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Abstract	

The	use	of	multivariate	pattern	analysis	(MVPA)	methods	has	enjoyed	this	past	
decade	a	rapid	increase	in	popularity	among	neuroscientists.	More	recently,	sim-
ilarity-based	 multivariate	 methods	 aiming	 not	 only	 to	 extract	 information	
regarding	the	class	membership	of	stimuli	from	their	associated	brain	patterns,	
say,	decode	a	 face	 from	a	potato,	but	 to	understand	the	 form	of	 the	underlying	
representational	structure	associated	with	stimulus	dimensions	of	 interest,	say,	
2D	grating	or	3D	face	orientation,	have	flourished	under	the	name	of	Representa-
tional	 Similarity	 Analysis	 (RSA).	 However,	 data-preprocessing	 steps	
implemented	prior	to	RSA	can	significantly	change	the	covariance	(and	correla-
tion)	 structure	 of	 the	 data,	 hence	 possibly	 leading	 to	 representational	
confusion—i.e.,	a	researcher	inferring	that	brain	area	A	encodes	information	ac-
cording	to	representational	scheme	X,	and	not	Y,	when	the	opposite	is	true.	Here,	
I	demonstrate	with	simulations	that	time-series	demeaning	(including	z-scoring)	
can	plausibly	 lead	to	representational	confusion.	Further,	 I	expose	potential	 in-
teractions	between	the	effects	of	data	demeaning	and	how	the	brain	happens	to	
encode	 information.	Finally,	 I	emphasize	the	 importance	 in	 the	context	of	simi-
larity	 analyses	 of	 at	 least	 occasionally	 explicitly	 considering	 the	 direction	 of	
pattern	vectors	in	multivariate	space,	rather	than	focusing	exclusively	on	the	rel-
ative	 location	 of	 their	 endpoints.	 Overall,	 I	 expect	 this	 article	 will	 promote	
awareness	of	the	impact	of	data	demeaning	on	inferences	regarding	representa-
tional	structure	and	neural	coding.	

Introduction	

In	the	past	fifteen	years,	MVPA	methods	have	enjoyed	a	rapid	increase	in	popu-
larity	within	 the	neuroimaging	community1–3.	Among	 the	goals	of	early	studies	
applying	MVPA	was	understanding	the	representational	structure	of	visual	per-
cepts4,	 the	distribution	of	 object	 category	 information	 in	 the	 ventral	 stream5–9,	
and	 the	 hemodynamic	 correlates	 of	 both	 consciously	 and	 unconsciously	 per-
ceived	 grating	 orientation	 in	 humans10,11.	 Currently,	 it	 is	 hard	 to	 identify	 a	
question	in	cognitive	neuroscience	that	is	not	being	approached	with	a	combina-
tion	of	functional	magnetic	resonance	imaging	(fMRI)	and	MVPA	methods.	

An	 interesting	 recent	development	 in	MVPA	has	been	 the	 adoption	of	 classical	
similarity	analysis	approaches	such	as	Multidimensional	Scaling	(MDS,12–14)	and	
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their	adaptation	from	the	domain	of	psychological	variables	to	that	of	brain	pat-
terns4,9,15–18.	 Thus,	 while	 psychologists	 have	 traditionally	 utilized	 multivariate	
methods	to	investigate	the	structure	of	mental	representational	spaces,	more	re-
cently,	 neuroscientists	 have	 relied	 on	 the	 similarity	 relationships	 observed	
within	 fMRI,	 electroencephalographic	 (EEG)	 and/or	 magnetoencephalographic	
(MEG)	patterns,	and	multichannel	intracranial	electrophysiological	recordings	to	
make	 inferences	 regarding	 representational	 content	 and	 format,	 as	 well	 as	
claims	concerning	 the	 tuning	properties	of	neural	populations10,16,17,19–23.	Espe-
cially	 noteworthy,	 a	 recent	 formulation	 of	 this	 similarity-based	 approach	 to	
MVPA	termed	Representational	Similarity	Analysis	(RSA18)	was	advanced	aiming	
to	 relate	 three	major	 branches	 of	 systems	neuroscience,	 viz.,	 behavioral	meas-
urement,	brain	measurement,	and	computational	modeling.	

In	this	paper,	I	use	simple	simulations	to	demonstrate	that	a	data	pre-processing	
step	which	appears	to	be	innocuous	in	the	eyes	of	some	researchers,	that	is,	de-
meaning	 of	 each	 time	 series	 in	 a	 dataset	 consisting	 of	 multiple	 measurement	
channels,	is	unsafe	when	combined	with	MVPA	methods	sensitive	to	the	angular	
relationships	among	brain	pattern	vectors—e.g.,	RSA	relying	on	the	linear	corre-
lation	 distance	 as	 measure	 of	 pattern	 dissimilarity.	 These	 difficulties	 are	
mathematically	related	albeit	clearly	distinguishable	 from	the	unwanted	conse-
quences	 of	 mean-pattern	 subtraction	 in	 multivariate	 correlation	 analyses	
described	by	Garrido	and	 colleagues24.	Moreover,	 I	will	 argue	 that	because	 the	
Euclidean	metric	is	not	explicitly	sensitive	to	angular	relationships,	interpreting	
pattern	analyses	based	on	this	dissimilarity	measure	can	be	challenging	and	oc-
casionally	 even	 misleading.	 That	 is,	 because	 this	 distance	 measure	 conflates	
effects	of	signal	strength	with	those	associated	with	the	direction	of	a	vector	in	a	
multidimensional	space.	Both	simulations21,25,26	and	empirical	evidence27–34	sup-
port	the	concept	that	information	carried	by	the	direction	of	pattern	vectors,	and	
not	 their	mean,	 can	be	 specially	 informative	 regarding	properties	of	 visual	 ob-
jects	such	as	 their	shape32,	 identity33	and	three-dimensional	 (3D)	orientation34,	
as	 well	 as	 regarding	 the	 form-of-tuning	 of	 indirectly	 sampled	 neural	 popula-
tions21,25,26.	Such	evidence	serves	to	motivate,	at	least	on	these	occasions,	the	use	
of	similarity	measures	explicitly	sensitive	to	angular	relationships	among	pattern	
vectors,	and,	moreover,	emphasizes	the	need	to	carefully	consider	the	choice	of	
pattern	dissimilarity	measure	in	the	context	of	representational	similarity	anal-
yses.	

