs (Figure 2a). These 

SDR positions are found across the whole sequence/structure of the kinase domain 

(Figure 2b) but not surprisingly cluster near the substrate-binding pocket (10 SDRs are 

within 4 Angstroms of the substrate peptide) (Figure 2c). Most of these determinants have 

not been described before and can be further studied by analysis of structural models. To 

assess the accuracy of these putative SDRs we tested if these could be used to predict 

the specificity of kinases from their sequence alone. For this we built sequence-based 

classifiers to predict the kinase specificity for the five preferences supported by at least 20 

positive examples in the study dataset  P+1, P-2, R-2, R-3, and L-5. We used a cross-

validation procedure where kinase sequences left out from the model training were later 

used for testing (see Methods). These models showed very strong performance with 

respective cross-validation tests, as measured by the area under the ROC curves: 0.99, 

0.91, 0.82, 0.96, and 0.82 (Supplementary figure 2). This shows that, for these 5 

specificities, the determinant residues can correctly predict the specificity of unseen 

kinases from their sequence alone, suggesting that the SDRs we have identified are 

broadly accurate.  

 

Structural characterization of kinase SDRs   

 

To further validate and study the putative SDRs we have used available co-crystal 

coordinates where possible. Models of relevant kinase-substrate complexes were 

alternatively generated using empirical complexes as a template (see Methods). Using 

these models we could suggest a structural rationale for SDRs of 8 target site preferences 

that are detailed in Supplementary Figure 3. These include the preferences for arginine 

at positions -3 and -2; proline at positions -2 and +1; leucine at positions +4 and -5 and for 

aspartate/glutamate at position +1 for AGC and CMGC kinases. Some of the SDRs have 

been previously identified in other studies underscoring the validity of our approach. For 

example, the specificity for proline at the +1 position is a well-studied preference and in 

our compilation it was found for 35 kinases of the CMGC group. Four of the six putative 

SDRs identified here map to the kinase pocket for the proline at the +1 position 

(Supplementary Figure 3) and match previously described determinants (Kannan and 

Neuwald, 2004) attesting to the accuracy of the methods used here.  
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We highlight in Figure 3a SDRs for 3 preferences that are less well studied: proline at 

position -2 (P-2) and leucine at positions +4 (L+4) and -5 (L-5). There are 25 kinases with 

a modest P-2 preference including MAPK1, CDK2, and DYRK1A. We identified 5 positions 

that are putative SDRs for P-2, two of which (161 and 162) are proximal to the residue in 

interaction models. In position 162, P-2 kinases usually contain a bulky hydrophobic 

residue (Y or W) not usually found in non- proline-directed kinases (Supplementary 

Figure 3). Both residues at these positions appear to form hydrophobic contacts with P-2 

(Figure 3a). The domain position 161 was also implicated in the preference for the P+1 

specificity mentioned above. The three other putative determinants  82, 188, and 196  

are unlikely to be direct determinants given their distal position in the protein structure, 

although we note that 196 was implicated in a previous alignment-based study (Mok et al., 

2010). These distal positions may influence the kinase preference through more complex 

mechanisms such as affecting the dynamics or conformation of the kinase. 

 

We identified 21 kinases (14 CAMK; 5 AGC; 1 CMGC; 1 PRK) with a moderate L-5 

preference. Positions 86 and 189 were predicted as determinants where L-5 kinases are 

marked by hydrophobic amino acids at position 86 and the absence of glutamate at 189. 

These residues can be observed to line the hydrophobic -5 position pocket of the MARK2 

kinase (Figure 3a). Position 189 was also recently predicted to be an L-5 determinant from 

a comparative structural analysis of L-5 and R-5 kinases (Chen et al., 2017). For the 

leucine preference at the +4 position we identified six kinases - MARK2, CAMK1, 

PRKAA1, PRKAA2 (human), PRKAA1 (mouse), and Snf1 (yeast) - and the domain 

position 164 as the sole putative SDR. This residue is an alanine in five of the kinases 

listed above (valine in CAMK1). In the MARK2 cocrystal structure, the substrate peptide 

forms a turn at the +2 position so that the +4 hydrophobic side chain projects towards the 

kinase pocket of the +1 position and stacks against the +1 residue (Figure 3a). The 

substitution for alanine in place of residues with aliphatic side chains at position 164 in 

these kinases therefore seems to generate a small binding pocket that allows the L+4 to 

functionally substitute for the kinase position 164 by stacking against the +1 position.  

