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Abstract  

 

Despite recent therapeutic advances in the management of BRAFV600-mutant melanoma, there 

is still a compelling need for more effective treatments for patients who developed 

BRAF/NRAS wild type disease. Since the activity of single targeted agents is limited by 

innate and acquired resistance, we performed a high-throughput drug screen using 180 drug 

combinations to generate over 18,000 viability curves, with the aim of identifying agents that 

synergise to kill BRAF/NRAS wild type melanoma cells. From this screen we observed strong 

synergy between the tyrosine kinase inhibitor nilotinib and MEK inhibitors and validated this 

combination in an independent cell line collection. We found that AXL expression was 

associated with synergy to the nilotinib/MEK inhibitor combination, and that both drugs 

work in concert to suppress pERK. This finding was supported by genome-wide CRISPR 

screening which revealed that resistance mechanisms converge on regulators of the MAPK 

pathway. Finally, we validated the synergy of nilotinib/trametinib combination in vivo using 

patient-derived xenografts. Our results indicate that a nilotinib/MEK inhibitor combination 

may represent an effective therapy in BRAF/NRAS wild type melanoma patients. 

 

 

 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195354doi: bioRxiv preprint 

https://doi.org/10.1101/195354


 4

 

INTRODUCTION 

 

The development of targeted therapies has dramatically improved the treatment of 

BRAFV600E-mutant melanoma, with the combination of a BRAF and a MEK inhibitor 

achieving response rates of up to 68% and median progression-free survival of up to 12 

months1, 2. On the contrary, for BRAF/NRAS wild type (WT) melanoma, which represents 25-

30% of all melanoma cases3, 4, little progress has been made and there are currently no 

available targeted therapies. More recently, immunotherapies have revolutionized the 

treatment of melanoma with immune checkpoint inhibitors achieving response rates >60% 

and unprecedented long-term durable disease control, regardless of BRAF mutation status5, 6, 

7. Notwithstanding these advances, most melanoma patients are not cured by available 

therapies and second line treatments are required for patients who relapsed following 

immunotherapies. 

 

High-throughput drug screens of cancer cell lines represent an effective approach to identify 

candidate compounds with high activity in specific subtypes of human cancer8, 9. Given the 

compelling need for new targeted therapies for patients with BRAF/NRAS WT melanoma, 

and the lack of large numbers of deeply characterized cell line models for this subtype of the 

disease, we assembled a large collection of BRAF/NRAS WT melanoma cell lines and 

characterised them for mutations, copy number alterations, and for their gene and microRNA 

expression profiles. We then performed a high-throughput drug combination screen in 

theselines generating over 18,000 viability curves with 180 drug combinations. We 

subsequently investigated the mechanism of synergy of the lead combination and used 

genome-wide CRISPR screening to pre-emptively identify mechanisms of drug resistance. 

Finally, we validated the efficacy of the combination in vivo using patient-derived xenografts.  
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RESULTS 

 

Genomic and transcriptomic analysis of BRAF/NRAS wild type melanoma cell lines 

We assembled a collection of 22 human melanoma cell lines, including 20 BRAF/NRAS WT, 

one BRAFV600E-mutant and one NRASQ61R-mutant cell line (Supplementary Table 1) for 

screening. We catalogued somatic single nucleotide variants (SNV) in these lines by exome 

sequencing (Supplementary Table 2), copy number variation by use of SNP6 arrays 

(Supplementary Table 3), and gene and microRNA expression by RNA sequencing 

(Supplementary Table 4-5-6) (outlined in Fig. 1a). In agreement with the analysis of 

BRAF/NRAS WT human tumors from The Cancer Genome Atlas (TCGA) collection4, the 

BRAF/NRAS WT melanoma cell lines had a high mutational load (median 59.01 SNV/Mb, 

range 1.34-512.96; Supplementary Fig. 1a and Supplementary Table 2b) dominated by 

C>T mutations at dipyrimidines (Supplementary Fig. 1c-d, Supplementary Table 2c). NF1 

mutant cell lines displayed a significantly higher mutation frequency than cell lines without 

mutations in BRAF, NRAS or NF1 (P<0.0001; One way Anova and Tukey’s multiple 

comparison test), recapitulating the pattern described in tumors from the TCGA and Yale 

Melanoma Genome Projects3, 4 (Supplementary Fig. 1b, Supplementary Table 2b). To 

identify putative melanoma driver genes we ran IntOGen10 using SNV data from 74 TCGA 