Critically,	I	demonstrate	that	demeaning	of	multi-channel	time	series	(including	
z-scoring)	 prior	 to	 MVPA19,23,35–38	 can	 significantly	 change	 the	 covariance	 and	
correlation	structure	of	 the	data,	and	 that	 these	changes	depend	on	how	 infor-
mation	 happens	 to	 be	 encoded	 in	 a	 brain	 area—usually	 the	 question	 under	
study.	Differently	said,	I	exemplify	how	interactions	between	the	effects	of	data	
demeaning	and	the	form	of	the	unknown	underlying	representational	geometry	
can	 lead	 to	 representational	 confusion.	 It	may	 seem	 evident,	 on	 the	 one	 hand,	
that	data	demeaning	can	act	to	mix	information	associated	with	signal	strength	
(in	 fMRI	often	 reflected	 in	 regional	 average	 responses39,40)	 and	 that	 associated	
with	the	direction	of	a	pattern	vector	in	multivariate	space.	Below	I	show,	how-
ever,	 that	 even	 in	 the	 absence	 of	 regional	mean	 differences	 across	 conditions,	
and	exclusively	due	to	the	form	of	the	underlying	representational	geometry,	da-
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ta	demeaning	can	 lead	 to	representational	confusion,	namely:	 inferring	 that	 in-
formation	 in	 brain	 region	 A	 is	 encoded	 in	 accordance	 with	 representational	
scheme	X,	and	not	Y,	when	the	opposite	is	true.	Perhaps	more	gravely,	unconven-
tional	data	pre-processing	steps	have	been	invoked36,37	to	“discard”	or	“rule	out”	
the	 influence	 of	 global-signal	 effects	 which	 not	 only	 cannot	 discard	 such	 ef-
fects25,26,	 but	 can	 themselves	 significantly	 alter	 the	 outcome	 of	 ensuing	MVPA	
results.	Finally,	 I	elaborate	on	the	importance	of	specifying	a	meaningful	“base-
line	 state”	 in	 the	 context	 of	 neuroimaging	 experiments	 seeking	 to	 make	
inferences	 regarding	 tuning	 properties	 of	 neural	 populations	 and	 representa-
tional	structure,	and	discuss	strengths	and	limitations	of	the	currently	prevalent	
approach	to	estimate	a	baseline	in	fMRI	studies—i.e.,	the	constant	regressor	in	a	
standard	 GLM41.	 Overall,	 I	 hope	 this	 article	will	 promote	 awareness	 regarding	
the	impact	of	data	demeaning	on	inferences	regarding	representational	structure	
and	neural	coding.	

Background	

Below,	 I	present	seven	simulations	 illustrating	possible	effects	of	data	demean-
ing	on	Representational	Similarity	Analyses	(RSA18).	In	a	nutshell,	RSA	proposes	
to	 abstract	 from	 brain	 activity	 patterns	 themselves	 and	 focus	 instead	 on	 their	
similarity	 relationships	 according	 to	 some	 distance	 measure	 (Fig.	 1).	 Thus,	 if	
each	experimental	condition	is	associated	with	a	brain	pattern,	an	empirical	dis-
similarity	 matrix	 (DSM)	 can	 be	 generated	 by	 systematically	 arranging	 all	
pairwise	pattern	dissimilarities	associated	with	 that	 set	of	 experimental	 condi-
tions.	 Such	 DSMs—or	 Representational	 Dissimilarity	 Matrices	 (RDMs),	 if	 we	
adopt	Kriegeskorte	and	colleagues’	usage—are	believed	to	roughly	encapsulate	
the	 information	encoded	by	 the	neural	populations	 indirectly	 sampled	by	 fMRI	
and	EEG	(Fig.	1b).	Moreover,	 these	authors	propose	that	several	computational	
models	can	be	related	to	brain	measurements	by	estimating	and	comparing	the	
agreement	 between	 those	 models—each	 expressed	 as	 a	 matrix	 specifying	 the	
expected	dissimilarity	relationships	across	conditions	given	that	model—and	the	
empirically	 estimated	 DSMs	 (Fig.	 1c).	 In	 a	 similar	 vein,	 Kriegeskorte	 and	 col-
leagues	suggest	relating	evidence	from	different	brain	measurement	techniques	
by	matching	the	associated	DSMs—i.e.,	abstracting	from	the	patterns	themselves	
and	 focusing	 on	 the	 corresponding	 dissimilarity	 structures.	 This	 general	 ap-
proach	 is	 attractive,	 because	 it	 circumvents	 the	 daunting	 “correspondency”	
problem	 posed	 by	 the	 need	 to	 otherwise	 directly	 relate	model	 and	 neural	 pa-
rameters,	 which	 may	 be	 impossible	 if	 a	 one-to-one	 mapping	 between	 model	
parameters	and	data	channels	cannot	be	meaningfully	established18.	

In	the	simulations	implemented	below,	the	linear	(or	Pearson’s)	correlation	dis-
tance	 (1-r)	 will	 be	 used	 as	 measure	 of	 brain-pattern	 dissimilarity.	 That	 is,	
because	 this	 choice	 is	 frequent	 in	 the	RSA	 literature,	and	previously	advocated	
by	Kriegeskorte	and	colleagues18.	While	it	must	be	noted	that	an	alternative	dis-
tance	 measure	 was	 more	 recently	 proposed	 by	 Nili	 and	 colleagues42,	 namely,	
crossvalidated	linear	discriminant	t-values	(the	latter	exhibiting	interesting	and	
often	 advantageous	 properties),	 nonetheless,	 to	 the	 extent	 that	 this	 distance	
measure	is	closely	related	to	the	Euclidean	distance,	it	is	subject	to	similar	limita-
tions.	A	key	disadvantage	is	that,	by	definition,	the	Euclidean	distance	conflates	
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vector	mean	(and	more	generally	speaking,	length)	and	angular	effects,	thus	pos-
sibly	 leading	 to	 odd	 scenarios	 where	 neural	 populations	 with	 distinct	 tuning	
properties	may	 result	 in	 indistinguishable	 representational	distances21.	 In	 con-
trast,	this	would	not	occur	with	distance	measures	explicitly	sensitive	to	angular	
relationships	among	vectors,	and	insensitive	to	their	length—e.g.,	the	cosine	and	
correlation	distances.	That	is,	unless	distortions	on	estimates	of	the	true	underly-
ing	angular	relationships	were	 introduced,	 for	example,	due	to	data	demeaning	
(for	details,	see	below).	