 

We have selected two of the above described SDRs for experimental characterization (L-5 

and L+4). To test these SDRs we performed kinase activity assays for SNF1 and two 

mutant versions: A218L (the 164 kinase position, an L+4 SDR) and V244R (the 189 kinase 

position, an L-5 SDR). These 3 kinases were separately incubated with a SNF1 target 

peptide of 15 amino acids that contains leucine at +4 and -5 as well as mutant versions 

with A+4 or D-5. The in vitro kinase reactions were stopped at 0, 2, 7 and 20 mins and the 

amount of phosphorylation was measured by mass spectrometry (Figure 3b and 3c). As 

predicted the A218L SNF1 showed an increased preference for the A+4 peptide but not for 

the D-5. The reverse was observed for the V244R SNF1 mutant. However, we noted that 

both mutant kinases showed a very strong decrease in overall kinase activity (Figure 3b). 

This could be due to either a potential destabilization of the kinase or a partial disruption of 

the activation mechanism by the two mutations.  

 

The identification of previously known SDRs, the structural rationale for several of the 

novel SDRs and the experimental validation of two SDRs, further suggests that we have 
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here identified positions that are crucial for the recognition of kinases with specific 

preferences. The SDRs identified here can therefore be used to infer the specificity of 

other kinases from sequence and as we show below to study the consequences of 

mutations within the kinase domain.  

 

Specificity determinant residues are often mutated in cancer 

 

Some kinase SDRs have been observed to be mutated in cancer and congenital diseases 

(Berthon et al., 2015; Creixell et al., 2015b) and an enrichment of non-cancerous disease 

SNPs in regulatory and substrate-binding regions has previously been established (Dixit et 

al., 2009; Torkamani et al., 2008). Using mutation data from tumour patient samples from 

TCGA (http://cancergenome.nih.gov/), we have tested for the enrichment of tumour 

mutations in four categories of non-overlapping kinase residues: catalytic, regulatory, SDR 

(proximal to substrate), and 'other' (Figure 4a). Two of the five most commonly mutated 

residues are proximal to the primary activation loop phosphate. SDR residues close to the 

substrate show also a significant enrichment of mutations relative to 'other' residues 

(Wilcoxon p = 0.0017, Figure 4b). This enrichment is greater than that observed for 

catalytic and regulatory sites highlighting their functional relevance.  

 

We next sought to determine if there was evidence of recurrent mutations mapping to the 

relevant SDRs of human kinases with a common peptide preference. Given that the 

specificity models only cover ~25% of all kinases we used the SDRs of the 5 most 

common preferences - P+1, P-2, R-2, R-3, and L-5 - to train sequence based predictors of 

kinase specificity as described above. Using these models we annotated all human 

kinases having a high probability for one of these specificities (Supplementary Table 3). 

We then compared the frequency of mutations per position for different kinase specificities 

and found significant differences in the relative mutation frequencies for kinase domain 

positions of the two most common preferences  P+1 and R-3 (represented in Figure 4c).  

Interestingly, domain position 164 and 161 of the +1 position loop exhibit high levels of 

differential mutation in the proline-directed kinases. For position 161, the MAP kinases in 

particular are recurrently mutated in independent samples (MAPK1: 3, MAPK8: 3, 

MAPK11: 2, MAPK1: 1).This position is known to bind to the phosphotyrosine at 157 that 

exists in MAPKs (Varjosalo et al., 2013). For the predicted R-3 kinases, the glycine 159 

residue of the +1 position pocket is found to be commonly mutated, although this relates 

not to R-3 specificity per se but for +1 position binding of most non-CMGC kinases (Zhu et 

al., 2005). Residues 159 and 164 in particular are critical for specificity and highly 

conserved within the kinase subgroups, such that mutation to any other amino acid would 

be expected to abrogate +1 binding. These results suggest that there is a significant 

recurrence of cancer mutations targeting kinase specificity and not just kinase activity. 