BRAF/NRAS WT tumors4 and found 24 genes that were statistically significantly mutated 

(Supplementary Table 7a-b, see Methods). Similarly, we collated melanoma drivers in 

regions defined as recurrently amplified or deleted in 333 melanomas from the TCGA 

collection4 spanning all cutaneous melanoma subtypes (Supplementary Table 7c). All 24 

point mutated BRAF/NRAS WT melanoma drivers and 32 out of 39 driver genes in amplified 

or deleted regions were captured by somatic mutations/genomic alterations in at least one cell 

line in our collection (Supplementary Fig. 1e, Supplementary Table 3b). The mutation 

frequency of the 24 mutation drivers in our BRAF/NRAS WT cell line collection correlated 

with the frequency found in the aforementioned TCGA BRAF/NRAS WT tumors (Pearson 

correlation P<0.0001, R2 = 0.6198; Fig 1b and Supplementary Fig. 1f). Collectively, these 

data show that our cell line collection is representative of the major driver mutations found in 

BRAF/NRAS WT melanoma. 

 

Nilotinib synergizes with MEK inhibitors in BRAF/NRAS wild type melanoma cell lines 

Since our collection of BRAF/NRAS WT cell lines represents the largest of its kind we elected 

to perform a high-throughput drug combination screen with 60 library drugs, and three 
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anchor drugs [temozolomide (alkylating agent), nilotinib (tyrosine kinase inhibitor) and 

roscovitine (broad CDK inhibitor) (Supplementary Table 8)] to identify candidate drug 

combinations for clinical use. Anchors were selected because of their broad, yet distinct, 

modes of action thus allowing us to cover a wide pharmacological space. Anchor drugs were 

tested at two concentrations and combined with each of the 60 library drugs tested at five 

concentrations over a 256-fold concentration range. Cellular viability was measured six days 

after drug treatment and normalized against DMSO-treated controls. Overall, we tested 180 

drug combinations and generated 18,810 survival curves (three curves per cell line per 

combination, Supplementary Table 9). Survival curves were analyzed using the Area Under 

the Curve (AUC) method as described previously8 (Supplementary Fig. 1g). The viability of 

cell lines treated with the single library drug alone was generally higher than cell lines treated 

with drug combinations (average ± SEM of AUC is 0.8684 ± 0.001775 and 0.7925 ± 

0.002426 for library drugs and drug combinations, respectively; P<0.0001 by unpaired 

Student’s t-test) (Supplementary Fig. 1h-j). To prioritize the most effective drug 

combinations, we measured drug synergy as the difference between the AUC of the predicted 

additive effect11 and the AUC of the drug combination (delta AUC) (Supplementary Fig. 1g; 

see Methods). With a threshold of delta AUC>0.2 (selected to represent the top 1.5% of 

6270 delta AUCs, see Methods), we identified 94 occurrences of synergy from 53 drug 

combinations (Fig. 1c, Supplementary Table 9d). Most combinations showed synergy in a 

single cell line; six combinations displayed synergy in 3 or more cell lines, 3.3% (6/180) of 

all combinations tested (Fig. 1d and Supplementary Table 9e).  

 

We triaged these combinations as follows. Firstly, we assayed the synergy observed in the 

high-throughput screen in the three cell lines with the highest delta AUC using a low-

throughput viability assay (see Methods). We focused on the five drug combinations with the 

highest average delta AUC where synergy was observed in three or more cell lines (Fig. 1d 

and Supplementary Table 9e). Dose response curves were performed in triplicates using the 

same 256-fold doses range used in the high-throughput screen. In this way, we confirmed 

synergy between temozolomide and olaparib (PARP inhibitor) and between nilotinib and PD-

0325901 (MEK inhibitor) (Fig. 2a, Supplementary Table 10a, see Methods for delta AUC 

threshold). Testing of the three combinations just below the defined threshold (delta AUC 

>0.2 in two cell lines only, see Methods) did not support the results of the high-throughput 

screen (Supplementary Table 10a). 
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We next repeated the low-throughput viability assays on 21 of the previously screened cell 

lines (including 19 BRAF/NRAS WT, one BRAFV600E-mutant and one NRASQ61R-mutant cell 

lines, see Supplementary Table 1) using the drug combinations temozolomide with 

olaparib, nilotinib with PD-0325901 and nilotinib with trametinib (a second MEK inhibitor in 

clinical use12). The synergies between temozolomide and olaparib and between nilotinib and 

both MEK inhibitors were confirmed in 12 and 4 out of 19 BRAF/NRAS WT cell lines, 

respectively (Fig. 2a, Supplementary Table 10b and Supplementary Table 11, delta 

AUC>0.1, see Methods for synergy thresholds). Intriguingly, synergy was also observed in 

an NRAS mutant line analyzed in parallel. We further confirmed the potency of these drug 

combinations by performing clonogenic assays (Fig. 2b and Supplementary Fig. 2a).  