	

Figure	1.	Representational	Similarity	Analysis:	 (a)	Primary	visual	cortex	(V1)	 is	sche-
matically	 shown	 within	 the	 human	 brain.	 A	 set	 of	 activation	 vectors	 across	 V1	 is	
displayed	immediately	to	the	right.	Each	vector	depicts	the	brain	response	pattern	as-
sociated	with	the	visual	stimulus	shown	immediately	above—i.e.,	oriented	gratings	with	
equal	image	contrast.	(b)	2D	representation	of	the	n-dimensional	pattern	vectors	asso-
ciated	 with	 each	 of	 the	 five	 oriented	 gratings	 shown	 in	 a.	 The	 length	 of	 each	 vector	
encodes	 the	signal	strength	associated	with	each	condition.	As	 the	angular	distance	of	
two	gratings	increases,	so	does	the	associated	angular	distance	in	voxel-space.	A	simu-
lated	 empirical	 dissimilarity	 matrix	 (eDSM)	 summarizing	 all	 pairwise	 distances	 of	
pattern	vectors	1-5	 is	 shown	on	 the	 right.	 (c)	Model	dissimilarity	matrices	 associated	
with	each	of	several	candidate	representational	schemes.	Each	model	DSM	is	correlated	
(using	Spearman’s	rank-order	correlation)	with	the	simulated	empirical	DSM.	The	mod-
el	exhibiting	the	highest	correlation—i.e.,	the	best	fitting	model—is	taken	to	be	the	most	
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likely	 underlying	 representational	 scheme.	 In	 this	 example,	 the	 representational	
scheme	isomorphically	reflecting	angular	disparities	among	visually	presented	gratings	
is	the	best	fitting	model.	

To	 remain	 close	 to	 the	 realm	 of	 neurobiological	 interpretability,	 the	 examples	
and	simulations	presented	below	were	construed	to	reflect	three	imaginary	ex-
periments,	each	assumed	to	induce	effects	in	primary	visual	cortex	(V1)—where	
neurons	are	known	to	be	usually	unimodally	tuned	to	a	single	preferred	orienta-
tion,	 and	 spike-rates	 positively	 associated	 with	 the	 observed	 image	 contrast	
levels—or,	alternatively,	in	a	fictitious	brain	area	homologous	to	V1	where	neu-
rons	respond	identically	to	gratings	with	orientations	equally	tilted	with	respect	
to	the	vertical	meridian.	Let	us	name	this	area	V1-mirror.	Each	simulated	“exper-
iment”	 emulates	 the	 case	 were	 gratings	 of	 identical	 spatial	 frequency,	 but	
variable	contrast	and	orientation,	are	presented	to	an	observer.	Across	examples,	
the	contrast	 levels	of	 the	 images	associated	with	each	orientation	are	either	(I)	
identical,	(II)	linearly,	or	(III)	quadratically	modulated.	Altogether,	three	experi-
ments,	 each	 conducted	 in	V1	and	V1-mirror,	will	 serve	 to	 specify	 six	 examples	
(see	Fig.	2b).	Please	note	that	neurobiological	realism	is	not	of	essence	here,	but	
only	 constructing	 illustrative	 and	 conceptually	 interpretable	 examples	 to	
demonstrate	that	the	rank-order	of	the	entries	in	the	cells	of	dissimilarity	matri-
ces	 associated	 with	 a	 set	 of	 pattern	 vectors	 can	 be	 strongly	 changed	 by	 data	
demeaning,	 and	 that	 the	 associated	 distortions	 could	 lead	 to	 representational	
confusion.	Changes	in	the	rank-order	of	the	entries	of	a	dissimilarity	matrix	(i.e.	
the	ordering	of	 the	entries	 in	a	matrix	 after	 arranging	 its	 values	 in	descending	
order)	are	key	here	because	(i)	dissimilarity	matrices	are	usually	taken	to	reflect	
the	dissimilarity	relationships	among	brain	patterns	associated	with	the	experi-
mental	 conditions	 under	 investigation,	 and	 (ii)	 similarity	 in	 rank-order	 of	
empirical	and	model	dissimilarity	matrices	is	the	criterion	used	in	RSA	for	model	
selection	 and	 comparison18,42.	 Thus,	 rank-order	 changes	 due	 to	 data	 transfor-
mations	could	result	either	in	reduced	statistical	power	to	detect	genuine	effects,	
or—in	the	worst	case—lead	to	representational	confusion.	A	seventh	simulation	
will	 serve	 to	 illustrate	how	 the	distortions	demonstrated	 in	examples	1-6	with	
pattern	 vectors	 and	 cocktail-mean	 subtraction	 straightforwardly	 extend	 to	 the	
case	of	multi-channel	time	series	demeaning	(including	z-scoring).	

Simulations	1-6	

Two	 vectors,	 each	 consisting	 of	 100	 dimensions	 (emulating	 100	measurement	
channels),	were	randomly	generated,	orthogonalized,	and	normalized	to	produce	
two	uncorrelated	basis	vectors	each	with	a	mean	of	zero	and	a	standard	devia-
tion	of	one.	By	linearly	combining	these	two	basis	vectors,	two	families	of	vector	
ensembles	were	generated:	

(1)	Isomorphic	family:	Three	vector	ensembles	were	generated,	each	consisting	
of	five	elements	(Fig.	2b	I-III,	see	top	row	in	each	sub-panel).	Here,	vectors	repre-
sent	 brain	 patterns	 evoked	 by	 visually	 presented	 gratings	 in	 an	 observer.	
Angular	 disparities	 among	 neighboring	 vectors	 belonging	 to	 this	 family	 are	
11.25°	(p/16	rad)	(range	=	45°).	Thus,	angular	distances	among	vectors	reflect	
those	 observed	 among	 the	 corresponding	 visually	 presented	 gratings43.	 Vector	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 28, 2017. ; https://doi.org/10.1101/195271doi: bioRxiv preprint 

https://doi.org/10.1101/195271


	 6	

lengths	were	in	each	example	scaled	to	reflect	the	contrast	level	of	the	associated	
gratings	 (Fig.	2a,	 I-III)—i.e.,	 vector	 lengths	 in	each	group	were	either	 identical,	
linearly,	or	quadratically	modulated,	while	angular	distances	remained	identical	
across	simulations.	