 

The work above illustrates how knowledge of the SDR residues is useful in understanding 

the functional consequences of cancer mutations. We next studied the changes in SDR 

residues during the evolution of protein kinases.  
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Evolution of G-protein coupled receptor kinase family specificity 

 

The identification of the SDRs for specific target preferences allows us to study the 

evolution of kinase specificity. We first compared the changes in these residues across 

orthologs. We focused our analysis on the 5 specificities we can reliably predict from 

sequence as described above - P+1, P-2, R-2, R-3, and L-5.  We observed that the five 

modelled preferences are highly conserved between orthologs, even for distantly related 

species. In P+1 kinases, for example, we predict divergence only for some fungal and 

plant orthologs of CDC20 but not for any other orthologs. For the 5 specificity classes and 

for Arabidopsis thaliana orthologs of human kinases we predict only 7 out of 245 (2.9%) 

cases where divergence of specificity is expected. These results show that orthologs most 

often have conserved specificities for hundreds of millions of years.  

 

We then selected the GRK (G-protein coupled receptor kinase) kinase family as specific 

detailed case study of the evolution of target specificity. The GRK family is one of 15 

families belonging to the AGC group (Figure 5a) (Manning et al., 2002). However, they 

have diverged from the characteristic basic residue preferences at positions -2/-5 and -3 of 

the AGC group (Lodowski et al., 2006). GRK2 for example is specific for 

aspartate/glutamate at position -3 (Lodowski et al., 2006; Onorato et al., 1991), and in the 

GRK5 model presented here the R-3 signature is absent (Figure 5b). The GRK family is 

-adrenergic receptor kinase) subfamily  comprising GRK2 

(ADRBK1) and GRK3 (ADRBK2) in human  and the GRK subfamily -- comprising GRK1 

(rhodopsin kinase), GRK4, GRK5, GRK6, and GRK7. We have taken a taxonomically 

broad sample of 163 GRK kinase sequences to generate a comprehensive phylogeny 

(Figure 5a, Methods). From this, a maximum-likelihood reconstruction of ancestral 

sequence states has been performed (Methods) in order to study the evolution of 

substrate preferences on the basis of our detailed understanding of kinase SDRs. 

 

The topology of the tree is in general agreement with a previously published GRK 

phylogeny (Mushegian et al., 2012). Focusing on the specificity at the -2 and -3 positions 

(Figure 5c and Supplementary Figure 4), two substitutions between the ancestor of RSK 

and GRK kinases and the ancestor of all GRK kinases likely caused a reduced preference 

for arginine at -3 and -2 positions. The substitution of glutamate for glycine at position 162 

 an R-3 and R-2 determinant (Supplementary Figure 3) -- and the substitution of 

phenylalanine at position 86  most likely either to histidine or to lysine. From this 

ancestral node towards the Rhizarian lineage an additional substitution of glutamate at 189 

for arginine likely drove the complete switch from R-2/R-3 to a novel aspartate/glutamate 

preference at the -2 position. This 86K/189R pair is analogous to the 127E/189E pair found 

in basophilic kinases. In the heterokont lineages, the histidine/lysine at position 86 in the 

ancestror of GRK kinases was substituted for serine and while these kinases retained the 

86E/189E pair, the R-2 and R-3 specificities are likely to be attenuated or eliminated given 

the substitutions at 86 and 162.  The BARK kinases had two charge altering substitutions -

- E127A and E189K  that likely caused the preference for aspartate/glutamate at the -2 

and -3 positions as observed today in GRK2 (Figure 5b). Finally, in the GRK subfamily, a 

lysine residue (or arginine in GRK1) is usually found at position 86. Notably, no R-2/R-3/R-
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5 preference is evident for GRK5 (Figure 5b), suggesting that the described substitutions 

(E162G and E189K) are sufficient to eliminate this specificity.  

 

The GRK family illustrates how the target preference of a kinase can change after kinase 

duplication via the substitution of a few key residues. It also illustrates one example where 

distantly-related kinase orthologs may have diverged when comparing the metazoan 

GRKs to their rhizaria homologs that diverged around 1700 million years ago (Kumar et 

al., 2017).  