 

Given the limited activity of alkylating agents combined with PARP inhibitors in clinical 

trials13, 14, we focussed on the nilotinib/trametinib combination for testing in a second 

independent collection of 19 melanoma cell lines, including 10 BRAFV600-mutant, 4 NRASQ61-

mutant and 5 BRAF/NRAS WT lines (Supplementary Table 1b). We observed synergy 

(delta AUC>0.1, see Methods for synergy threshold) in 10 out of 19 cell lines 

(Supplementary Table 10c). Synergies were confirmed in clonogenic assays 

(Supplementary Fig. 2b). Overall, we tested the nilotinib/trametinib combination in two 

collections of melanoma cell lines and found that it was synergistic in 17 out of 40 lines 

(42.5%, Fig. 2c), including 6/24 BRAF/NRAS WT cell lines. In 26 out of 40 (65%) melanoma 

cell lines we observed high activity of the drug combination (AUC<0.4, see Methods) as a 

result of synergy, additivity and single agent activity (Fig. 2d). 

 

AXL expression is associated with synergy between nilotinib and MEK inhibitors in 

BRAF/NRAS wild type melanoma 

To identify markers that predict synergy between nilotinib and MEK inhibitors, we looked 

for an association between the drug synergy score (delta AUC), coding mutations, copy 

number alterations and/or gene/microRNA expression (see Methods). To reduce multiple 

testing, we considered only lesions that were previously characterized as cancer drivers 

(Supplementary Table 12a) following an approach described previously8. We classified 

each lesion as a gain-of-function or loss-of-function alteration partitioning them into 

functional groups (see Methods) but did not identify any statistically significant gene/drug 

associations in this way (Supplementary Table 13a). We then extended our analysis to all 

lesions in melanoma drivers (Supplementary Table 12b), but again no associations were 
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found (Supplementary Table 13b). Analysis of differentially expressed microRNAs 

(Supplementary Table 5b-c, see Methods) also did not find significant associations 

(Supplementary Table 13c). 

We then looked for pathways differentially expressed between cell lines that showed synergy 

(sensitive) or no synergy (non-sensitive) to nilotinib combined with both MEK inhibitors (see 

Methods for cell line classification into sensitive and non-sensitive and Supplementary 

Table 10b). The sensitive cell lines displayed higher levels of cell cycle genes and lower 

levels of genes associated with pigmentation (Supplementary Fig. 3a-b and Supplementary 

Table 14a-c, see Methods). This gene expression pattern was observed in ~30% of tumors 

from two melanoma cohorts and was more frequent in tumors classified as “Proliferative” by 

the Jonsson’s gene expression classifier15 (Supplementary Fig. 3c-d). We next looked for 

genes expressed (FPKM>1 by RNA Sequencing) exclusively in the sensitive cell lines and 

found 4 transcripts, among which AXL displayed the highest differential expression (314.28-

fold change in sensitive vs non-sensitive; Supplementary Table 14d). We considered this 

finding an interesting connection, because we and others have previously shown that AXL is 

involved in resistance to targeted therapies in melanoma16, 17. Therefore, we further 

investigated its association with the response to nilotinib/trametinib treatment. We confirmed 

the previously described inverse correlation between AXL and MITF RNA expression17 in our 

BRAF/NRAS WT cell lines (P= 0.0013, R2 = 0.4842, by Pearson correlation; Supplementary 

Fig. 3e and Supplementary Table 15a) and found that AXL expression levels were 

significantly higher in sensitive cell lines compared to non-sensitive cell lines (P=0.0117 by 

unpaired Student’s t-test, Supplementary Fig. 3f-g and Supplementary Table 15a), as 

expected. We next measured protein expression in sensitive cell lines and representative non-

sensitive cell lines revealing that all BRAF/NRAS WT sensitive cell lines in our collection 

expressed AXL, whereas it was undetectable in non-sensitive lines (Fig. 3a, Supplementary 

Fig. 3h). Extending the analysis to the BRAF/NRAS WT non-sensitive cell lines of the second 

collection, we found that 4/5 non-sensitive cell lines were AXLneg, with only 1/5 non-

sensitive cell line expressing AXL protein (Supplementary Fig. 3i). Overall, AXLpos cell 

lines were significantly enriched for the occurrence of synergy between nilotinib and 

trametinib (P = 0.007 by two tailed Fisher’s exact test, Supplementary Table 15c). 