In	more	detail,	a	set	of	vectors	Misomorphic	consisting	of	five	pattern	vectors	exhib-
iting	 the	desired	 angular	 relationships,	 zero	mean	 across	dimensions,	 and	unit	
standard	deviation,	was	 first	 obtained	by	 linearly	 combining	𝑢	and	𝑣	in	 accord-
ance	to	the	following	equation:	

Misomorphic	=	B·MixMatisomorphic,	

where	B	is	a	100-	by	2-dimensional	matrix	comprised	by	the	orthogonal	column	
vectors	𝑢	and	𝑣:	B	=	[𝑢,	𝑣].	The	2	by	5	dimensional	mixing	matrix:	

𝑀𝑖𝑥𝑀𝑎𝑡()*+*,-.(/ = 	
cos(0) cos( 8

9:
) cos(;8

9:
) cos(<8

9:
) cos(=8

9:
)

sin 0 sin( 8
9:
) sin ;8

9:
sin(<8

9:
) sin(=8

9:
)
,	

was	 used	 to	 linearly	 combine	 the	 basis	 vectors	 in	 B	 to	 produce	 five	 100-
dimensional	vectors,	one	in	each	column	of	Misomorphic,	exhibiting	the	desired	an-
gular	relationships,	zero	means,	and	unit	standard	deviations.	Then,	each	column	
j	of	Misomorphic	was	scaled	by	multiplication	with	the	correspondingly	indexed	sca-
lar	(j	=	1,	2,	…,	5)	in	each	of	the	following	scaling	vectors:	

vIdent	=	[1,	1,	1,	1,	1],	

vLin	=	[1.15,	1.05,	0.95,	0.85,	0.75],	

vQuad	=	[0.7,	1.23,	1.4,	1.23,	0.7].	

In	 this	way,	 three	 ensembles	 of	 vectors	were	 generated	 exhibiting	 the	 desired	
angular	 relationships,	 means,	 lengths,	 and	 together	 constitute	 the	 isomorphic	
family	of	vectors	(see	Simulations	1,	2,	and	3	in	Fig.	2b).	Please	note	that	the	term	
‘isomorphic’	 is	 used	 here	 only	 informally	 to	 highlight	 the	 fact	 that	 the	 angular	
distances	among	the	orientations	of	the	stimulus	gratings	are	matched	by	corre-
sponding	angular	distances	among	their	associated	pattern	vectors.	

(2)	Mirror-symmetric	family:	Three	additional	ensembles	of	vectors	were	gener-
ated	 (Fig.	 2b	 I-III,	 bottom	of	 each	panel).	 In	 each	 case,	 vector	3	 represents	 the	
pattern	associated	with	the	vertically	oriented	grating.	The	remaining	four	vec-
tors	exhibit	angles	proportional	to	double	the	absolute	angular	distance	between	
each	grating	and	the	vertical	meridian.	That	is,	consecutive	vectors	are	separated	
by	angular	steps	of	22.5°	 (p/8	rad)	 (range	=	45°).	Note	 that	vectors	associated	
with	gratings	equally	removed	from	the	vertical	orientation	exhibit	identical	di-
rections,	whether	the	gratings	are	tilted	to	the	left	or	to	the	right.		
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In	more	detail,	a	set	of	vectors	Mmirror	consisting	of	five	pattern	vectors	exhibiting	
the	 desired	 angular	 relationships,	 zero	mean,	 and	 unit	 standard	 deviation	was	
obtained	by	linearly	combining	𝑢	and	𝑣	in	accordance	to	the	following	equation:	

Mmirror	=	B·MixMatmirror,	

where	B	 is	 the	 100-	 by	 2-dimensional	matrix	 comprising	 the	 orthogonal	 basis	
column	vectors	𝑢	and	𝑣	(defined	in	the	previous	sub-section).	The	set	of	vectors	
Mmirror	used	to	generate	this	second	family	of	vectors	was	obtained	as	done	above	
for	 the	 isomorphic	 family	 but	 relying	 on	 a	 different	 mixing	 matrix,	 the	 latter	
specified	as	follows,	

𝑀𝑖𝑥𝑀𝑎𝑡+(,,*, = 	
cos 0 cos ;8

9:
cos =8

9:
cos ;8

9:
cos 0

sin 0 sin ;8
9:

sin ;8
9:

sin ;8
9:

sin 0
.	

As	implemented	above	for	the	isomorphic	family,	the	scaling	vectors	vIdent,	vQuad,	
and	vLin	were	used	to	scale	the	columns	of	Mmirror	and	hence	generate	the	three	
ensembles	of	vectors	 that	constitute	 this	mirror-symmetric	 family	 (see	Simula-
tions	4-6	in	Fig.	2b).	

Simulation	results	(1-6)	