 

Discussion 

 

We have here addressed the challenge of identifying which residues determine kinase 

preferences towards specific amino-acids at specific positions around the target 

phosphosite. Initial studies of kinase determinants used structures of kinases in complex 

with target peptides to identify SDR residues as those important for substrate binding 

(Brinkworth et al., 2003; Zhu et al., 2005). A more recent work has used a machine 

learning approach to identify SDR residues as those that globally maximized the specificity 

predictive power (Creixell et al., 2015a). These approaches have identified SDR positions 

but do not assign positions and residues according to specific target preferences (e.g. R-3 

or P+1). Alternatively,  alignment-based approaches can be used to identify residues that 

contribute to particular preferences but so far have been restricted to a few kinase groups 

(Li et al., 2003; Kannan and Neuwald, 2004), or have lacked structural characterization 

(Mok et al., 2010). Here we have combined a statistical analysis of known kinase targets 

with alignment and structure based approaches to identify and study SDRs. The primary 

goal of this study was to identify and rationalize SDRs for particular preferences. 

Importantly, our analyses clearly show how different positions contribute in unique ways to 

target site recognition. Many SDR positions were found distal to the substrate binding site. 

These are harder to rationalize structurally and additional work will need to be done to 

establish how they relate to target site preference. The SNF1 mutations of SDRs validated 

two positions contributing to the expected target preferences but also showed a very 

drastic reduction in activity. This reduction in activity could be due to destabilization of the 

kinase or a partial disruption of the kinase activation mechanism. Additional mutant studies 

would be needed to characterize the interplay between activity and specificity and the 

mutational trajectories that allow for specificity switching.   

 

The study of cancer mutations has revealed that SDRs are commonly mutated as shown 

previously (Creixell et al., 2015b). In addition to previous studies, we observed that SDR 

mutation burden in cancer can reflect kinase specificities with specific residues being 

targeted depending on the kinase preferences. These SDR mutations may still have a 

large impact on the kinase activity as was the case for the SNF1 SDR mutants, perhaps by 

interfering with the activation mechanism of these kinases. Understanding the impact of 

mutations in kinases will facilitate the classification of cancer mutations into drivers or 

passenger depending on their functional consequences. Our results suggest that grouping 

all SDR positions regardless of the kinase specificity will tend to overestimate the impact of 

mutations since many SDR positions are only relevant for one or few specificities.  
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The identification of the SDRs allows us to study the evolution of kinase preferences by 

ancestral sequence reconstruction. The protein kinase domain has been extensively 

duplicated throughout evolution but very little is known about the process of divergence of 

kinase target preference. Our results strongly suggest that kinase orthologs tend to 

maintain their specificity. This would be expected as they can regulate up to hundreds of 

targets (Imamura et al., 2014; Manning and Cantley, 2007) and a change in specificity 

would drastically alter the regulation of a large number of proteins. This high conservation 

of kinase specificity contrasts to the larger divergence rate of kinase target sites (Beltrao et 

al., 2009; Freschi et al., 2014; Studer et al., 2016). The fast evolutionary plasticity of kinase 

signaling therefore relies primarily on the turnover of target sites that can occur without the 

need for gene duplication. 

 

Divergence of specificity within kinase families is more likely to occur after gene 

duplication. A previous study has shown how the Ime2 kinases (RCK family) have diverged 

from the other CMGC kinases in their typical preference for proline at the +1 position 

(Howard et al., 2014). Here we have traced the putative evolutionary history of the GRK 

family preference at the -2/-3 positions, which illustrate a divergence of kinase specificity 

between paralogs and also distantly-related orthologs. An understanding of kinase SDRs 

will allow for further studies of how the variety of target peptide preferences has come 

about during evolution and the rate at which kinase can switch their preferences after gene 

duplication.  

 

Kinase target recognition within the cell is complex and the specificity at the active site is 

only one of several mechanisms that can determine kinase-substrate interactions 

(Ubersax and Ferrell, 2007). Much additional work is needed to establish a global 

comprehensive view of kinase target specificity and its evolution. 

 

Methods  

        

Kinase specificity models 

Known kinase target phosphosites for human, mouse and S. cerevisiae were retrieved 

from HPRD, PhosphoSitePlus, Phospho.ELM and PhosphoGRID (Dinkel et al., 2011; 