Remarkably, although AXL expressing cell lines displayed higher synergy for the 

nilotinib/trametinib combination, they showed higher resistance to MEK inhibitors alone 

(Supplementary Fig. 3j), in agreement with previous studies16, 17. Notably, we did not 
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observe a clear association between AXL expression and synergy in BRAFV600 or NRASQ61-

mutant cell lines (Supplementary Table 15b and Supplementary Fig. 3h).  

We then investigated the effect of the perturbation of AXL expression on nilotinib/trametinib 

synergy in BRAF/NRAS WT melanoma cell lines. We first confirmed that infection with 

lentiviral vector expressing AXL cDNA or short hairpin RNA targeting AXL induced up and 

downregulation of AXL protein, respectively (Supplementary Fig. 3k). The overexpression 

of AXL did not affect nilotinib/trametinib synergy in non-sensitive cell lines 

(Supplementary Fig. 3l-m and Supplementary Table 16). Conversely we found that AXL 

knockdown reduced, but did not fully abrogate, the effect of nilotinib/trametinib in sensitive 

cell lines (P = 0.084 and P = 0.025 in C077 and MeWo cell lines, respectively 

Supplementary Fig. 3l-m and Supplementary Table 16). This result is in keeping with the 

view that AXL expression is associated with a transcriptional cell state involved in drug 

resistance rather than being the only functional regulator of resistance per se16, 17. 

 

The synergy between nilotinib and trametinib is associated with increased pERK 

repression 

To further dissect the mechanism of the observed synergy, we performed a high-throughput 

proteome and phosphoproteome analysis of representative sensitive (C077) and non-sensitive 

(C025) BRAF/NRAS WT cell lines treated with trametinib, nilotinib or the 

nilotinib/trametinib combination (Supplementary Fig. 3n, see Methods). These data were 

used to assess the effects of drug treatment on the protein phosphorylation landscape. Among 

the 9657 detected phospho-peptides (see Methods), we found 1753 phospho-sites that were 

significantly altered with either trametinib, nilotinib or the trametinib/nilotinib combination 

(Supplementary Table 17a). Intriguingly nilotinib did not decrease the phosphorylation of 

any of its known targets18, but instead induced the upregulation of pRAF1 and pERK1 

(Supplementary Table 17b-c). Indeed, a closer analysis of pERK1/2 levels showed that 

nilotinib induced pERK in both cell lines (Supplementary Fig. 3o and Supplementary 

Table 17b-c), a phenomenon potentially explained by its activity as a mild RAF inhibitor that 

stimulates RAFs and MEKs activity inducing paradoxical ERK activation19, 20. Conversely, 

the combination of trametinib and nilotinib induced repression of pERK in the sensitive cell 

line but not in the non-sensitive cell line (Supplementary Fig. 3o and Supplementary Table 

17b-c). These results from phosphoproteomics were validated in 6 sensitive and 4 non-

sensitive cell lines by Western blotting where sensitive cell lines treated with the combination 

displayed a reduction of pERK that was significantly more pronounced when compared to 
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non-sensitive cell lines (P=0.0154 and P=0.0069 vs vehicle-treated or trametinib-treated, 

respectively; unpaired Student’s t-test) (Fig. 3b-d and Supplementary Fig. 3p). Total ERK 

did not change (Supplementary Fig. 3q). Our results showed that trametinib and nilotinib 

work synergistically to silence pERK and suppress melanoma cell growth. 

 

Resistance to nilotinib/trametinib occurs via regulators of MAPK signalling 

While combinatorial treatment allows for more durable clinical responses to therapy1, 2, 

eventually the emergence of resistance can cause cancer relapse in most patients21. Therefore, 

we decided to investigate the molecular mechanisms that might mediate resistance to the 

nilotinib/trametinib combination by use of CRISPR/Cas9 screens. We generated three Cas9 

expressing cell lines (CHL-1, C077 and MeWo), which were selected because they displayed 

sensitivity to the nilotinib and trametinib combination, and transduced them with a genome-

wide sgRNA library22. Cells were cultured for 18 days in trametinib, nilotinib/trametinib, or 

DMSO vehicle (Supplementary Fig. 4a-d, see Methods). We observed only limited overlap 

of genes whose loss conferred resistance to the nilotinib/trametinib combination among the 

three cell lines (Fig. 4a, Supplementary Fig. 4e and Supplementary Table 18-20, see 

Methods). We also found limited overlap among genes conferring resistance to trametinib 

(Supplementary Fig. 4f-g, Supplementary Tables 19-20). This suggests that many different 

genes are potentially operative in mediating resistance and interact with the different genetic 

backgrounds of each cell line. 