By	 subtracting	 the	mean	vector	 across	 conditions	 (i.e.	 the	 cocktail	mean)	 from	
that	associated	with	each	condition	below	I	demonstrate	that	this	data	transfor-
mation	can	considerably	change	the	rank-order	of	 the	entries	 in	 the	associated	
covariance	and	correlation-distance	matrices.	Compare	in	Fig.	2b	the	matrices	in	
the	middle	 (before	demeaning)	 and	 rightmost	 columns	 (after	 demeaning).	 The	
fact	that	neighboring	matrices	look	so	strikingly	different	implies	that	their	rank-
order	 has	 changed.	 For	 instance,	 this	 can	 occur	 because	 correlation-distances	
between	pairs	of	conditions	that	were	among	the	largest	before	demeaning	can	
end	up	among	the	smallest	after	demeaning—and	vice	versa.	Furthermore,	these	
examples	also	 show	 that	 the	correlation-distance	matrices	associated	with	 two	
clearly	distinct	representational	schemes	before	cocktail-mean	subtraction—e.g.,	
isomorphic	 and	mirror-symmetric—can	 become	 almost	 indistinguishable	 after	
data	demeaning.	For	a	dramatic	example,	compare	in	Fig.	2b	 the	scatterplots	of	
the	ranks	of	the	entries	of	the	DSMs	indicated	with	double	arrows.	Critically,	pri-
or	to	data	demeaning	these	two	encoding	schemes	were	clearly	distinguishable,	
as	indicated	by	the	low	correlation	observed	between	the	ranks	of	their	associat-
ed	DSMs	(r2	=	0.07).	However,	after	demeaning	these	two	encoding	schemes	are	
now	 hardly	 distinguishable,	 as	 indicated	 by	 the	 high	 correlation	 observed	 be-
tween	the	ranks	of	 the	associated	DSMs	(r2	=	0.96).	 In	sum,	 these	six	examples	
clearly	demonstrate	that	subtracting	the	cocktail-mean	pattern	across	conditions	
can	significantly	change	the	angular	relationships	observed	among	a	set	of	vec-
tors,	 alter	 the	 rank-order	 of	 the	 entries	 of	 the	 associated	 covariance	 and	
correlation	matrices,	and	therefore	possibly	lead	to	representational	confusion.	
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Figure	2.	Consequences	of	cocktail-mean	subtraction	on	pattern	dissimilarity	structure.	
(a)	 Hypothetical	 visual	 experiments	 I-III.	 Gratings	 with	 identical	 spatial	 frequency	 but	
distinct	orientations	are	shown.	In	each	experiment,	image	contrast	levels	are	either	iden-
tical	 (I),	 linearly	 (II),	 or	 quadratically	modulated	 (III).	 (b)	 Hypothetical	 brain	 response	
patters	associated	with	experiments	I-III	in	two	distinct	brain	areas—viz.,	primary	visual	
cortex	(V1)	and	its	envisioned	mirror-symmetrically	responsive	homologue	(V1-mirror).	
Each	panel	displays	brain	responses	to	stimuli	shown	in	I,	II,	or	III.	Note	that	while	simu-
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lated	vectors	consist	of	one-hundred	dimensions,	they	are	schematically	depicted	in	two	
dimensions	for	illustrative	purposes.	Vector	lengths	always	reflect	grating	contrast	levels,	
while	angular	 relationships	 reflect	grating	orientations	 in	V1	 (top),	 instead	 they	exhibit	
identical	 directions	 for	 mirror-symmetrically	 oriented	 gratings	 in	 V1-mirror	 (bottom).	
Each	ensemble	of	2D-vectors	displayed	on	 the	 leftmost	column,	 the	 latter	used	 to	sche-
matically	depict	 that	 row’s	representational	scheme,	are	accompanied	by	 four	matrices.	
Variance-covariance	matrices	computed	before	and	after	subtraction	of	the	mean	pattern	
across	conditions,	correspondingly	labeled	as	“before	demeaning”	and	“after	demeaning”,	
are	shown	on	the	top	row	of	each	sub-panel.	Immediately	below	each	pair	of	covariance	
matrices,	 two	 dissimilarity	 matrices	 according	 to	 the	 linear	 correlation	 distance	 are	
shown,	again,	before	and	after	demeaning.	Changes	in	the	rank-order	of	both	covariance	
and	 correlation-distance	matrices	 are	 evident;	 compare	 the	 appearance	 of	 neighboring	
matrices	in	each	row.	Double	arrows	indicate	DSMs	before	and	after	demeaning	associat-
ed	 with	 the	 mirror-symmetric	 (linearly	 modulated)	 and	 isomorphic	 (quadratically	
modulated)	 encoding	 schemes	 (Simulations	 5	 and	 3).	 Critically,	before	 data	 demeaning	
these	 two	encoding	schemes	are	easily	distinguishable,	as	 indicated	by	 the	 low	correla-
tion	observed	between	the	ranks	of	their	associated	DSMs	(r2	=	0.07).	However,	after	data	
demeaning	these	two	encoding	schemes	are	hard	to	distinguish,	as	indicated	by	the	high	
correlation	observed	between	the	ranks	of	the	associated	DSMs	(r2	=	0.96).	These	obser-
vations	 suffice	 to	 demonstrate	 that	 cocktail	 demeaning	 can	 introduce	 changes	 in	
representational	dissimilarity	matrices	that	could	lead	to	representational	confusion.	