Hornbeck et al., 2015; Prasad et al., 2009; Sadowski et al., 2013). PhosphoGRID target 

sites supported exclusively by kinase perturbation followed by MS were excluded and 

homologous sequences above 85% identity were removed with CD-HIT (Li and Godzik, 

2006). Phosphosites mapping to the kinase activation segment were also removed as 

kinase autophosphorylation sites often conform poorly to kinase consensus motifs (Miller 

et al., 2008; Pike et al., 2008). Specificity matrices for each kinase with at least ten target 

sites were constructed in the form of a position probability matrix (PPM) - 20 x 11 matrices 

with the columns representing substrate positions -5 to +5; each value representing the 

empirical residue frequencies for a given amino-acid at a substrate position. For the 

purpose of scoring only, the PPMs were converted into PWMs by accounting for 

background amino acid frequencies in the proteome. Cross-validation was used to assess 

kinase model performance and PWMs with an average area under the curve (AUC) value 

< 0.6 were excluded from further analysis. Too few tyrosine kinase PPMs remained after 
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these filtering steps and we excluded them for further analysis. Kinase 

group/family/subfamily classifications were based on the KinBase data resource unless 

otherwise specified (Manning et al., 2002).   

 

        

Position-based clustering of specificity models and sequence alignment-based 

detection of putative specificity determining residues (SDRs). 

Clustering of the PPMs was performed in a position-based manner for each of the five 

sites N- and C-terminal to the phosphoacceptor amino acid  (-5, -4, -3, -2, -1; +1, +2, +3, 

+4, +5) using the affinity propagation (AP) algorithm (Frey and Dueck, 2007) as 

implemented in the APCluster R package (Bodenhofer et al., 2011). Non-specific clusters 

or clusters with fewer than 6 constituent kinases were excluded and the clusters were 

further modified to account for potential false positive and false negative cases (see 

extended Supplementary Methods). The MAFFT L-INS-i method was used to generate 

kinase MSAs for this analysis (Katoh et al., 2005) and the trimAl tool was used remove 

MSA positions containing more than 20% 'gap' sites (Capella-Gutiérrez et al., 2009). 

Kinases were then grouped by specificity according to the clustering of their specificity 

models, as described above, and then iteratively we predicted SDRs for each cluster (e. g. 

preference for proline at +1 position). To identify putative SDRs, three high-performing 

methods alignment-based methods were selected (GroupSim, Multi-Relief 3D, SPEER) 

from previous benchmarking tests (Chakraborty and Chakrabarti, 2015). Incorporating 

predictions from the three methods is expected to achieve higher specificity than any 

single method (Chakrabarti and Panchenko, 2009).  As the GroupSim, Multi-Relief 3D, and 

SPEER methods use distinct schemes for position scoring we selected as putative SDRs 

those residues lying within a three-way intersection of the top 15 ranked sites for the single 

methods, as proposed by Chakrabarti and Panchenko 2009. 

 

Kinase-substrate structures 

Empirical kinase structures alone and in complex with putative target sequences were 

retrieved from the PDB (see extended Supplementary Methods). An automated procedure 

was implemented to identify the kinase substrate-binding residues for the substrate 

positions -5 to +4 (excluding P0) and all binding residues contacts were categorised as 

either hydrogen-bonded, ionic, or non-bonded (i.e. hydrophobic or van der Waals).   

Kinase-substrate homology models were constructed by first superposing the kinase of 

interest (query) with a template cocrystal structure to achieve a plausible positioning of the 

substrate peptide. The template kinase were removed and the template peptide mutated in 

Silico (using FoldX (Schymkowitz et al., 2005)) to the sequence of a known 

phosphorylation site of the query kinase. After resolving steric clashes between kinase and 

substrate, the resulting complexes were then subjected to energy minimisation (EM), 

followed by molecular dynamics (MD) equilibration and production runs using NAMD 

(Phillips et al., 2005) (see extended Supplementary Methods for additional details). 

 

Construction of predictive models, cross-validation, and orthology analysis 

Naive Bayes (NB) algorithms were used to predict the specificity of protein kinases on the 

basis of sequence alone. Five separate classifiers were generated, corresponding to the 
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five preferences -- P+1, P-2, R-2, R-3, and L-5 -- supported by at least 20 kinases. Each 

classifier was trained on the 119 Ser/Thr kinase sequences of known specificity, where 

specificity models described above. Leave one-out cross-validation (LOOCV) was then 

used for each classifier to identify the subset of input SDRs that would optimise the 

performance of the model on the training data with respect to the AUC. The R libraries 

klaR and cvTools were used for model generation and cross-validation, respectively 

(Alfons, 2012; Weihs et al., 2005). For the analysis of protein kinase orthologs, 

orthologous kinase sequences were retrieved automatically from the Ensembl Genomes 

database (Kersey et al., 2015) using the Ensembl Rest API and were aligned using the 

MAFFT L-INS-i method. Each sequence was then queried with the specificity model 

corresponding to the known specificity of the human ortholog.  

