
Bioinformatics, 2017, 0–0 

doi: 10.1093/bioinformatics/xxxxx 

Advance Access Publication Date: DD Month YYYY 

Application Notes 

 

 

 

 

1 Introduction 

Copy number variations (CNVs) refer to duplications and deletions that lead to 

gains and losses of large genomic segments. CNV is pervasive in the human 

genome and plays a causal role in genetic diseases. With the dramatic growth of 

sequencing capacity and the accompanying drop in cost, massively parallel 

next-generation sequencing (NGS) offers appealing platforms for genome-wide 

CNV detection. In this note, we describe an analysis pipeline that integrates 

multiple aspects of CNV analysis, which can flexibly adapt to diverse study 

designs and research goals. 

Despite the rapid technological development, CNV detection by high-

throughput sequencing still faces analytical challenges due to the rampant biases 

and artifacts. Proper data normalization is crucial for sensitive and robust CNV 

detection, regardless of experimental designs and sequencing protocols. In 

whole-exome sequencing (WES) and targeted sequencing, where technical 

biases are usually magnitudes larger than CNV signals, data normalization is 

usually the pivotal step in affecting detection accuracy. Our proposed pipeline 

starts with data normalization using CODEX (Jiang, et al., 2015) and CODEX2 

(Jiang, et al., 2017), which allow full-spectrum CNV profiling and are sensitive 

to both common and rare variants. Many large-scale genetic studies involve 

samples that have previously collected microarray data. It is currently unclear 

how microarray data can be used to improve sensitivity and robustness of the 

sequencing-based analyses. The pipeline proposed here seamlessly combine 

CODEX-normalized sequencing data with array-based log-ratio and B-allele-

frequency measurements through iCNV (Zhou, et al., 2017). 

Germline and somatic copy number changes are common in cancer and are 

associated with tumorigenesis and metastasis. In addition to the detection of 

total copy number changes, sequencing data give, at germline heterozygous loci, 

reads containing both alleles. This allows the disambiguation of allele-specific 

copy number (ASCN), which quantifies the number of somatic copies of each 

inherited allele. Compared to total copy number analysis, ASCN analysis gives 

a more complete picture of the copy number states, including copy-neutral loss 

of heterozygosity (LOH), which cannot be detected by total copy number 

analysis. Here we show how FALCON (Chen, et al., 2015) and FALCON-X 

(Chen, et al., 2017) integrate with CODEX and CODEX2 for estimation of 

ASCN. 

Tumors are heterogeneous, genetically related populations of cells 

undergoing constant evolution. Much effort has been devoted to the 

reconstruction of the evolutionary phylogeny of tumors from bulk DNA 

sequencing data (Kuipers, et al., 2017). In addition to somatic ASCN changes, 

single nucleotide variants (SNVs) also provide valuable information for the 

reconstruction of the tumor phylogeny. We show that Canopy (Jiang, et al., 

2016) for tracking of longitudinal and spatial clonal evolution can be applied to 
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Abstract 

Summary: Copy number variation is an important and abundant source of variation in the human genome, which has 

been associated with a number of diseases, especially cancer. Massively parallel next-generation sequencing allows 
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partly from the lack of reliable analytical methods to meet the diverse and unique challenges arising from the myriad 

experimental designs and study goals in genetic studies. In cancer genomics, detection of somatic copy number 

changes and profiling of allele-specific copy number (ASCN) are complicated by experimental biases and artifacts as 

well as normal cell contamination and cancer subclone admixture. Furthermore, careful statistical modeling is warranted 

to reconstruct tumor phylogeny by both somatic ASCN changes and single nucleotide variants. Here we describe a 

flexible computational pipeline, MARATHON, which integrates multiple related statistical software for copy number 

profiling and downstream analyses in disease genetic studies. 

 

Availability and implementation: MARATHON is publicly available at 

https://github.com/yuchaojiang/MARATHON. 
Contact: yuchaoj@email.unc.edu  

Supplementary information: Supplementary data are available at Bioinformatics online. 
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the outputs from FALCON and FALCON-X in an integrative analysis. This 

enables researchers to get both total and allele-specific DNA copy number calls 

and tumor phylogeny directly from BAM files. 

 

Figure 1. A flowchart outlining the procedures for profiling CNV, ASCN, and 

reconstructing tumor phylogeny. CNVs with common and rare population 
frequencies can be profiled by CODEX and CODEX2, with and without negative 

control samples. iCNV integrates sequencing and microarray data for CNV detection. 
ASCNs can be profiled by FALCON and FALCON-X using allelic read counts at 

germline heterozygous loci. Canopy infers tumor phylogeny using somatic SNVs and 
ASCNs. 