Simulation	7	(and	results)	
Figure	3	shows	how	the	effects	of	cocktail-mean	subtraction	described	immedi-
ately	 above	 straightforwardly	 extend	 to	 the	 case	 of	 time-series	 demeaning	
(including	 z-scoring).	Although	 this	 point	 has	 seemingly	 gone	unnoticed	 in	 the	
RSA	literature,	mathematically	related	artifacts	have	been	discussed	in	the	rest-
ing	state	literature44–46.	The	representational	scheme	used	as	ground	truth	in	this	
seventh	simulation	is	identical	to	the	example	isomorphic-III	(i.e.,	with	quadrati-
cally	 modulated	 vector	 lengths,	 see	 Fig.	 3a),	 except	 that	 here	 the	 angular	
distances	between	neighboring	vectors	are	5.625°	(p/32	rad)	(range	22.5°).	Un-
like	 previous	 simulations,	 however,	 in	 this	 case	 one-hundred	 time	 series	were	
generated—one	per	measurement	channel.	By	parametrically	manipulating	 the	
proportion	 of	 non-stimulated	periods	 included	 in	 each	 instance	 of	 this	 simula-
tion,	 it	was	 possible	 to	 investigate	 the	 effect	 of	 time-series	 demeaning	 on	RSA	
inferences	as	a	function	of	the	former	parameter.	The	basic	experimental	design	
for	the	ensuing	simulations	consists	of	one	single	presentation	of	each	oriented	
grating,	 interleaved	with	non-stimulated	periods	with	 a	 duration	matching	 the	
target	 proportion	 of	 non-stimulated	 periods	 specified	 for	 each	 instance	 of	 this	
simulation	(see	Fig.	3).	The	signal	level	specified	for	all	non-stimulated	periods	is	
zero.	 For	 simplicity,	 it	 is	 further	 assumed	 that	 responses	 in	 each	 simulated	
measurement	channel	are	perfectly	described	by	zero-lag	step	functions	with	a	
constant	duration	of	1	min.	Clearly,	a	sound	analysis	scheme	should	not	lead	to	
inconsistent	conclusions	regarding	representational	structure	only	depending	on	
the	proportion	of	non-stimulated	periods	included	in	an	experimental	design.	
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Figure	3.	The	consequences	of	cocktail-mean	subtraction	straightforwardly	extend	to	the	
case	of	time-series	demeaning.	(a)	Ground-truth	for	all	simulations	is	a	representational	
scheme	were	grating	angular	disparities	are	isomorphically	reflected	by	the	angular	dis-
parities	between	their	associated	response	vectors.	Vector	lengths	reflect	image	contrast	
levels.	Angular	distances	between	neighboring	vectors	are	5.625°	(range	22.5°).	(b)	Multi-
channel	time	series	and	their	mean.	In	cyan	are	depicted	the	signal	levels	associated	with	
each	of	five	experimental	conditions	in	example	measurement	channels.	On	the	right,	the	
mean	pattern	vector	across	conditions	 is	shown	in	gray,	while	outlined	 in	black,	also	as	
example,	is	the	pattern	associated	with	condition	1.	(c)	Changing	the	proportion	of	pauses	
in	an	experimental	design	influences	the	mean	value	observed	in	each	channel.	A	red	dot	
indicates	the	mean	computed	across	conditions	in	one	data-channel	when	the	design	in-
cludes	0%	pauses—a	 setting	 equivalent	here	 to	 cocktail-mean	 subtraction	 (see	 text	 for	
details).	Mean	values	in	designs	with	50%	and	infinite	pauses	are	indicated,	respectively,	
by	gray	and	green	dots.	On	the	right,	note	2D	schematic	representations	of	the	location	of	
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the	multivariate	mean	associated	with	designs	including	different	proportions	of	pauses.	
The	mean	pattern	 varies	 its	 location	 as	 a	 function	 of	 pause	 duration,	 and,	 critically,	 on	
each	 occasion	 prescribes	 distinct	 angular	 relationships	 between	 the	 associated	 pattern	
vectors.	(d)	Dissimilarity	matrices	for	designs	with	varying	proportions	of	pauses	and	al-
ways	computed	after	time-series	demeaning.	The	rank-order	of	the	resulting	dissimilarity	
matrices	gradually	changes	as	a	function	of	the	proportion	of	non-stimulated	periods.	Es-
pecially	noteworthy,	arrows	indicate	a	cell	that	changes	from	maximal	(see	DSM	for	50%	
pauses)	to	almost	minimal	rank	(see	DSM	for	5%	pauses)	as	a	function	of	the	proportion	
of	 non-stimulated	periods.	 (e)	Representational	 confusion.	 Shown	with	 separate	 curves	
are	 Pearson	 and	 Spearman	 correlations	 between	 the	 simulated	 dissimilarity	 structures	
(always	 after	 demeaning)	 and	 two	 conceptual	 model	 templates:	 (i)	 a	 representation	
monotonically	 reflecting	 grating	 angular	 disparities	 (ANGLE),	 and	 (ii)	 a	 representation	
mirror-symmetrically	encoding	grating	orientation	with	respect	to	the	vertical	meridian	
(MIRROR).	 The	 results	 are	 displayed	 as	 a	 function	 of	 the	 proportion	 of	 non-stimulated	
periods	 in	 each	 simulated	 experiment.	 Increasing	 the	 proportion	 of	 pauses	 resulted	 in	
matrices	increasingly	similar	to	the	ground	truth—here,	a	representation	reflecting	angu-
lar	 disparity	 (see	 panel	 a).	 However,	 note	 that	 in	 the	 simulations	 with	 no	 or	 reduced	
proportions	of	pauses,	both	 the	Pearson	and	Spearman	correlations	 incorrectly	 favored	
the	mirror-symmetric	model.	(f)	Two	matrices—0%	and	70%	pauses—illustrate	signifi-
cant	rank-order	differences	due	to	an	interaction	between	the	effects	of	data	demeaning	
and	the	proportion	of	pauses	in	each	simulation.	Note	that	while	the	leftmost	dissimilari-
ty	 matrix	 exhibits	 mirror-symmetric	 features—e.g.,	 note	 the	 X-like	 pattern—the	
rightmost	matrix	does	not.	This	interaction	of	observed	dissimilarity	structure	by	propor-
tion	of	non-stimulated	periods	could	plausibly	lead	to	representational	confusion.	

Nonetheless,	 if	 we	 envisage	 the	 limit	 case	 where	 an	 experiment	 includes	 no	
pauses,	that	is,	neither	before	nor	after	stimulation	events,	 it	 is	easy	to	see	that	
outcomes	arbitrarily	close	to	those	due	to	cocktail-mean	subtraction	will	obtain	
after	time-series	demeaning	(see	Fig.	3b).	The	outcome	would	be	exactly	equiva-
lent	to	cocktail-mean	subtraction	if	neural	responses	happened	to	be	reflected	in	
our	signals	without	 temporal	 lag	and	perfectly	described	by	step	 functions—as	
conveniently	assumed	here	for	didactic	purposes.	Furthermore,	it	is	key	to	note	
that	as	we	consider	experiments	with	increasing	proportions	of	non-stimulated	
periods,	the	mean	value	computed	across	each	time-series	will	 increasingly	ap-
proximate	 that	 of	 the	 non-stimulated	 baseline	 (set	 here	 to	 a	 value	 of	 zero).	 In	
sum,	while	shorter	baseline	and	inter-stimulus	intervals	will	result	in	distortions	
on	the	associated	DSMs	increasingly	similar	to	those	due	to	cocktail	demeaning,	
longer	pauses	will	lead	to	gradually	smaller—and	eventually	no—changes	in	the	
rank-order	 of	 the	 resulting	DSMs	 (see	 Fig.	 3e).	 Simulation	 7	 therefore	 demon-
strates	 that:	 (i)	 time-series	 demeaning,	 like	 cocktail-mean	 subtraction,	 can	
strongly	affect	ensuing	inferences	regarding	representational	structure	and	neu-
ral	 coding,	 and	 (ii)	 the	 changes	 introduced	 by	 this	 data	 transformation	 on	 the	
rank-order	of	the	ensuing	DSMs	can	strongly	depend	on	arbitrary	experimental	
choices—for	 instance,	 the	 proportion	 of	 non-stimulated	 periods	 specified	 by	 a	
researcher.	 That	 a	 choice	 so	 visibly	 unrelated	 to	 any	 aspect	 of	 the	 underlying	
neural	populations	can	so	severely	influence	ensuing	inferences	regarding	neural	
coding	is	not	only	undesirable	but	arguably	also	untenable.	
Unlike	 the	 standard	general	 linear	modeling	approach	 (GLM40),	 time-series	de-
meaning	and	z-scoring	do	not	seek	to	estimate	a	baseline	level,	or	to	fit	a	model	
to	 the	 data	 aiming	 to	 minimize	 the	 residual	 error	 by	 estimating	 activation	
weights	 for	 each	 regressor	 (conditions)	 plus	 an	 additional	 constant	 regressor	
implicitly	 modeling	 the	 baseline	 signal	 level.	 The	 demeaning	 procedures	 criti-
cized	here	 simply	 computes	 the	mean	across	a	 time	series,	 separately	 for	each	
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measurement	 channel,	 and	 subtracts	 it	 from	 the	 signal	 level	 observed	 at	 each	
time-point.	 Thus,	 it	must	 be	 noted	 that	 estimation	 errors	 of	 the	 baseline	 level	
with	the	GLM	approach	could	in	principle	also	affect	the	observed	rank-order	of	
empirical	DSMs	and	therefore	lead	to	representational	confusion.	It	is	easy	to	see	
that,	as	shown	to	occur	with	Simulation	7	in	the	case	of	multichannel	time-series	
demeaning,	 inaccurate	or	biased	estimates	of	 the	constant	 (baseline)	 regressor	
in	a	GLM	could,	 for	 instance,	 similarly	 introduce	previously	 inexistent	negative	
correlations	between	brain	patterns.	 If	encountered,	such	negative	correlations	
may	seem	hard	to	explain	for	a	researcher,	and,	if	taken	at	face	value,	could	lead	
to	 erroneous	 conclusions	 regarding	 representational	 structure	 and	neural	 cod-
ing.	In	this	context,	it	is	worth	observing	that	such	distortions,	if	they	occur,	are	
nonetheless	 expected	 to	 be	 small	 with	 the	 GLM	 approach	 compared	 to	 those	
caused	by	data	demeaning—that	is,	at	least	in	the	presence	of	a	roughly	orthog-
onal	experimental	design	and	close	to	canonical	hemodynamic	response	function	
(HRF).	