 

Analysis of kinase mutations in cancer 

Mutation data for primary tumour samples was obtained from The Cancer Genome Atlas 

(TCGA) (http://cancergenome.nih.gov/). Each kinase mutation was assigned to the correct 

protein isoform and then mapped to the corresponding kinase domain position. All kinase 

both potential SDRs (Figure 2a) and often found in close contact with the substrate peptide 

domain. Exact positions are defined in extended Supplementary Methods. 

 

GRK phylogeny and ancestral sequence reconstruction 

Protein sequences were retrieved from a taxonomically-broad set of non-redundant 

proteomes (representative proteomes) (Chen et al., 2011), and then each representative 

proteome (rp35) was queried with a hidden Markov model (HMM) of the GRK domain 

(KinBase) using HMMsearch (E = 1e-75) (Eddy, 1998). The subfamily classifications of 

each GRK were then predicted using Kinannote (Goldberg et al., 2013). Sample 

sequences of the RSK family kinases  the family most similar in sequence to the GRKs  

were also included as an expected outgroup in the phylogeny, as were two kinases of the 

basophilic PKA family.  The kinase sequences (GRK kinases plus outgroups) were then 

aligned using the L-INS-i algorithm of MAFFT (Katoh and Standley, 2013), and filtered to 

remove pseudokinases and redundant sequences (97% threshold), resulting in 163 

sequences to be used for phylogenetic reconstruction. A maximum likelihood phylogeny 

was generated with RAxML using a gamma model to account for the heterogeneity of 

rates between sites. The optimum substitution matrix (LG) for reconstruction was also 

determined with RAxML using a likelihood-based approach (Stamatakis, 2014). FastML 

was then used for the ML-based ancestral reconstruction of sequences for all nodes in the 

phylogeny (Ashkenazy et al., 2012). Sequence probabilities were calculated marginally 

using a gamma rate model and the LG substitution matrix. 

 

SNF1 mutant in vitro kinase activity assay  

The SNF1 plasmid from the Yeast Gal ORF collection was used as a template for directed 

mutagenesis to create the mutants A218L and V244R. Wild type and mutant plasmids 
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were transformed into a BY4741 SNF1 KO strain. Cells were grown to exponential phase 

in SD media lacking uracil, and Snf1 expression was induced with 2% galactose for 8h. 

Cell pellets were collected, lysed using protease and phosphates inhibitors (Sigma) and 

stored O/N at -80C.  Snf1 immunoprecipitation was performed using Protein A agarose 

beads (Sigma) with rotation for 2h at 4C. Kinase assay was performed using AQUA 

synthetic peptides (Sigma). Each of the 3 kinases was incubated with equal concentration 

of the 3 synthetic peptides (VQLKRPASVLALNDL, VQDKRPASVLALNDL and 

VQLKRPASVLAANDL), ATP mix (ATP 300 µM, 15 mM MgCl2, 0.5 mM EGT -

glycerol phosphate, 0.2 mM sodium orthovanadate, 0.3 mM DTT) and allowed to react for 

0, 2, 7 and 20 minutes. The reactions were quenched by transferring the reaction mixture 

onto dry ice at the corresponding times.  

 

Mass spectrometry identification and quantification 

Kinase reaction products were diluted with 0.1% formic acid in LC-MS grade water and 5 

µl of solution (containing 10 pmol of the unmodified peptide substrates) were loaded LC-

MS/MS system consisting of a nanoflow ultimate 3000 RSL nano instrument coupled on-

line to a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific). Gradient elution 

was from 3% to 35% buffer B in 15 min at a flow rate 250 nL/min with buffer A being used 

to balance the mobile phase (buffer A was 0.1% formic acid in LC-MS grade water and B 

was 0.1% formic acid in LC-MS grade acetonitrile). The mass spectrometer was controlled 

by Xcalibur software (version 4.0) and operated in the positive ion mode. The spray 

voltage was 2 kV and the capillary temperature was set to 255 ºC. The Q-Exactive Plus 

was operated in data dependent mode with one survey MS scan followed by 15 MS/MS 

scans. The full scans were acquired in the mass analyser at 375- 1500m/z with the 

resolution of 70 000, and the MS/MS scans were obtained with a resolution of 17 500. For 

quantification of each phosphopeptide and its respective unmodified form, the extracted 

ion chromatograms were integrated using the theoretical masses of ions using a mass 

tolerance of 5 ppm. Values of area-under-the-curve were obtained manually in Qual 

browser of Xcalibur software (version 4.0). 
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Figures 