 

Table 1. Analysis scenarios and pipeline design. The last column shows the 
sequence of software that should be used for each analysis scenario. *By “normal” 

we mean samples that are not derived from tumor tissue, which are not expected to 
carry chromosome-level copy number changes. 

2 Methods 

The possible analysis scenarios are listed in Table 1. Figure 1 gives an outline 

for the relationship between the software: CODEX and CODEX2 perform read 

depth normalization for total copy number profiling; read depth normalized by 

CODEX/CODEX2 is received by iCNV, which combines it with allele-specific 

read counts and microarray data (if available) to detect CNVs; FALCON and 

FALCON-X perform ASCN analysis; and Canopy receives input from 

FALCON/FALCON-X to perform tumor phylogeny reconstruction. We propose 

MARATHON (copy nuMber vARiAtion and Tumor pHylOgeNy) as the 

integrated pipeline. 

CODEX (Jiang, et al., 2015) adopts a Poisson latent factor model for 

normalization to remove biases due to GC content, exon capture and 

amplification efficiency, and latent systemic artifacts. CODEX2 (Jiang, et al., 

2017) builds on CODEX with a significant improvement of sensitivity for both 

rare and common variants. CODEX2 can be applied to two scenarios: the case 

control scenario (CODEX2.c in Figure 1) where the goal is to detect CNVs that 

are enriched in the case samples; and the scenario where control samples are not 

available (CODEX2.nc in Figure 1) and the goal is simply to profile all CNVs. 

CODEX and CODEX2 take as input assembled BAM files as well as bed files 

specifying targets for WES and targeted sequencing and output normalized read 

counts and tab-delimited text files with copy number calls. 

iCNV (Zhou, et al., 2017) uses the normalized coverage from 

CODEX/CODEX2, and makes use of sequenced reads at inherited single 

nucleotide polymorphism (SNP) positions for CNV detection. These 

heterozygous loci are shown to be valuable in improving detection and 

genotyping accuracy. If microarray data are available, iCNV also integrates log-

ratios and B-allele frequencies from these platforms to boost accuracy and 

enable CNV detection in intronic regions. iCNV takes as input normalized 

coverage by CODEX/CODEX2, allelic frequency at inherited SNP positions 

from sequencing, and log-ratio and B-allele frequency from SNP array. Output 

is CNV calls with quality scores. 

For ASCN estimation in a matched tumor-normal setting, FALCON (Chen, 

et al., 2015) is based on a change-point model on a process of a mixture of two 

bivariate Binomial distributions. FALCON takes as input allelic read counts at 

germline heterozygous loci by GATK (DePristo, et al., 2011) and outputs 

ASCN estimates with genome segmentations. For WES data, biases and 

artifacts cannot be fully captured by comparing the tumor sample to the 

matched normal sample. FALCON-X (Chen, et al., 2017) extends upon 

FALCON, where it takes as inputs allelic read counts at germline heterozygous 

loci and total coverage biases for each of these loci estimated by CONDEX2.c 

(Figure 1) and outputs ASCN estimates. 

Canopy (Jiang, et al., 2016) identifies subclones within a tumor, determines 

the mutational profiles of these subclones, and infers the tumor’s phylogenetic 

history by NGS data from temporally and/or spatially separated tumor 

resections from the same patient. Canopy jointly models somatic copy number 

changes and SNVs in a similar fashion to non-negative matrix factorization and 

adopts a Bayesian framework to reconstruct phylogeny with posterior 

confidence assessment. Canopy takes as input both somatic ASCN changes 

returned by FALCON/FALCON-X as well as somatic SNVs and outputs tumor 

phylogenetic trees with somatic mutations placed along tree branches and 

subclones placed at the leaves.  

3 Results 

The proposed pipeline adapts to different study designs and research goals 

(Table 1). For population genetic and disease association studies, one would 

start with read depth normalization using CODEX/CODEX2, followed by CNV 

calling using iCNV. For cancer genomics studies where the goal is to obtain 

ASCNs and reconstruct tumor clonal history, one would start with read depth 

normalization using CODEX/CODEX2, followed by ASCN profiling using 

FALCON/FALCON-X and clonal history analysis using Canopy. R notebook 

with rich display is available for MARATHON. We also demonstrate in 

Supplementary Results a cancer phylogenetic study of a neuroblastoma patient 

(Eleveld, et al., 2015), as well as a breast cancer (Maxwell, et al., 2017) and a 

melanoma (Garman, et al., 2017) study where copy numbers are estimated. 
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