The	effects	of	data	demeaning	interact	with	the	underlying	representation-
al	geometry	

As	shown	 in	Figure	2,	 the	changes	 introduced	by	data	demeaning	on	 the	 rank-
order	of	empirical	DSMs	can	be	strongly	influenced	by	the	manner	in	which	the	
brain	happens	 to	encode	 information—usually	 the	question	under	study.	Thus,	
given	that	the	true	nature	of	the	underlying	representational	geometry	is	typical-
ly	unknown,	it	follows	that	the	nature	of	the	influences	of	data	demeaning	on	the	
empirically	 observed	DSMs	will	 also	 remain	unclear.	Moreover,	 as	 observed	 in	
the	previous	section,	 the	mean	pattern	computed	across	conditions,	and	 there-
fore	the	nature	of	the	changes	potentially	introduced	by	data	demeaning,	can	be	
affected	by	arbitrary	characteristics	of	an	experimental	design,	say,	the	propor-
tion	 of	 non-stimulated	 periods	 (see	 Fig.	 3c).	 This	 is	 evidently	 undesirable.	 For	
example,	if	a	brain	area	happened	to	implement	the	representational	scheme	de-
picted	in	Fig.	3a,	then	the	multivariate	mean	in	an	experimental	design	without	
pauses	would	 be	 located	 on	 the	 red	dot,	with	 50%	pauses	 shown	 in	 gray,	 and	
with	close	to	infinitely	long	pauses	in	cyan	(Fig.	3b-c).	Note	that	after	demeaning	
the	pattern-vectors	are	re-centered	and,	critically,	on	each	occasion	their	angular	
relationships	uniquely	re-defined.	Thus,	after	data	demeaning	a	researcher	may	
incorrectly	interpret	the	observed	dissimilarity	structure	as	evidence	that	neural	
populations	 in	 V1	 exhibit	 bimodal	 and	 mirror-symmetrically	 tuned	 response	
functions	 (see	 Fig.	 3d,e).	Moreover,	while	 a	 researcher	 investigating	 V1	with	 a	
design	including	no	pauses	may	conclude	that	this	area	encodes	information	ac-
cording	to	a	mirror-symmetric	scheme,	the	same	researcher	relying	instead	on	a	
design	 including	50%	of	non-stimulated	periods	would	reach	the	opposite	con-
clusion	(see	Fig.	3e-f).	In	sum,	the	simulation	reported	in	this	section	shows	that	
the	uncritical	use	of	data	demeaning	prior	to	the	implementation	of	RSA	can	lead	
to	representational	confusion,	and	that	the	effects	of	data	demeaning	can	interact	
with	the	very	form	of	the	unknown	underlying	representational	geometry	under	
investigation.	Taken	together,	these	pitfalls	speak	against	the	practice	of	uncriti-
cally	demeaning	your	data	before	conducting	RSA	analyses.		

Discussion	
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The	simulations	presented	in	this	paper	serve	to	demonstrate	that	it	is	unsafe	to	
demean	your	data	before	conducting	MVPA	variants	(including	RSA)	sensitive	to	
the	angular	relationships	among	estimated	response	patterns.	Because	the	angu-
lar	 relationships	 among	pattern	 vectors	 can	be	 crucially	 informative	 regarding	
the	 nature	 of	 the	 underlying	neural	 population	 codes	 (a	 concept	 supported	by	
simulations	and	empirical	data21,29,33,38,47),	it	is	evident	that	at	least	in	those	occa-
sions	 re-centering	 of	 time	 series	 by	 subtracting	 the	 mean	 across	 conditions	
should	be	avoided.	Moreover,	 it	 is	also	evident	 that	careful	attention	should	be	
paid	when	interpreting	Euclidean	distances	if	chosen	as	measure	of	pattern	dis-
similarity.	 One	 may	 argue	 that	 the	 Euclidean	 distance	 is	 preferable	 to	 the	
correlation	and	cosine	distances	in	the	context	of	RSA	precisely	because	it	is	(at	
least	 within	 runs)	 unaffected	 by	 data	 re-centering42,48.	 However,	 I	 think	 a	 re-
searcher’s	 priority	 is	 not	 to	 choose	 a	 metric	 insensitive	 to	 the	 possible	
distortions	 introduced	 by	 data	 preprocessing	 steps,	 but	 one	 that	 faithfully	 re-
flects	 the	 neural	 properties	 under	 investigation.	 In	 my	 view,	 an	 important	
question	in	neuroscience	is	to	understand	how	tuning	properties	of	neural	popu-
lations	sampled	by	brain	measurements	may	be	discovered	from	their	associated	
multivariate	 response	patterns—thus	aiding	us	 to	 learn	 from	such	signals	how	
neurons	collectively	encode	cognitive	and	sensory	variables.	