 

Figure 1 - a) Sequence constraint for substrate positions -5 to +5 for 119 serine/threonine 

kinases, measured as the bit value for the corresponding column of the kinase PSSM. b) 

Interface between a protein kinase (human protein kinase A) and substrate peptide at the 

substrate-binding site. Kinase residues that commonly bind the substrate peptide (yellow) 

are represented in stick format and coloured according to the corresponding substrate 

position (-3: red, -2: pink, -1: orange, +1: green, +2: blue, +3: purple). Residue numbering 

represents the relevant positions of the Pfam protein kinase domain (PF00069) c) Semi-

automated pipeline for the inference of putative kinase SDRs (specificity-determining 

residues).  The first step involves the construction of many kinase PPMs from known target 

phosphorylation sites. Vectors corresponding to a substrate position of interest (e.g. +1) 

are then retrieved from each PPM. An unsupervised learning approach (i.e. clustering) 

then identifies kinases with a common position-based preference (e.g. for proline at P+1). 

Alignment positions that best discriminate kinases belonging to one cluster from all others 

are then identified using automated tools for SDR detection.   

 

Figure 2 - Position of identified SDRs along the kinase sequence and structure. All 

putative kinase SDRs from our analysis are a) listed in a table with their corresponding 

position preferences b) mapped to a 1D representation of the kinase secondary structure 

c) mapped to a kinase-substrate complex structure (PDB: 1atp). The SDRs colored in dark 

red b) and c) represent positions within 4 Angstroms of the substrate peptide.  

 

Figure 3 - Structural rationale for kinase SDRs and validation experiments. a) Kinase-

substrate interface for:proline at position -2 (PDB: 2wo6), leucine at position -5 (PDB: 3iec) 

and leucine at position +4 (PDB: 3iec). The substrate peptides are colored in yellow, and 

putative SDRs in red. A structural rationalisation for each preference is provided briefly in 

n 

Supplementary Figure 3. b) Kinase activity assays for SNF1 WT and two mutant versions 

A218L (the 164 kinase position, an L+4 SDR) and V244R (the 189 kinase position, an L-5 

SDR). The 3 kinases were incubated separately with a known SNF1 target peptide with L 

at +4 and -5 (orange) as well as the mutant versions A+5 (green) and D-5 (blue). 

Replicates of in vitro reactions were quenched at 0, 2, 7 and 20 mins and the amount of 

phosphorylation was measured by mass spectrometry. c) Average and standard deviation 

of phosphopetide intensity per time (for time points 2, 7 and 20 mins combined).    

 

Figure 4 - SDRs are often mutated in cancer. a) Kinase domain positions are colored 

according to their functional category (regulatory: orange, catalytic: blue, SDR: 

grey). The substrate peptide is represented in yellow and ATP in green, orange, and red. 

b) The fraction of mutations mapping to a given site for a given kinase were calculated, 

and then averaged across all kinases. The different sites are grouped according to their 

functional category. c) For a given site, the frequency of mutations in arginine-3 kinases (x-

axis) and proline+1 kinases (y-axis) is plotted. Putative SDRs are colored in red. 
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Figure 5 - Evolution of GRK family specificity. a) Phylogeny of kinases in the GRK family, 

including an outgroup of RSK kinases in human. The supporting number of bootstrap 

replicates (/100) for relevant clades and bifurcations is represented. b) Logos at positions -

3 and -2 for human RSPS6KA1 (RSK kinase), human GRK2 (GRK/BARK kinase), and 

human GRK5 (GRK/GRK kinase). Sequence logos were generated from target 

phosphorylation sites.  c) Representation of substrate position -2 and -3 (yellow), and their 

corresponding kinase binding pockets (cyan) for extant kinases and predicted ancestral 

sequences. Substitutions in the binding pocket are denoted by a red asterisk.  
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Preference SDR posit ions
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