Do	my	arguments	imply	that	conclusions	drawn	in	previous	studies	relying	on	a	
combination	of	brain	measurements	and	RSA	are	necessarily	mistaken?	No,	they	
do	not	imply	this.	However,	to	the	extent	that	data	was	demeaned	prior	to	RSA,	it	
can	be	said	 that	 if	 these	conclusions	are	 true,	 it	 is	not	by	virtue	of	 the	analysis	
schemes	used	 to	provide	evidence	 in	 their	 favor.	To	 the	extent	 that	 studies	 in-
tend	to	make	claims	about	neural	population	tuning	properties,	the	conclusions	
drawn	could	change	when	analyzed	in	a	manner	aiming	to	preserve	angular	rela-
tionships	among	brain	patterns	with	respect	to	a	pre-stimulation	baseline	level,	
thus	avoiding	re-centering	operations	that	recode	brain	patterns	with	respect	to	
an	 arbitrary	 origin	 that	 seems	 to	 me	 hardly	 interpretable	 in	 neurobiological	
terms.	

Thus,	 it	becomes	apparent	 in	 the	 context	of	MVPA	 that	 specifying	what	 consti-
tutes	a	sound	“baseline”	 level—as	well	as	considering	the	possible	influence	on	
eDSMs	of	common	pattern	components49—may	prove	critical	when	it	comes	to	
draw	 inferences	 regarding	 neural	 population	 tuning.	 While	 some	 researchers	
may	 disagree,	 I	 think	 that	 the	 baseline	 level	 estimated	 in	 the	 context	 of	 GLM	
analyses	 can	 prove	 to	 be	 biologically	 interpretable,	 and	 provide	 a	 meaningful	
reference	 point	 to	 specify	 angular	 relationships	 among	 brain	 pattern	 vectors.	
More	precisely,	while	 in	 the	context	of	 fMRI	 the	estimated	baseline	value	 itself	
may	prove	hard	or	even	 impossible	 to	 interpret,	 the	direction	of	 the	deviations	
from	the	estimated	baseline	evoked	by	an	experimental	manipulation	may	prove	
to	be	interpretable	in	neurobiological	terms—e.g.,	under	specific	conditions,	the	
direction	 of	 an	 activation	 pattern	may	 turn	 out	 to	 be	 uniquely	 informative	 re-
garding	the	form-of-tuning	of	indirectly	sampled	neural	populations21,25,26.	Under	
this	analysis,	what	matters	would	be	not	so	much	the	precise	location	of	the	end-
point	of	a	pattern	vector	in	multidimensional	space,	but	how	it	is	that	this	point	
actually	got	there	in	the	first	place.	
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In	the	context	of	standard	GLM	analyses	of	fMRI	experiments,	the	measured	sig-
nal	 levels	associated	with	each	condition	are	usually	modeled	as	activations	or	
deactivations	with	respect	to	an	implicitly	estimated	baseline	 level,	resulting	 in	
positive	 or	 negative	 weights	 (parameter	 estimates,	 or	 regression	 coefficients)	
associated	with	each	experimental	condition.	Positive	modulations	with	respect	
to	baseline	are	probably	the	most	straightforwardly	interpretable	effects,	while	
negative	 modulations	 may	 require	 further	 qualifications—reviewed	 by	 Logo-
thetis50.	 Surely,	 an	estimated	baseline	 level	 could	on	different	occasions	 reflect	
physically	 and	 cognitively	distinguishable	 states.	This	 implies	 that	 the	baseline	
state,	as	estimated	by	the	standard	GLM	approach,	will	on	occasions	fail	 to	dis-
tinguish	meaningful	brain	states.	However,	this	approach	seems	suited	to	model	
event-related	modulations	 in	 the	 activity	 levels	 of	 neural	 populations	 tuned	 to	
specific	 stimulus	 features.	 In	my	view,	 it	has	 the	 further	advantage	of	 avoiding	
haphazard	 changes	 in	 the	 estimated	 angular	 relationships	 among	 pattern	 vec-
tors.	

It	has	been	argued	that	the	practice	of	data	demeaning	is	motivated	by	the	inten-
tion	to	remove	from	a	set	of	response	patterns	a	presumed	shared	component48.	
It	is	key	to	realize	that	computing	the	mean	across	conditions	neither	generally	
nor	 adequately	 estimates	 such	 putative	 common	 component.	 First,	 it	 must	 be	
underscored	that	the	concept	that	such	common	component	even	exists	is	usual-
ly	nothing	more	than	an	assumption.	Second,	even	if	such	a	common	component	
did	actually	exist,	it	could	in	principle	(if	not	in	practice)	lie	in	any	direction,	and	
exhibit	any	amplitude.	Third,	 it	 is	often	unclear	what	exactly	researchers	mean	
when	they	speak	about	such	“common	component”.	 If	by	this	 they	mean	that	a	
population	of	neurons	exists	in	a	particular	brain	area	that	identically	responds	
to	 all	 experimental	 conditions,	 then,	 there	 is	 no	 a	 priori	 reason	 to	 expect	 that	
their	associated	pattern	component	should	necessarily	lie	on	the	location	of	the	
cocktail	 mean.	 Therefore,	 unless	 a	 plausible	 justification	 can	 be	 provided	 ex-
plaining	why	the	cocktail	mean	should	accurately	estimate	a	presumed	common	
component	 (if	 it	 exists)	 this	practice	 should	not	be	uncritically	 accepted	 in	 the	
context	of	MVPA	analyses	sensitive	to	angular	relationships	among	pattern	vec-
tors,	 including	 RSA.	 Nonetheless,	 it	 is	 also	 important	 to	 understand	 that	 if	 a	
common	component	were	present	in	the	data,	and	our	analyses	failed	to	account	
for	its	influence,	inferences	regarding	neural	coding	based	on	the	RSA	methodol-
ogy	 could	 also	 fail,	 and	 hence	 also	 lead	 to	 representational	 confusion.	 This	
realization	serves	to	highlight	the	 importance	of	recent	efforts	to	subsume	RSA	
within	 a	 more	 general	 framework	 also	 concerned	 with	 encoding	 and	 pattern-
component	models51.	Likewise,	it	serves	to	highlight	the	fact	that	if	the	influence	
of	 the	measurement	 process	 on	 the	 observed	 pattern	 dissimilarities	 is	 not	 ac-
counted	 for	 by	 such	 models21,25,26,52,	 they	 could	 also	 lead	 to	 representational	
confusion.	

In	conclusion,	I	hope	this	article	will	serve	as	an	invitation	to	reflect	on	implicit	
assumptions	 bearing	 on	 the	 interpretation	 of	 MVPA	 and	 RSA,	 and	 promote	
awareness	of	 the	 impact	of	data	demeaning	and	choice	of	representational	dis-
similarity	 measure	 on	 inferences	 regarding	 representational	 structure	 and	
neural	coding.	
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