 

Given the heterogeneity of the observed mechanisms of resistance, we focussed on the genes 

that conferred drug resistance in at least two of the three cell lines. Interestingly, we observed 

that many combination resistance genes interact (P=1.57 10-9 by STRING23) and that these 

genes are significantly enriched for members of the SAGA-type complex, estrogen receptor 

beta network and chromatin regulators (Fig. 4c, Supplementary Table 21a). In line with the 

converging inhibitory activity on the MAPK-ERK axis, we observed a large overlap between 

nilotinib/trametinib resistance genes and trametinib-only resistance genes (Fig. 4b). 

Accordingly, 7/18 nilotinib/trametinib resistance genes have previously been identified as 

vemurafenib (BRAF inhibitor) resistance genes, while 9/18 genes have previously been 

identified as selumetinib (MEK inhibitor) resistance genes24, 25 (Fig. 4c, Supplementary Fig. 

4h and Supplementary Table 18k). Notably, fewer genes (18 vs 29) appeared to confer 

resistance to the combination compared to trametinib alone (Fig. 4b), suggesting that the 

combination may overcome some mechanisms of resistance observed with trametinib alone.  
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Nilotinib and trametinib synergise in vivo in two BRAF/NRAS wild type melanoma 

models 

We next tested the nilotinib/trametinib combination in vivo. Firstly, we inoculated NOD.Cg-

Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice with the sensitive cell line MeWo and after tumor 

establishment we treated these mice with vehicle, trametinib, nilotinib or the 

nilotinib/trametinib combination by gavage (n=5 mice, n=10 tumors per each of the four 

treatment groups, see Methods). The combination induced a significant reduction of tumor 

growth compared to vehicle, nilotinib only and trametinib only treatments (P value = 0.0004, 

0.0005, 0.004, respectively by unpaired Student’s t-test at the last time point, Fig. 5a). To 

validate the drug combination in a model that more closely represents human tumors26, 27, we 

interrogated a collection of BRAF/NRAS WT melanoma patient derived xenografts (PDX)28 

for expression of AXL and MITF (Fig. 5b). Since AXLpos cell lines are enriched for synergy 

between nilotinib and trametinib (Fig. 3a and Supplementary Table 15c), we selected the 

PDX line M003 which expressed the highest level of AXL for in vivo studies (Fig. 5-c). In the 

in vivo experiments (performed as described above for MeWo), nilotinib induced a mild 

reduction of tumor growth, trametinib induced a more pronounced tumor growth reduction 

and the combination induced partial regression, with a reduction in tumor volume that was 

maintained for the duration of the experiment (39 days of treatment; P<0.0001 for 

combination treated mice vs the three other groups by unpaired Student’s t-test at the last 

common time point; Fig. 5d). Analyses of representative tumors (n=4) at the experimental 

endpoint confirmed that the drug combination induced a significant reduction of p-ERK (Fig. 

5e), as previously observed in cell lines (Fig. 3c-d), and caused an alteration of the tumor 

cellular morphology (Fig. 5f). These results confirmed the synergy between nilotinib and 

trametinib in two in vivo models of BRAF/NRAS WT melanoma. 
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DISCUSSION 

 

We assembled a collection of BRAF/NRAS WT melanoma cell lines and deeply characterized 

them to catalogue SNVs, CNVs, gene and microRNA expression, and their growth in 

response to 180 drug combinations. We show that our collection is representative of the 

mutations carried by BRAF/NRAS WT melanoma tumors (Figure 1b and Supplementary 

Fig. 1a-f) and thus represents a publicly available resource for hypothesis testing and model 

choice for BRAF/NRAS WT melanoma, which has been less widely studied when compared 

to BRAF- and NRAS- mutant disease. Analysis of the aforementioned high-throughput drug 

screen data revealed that synergy between anti-cancer drugs is rare, and in many cases private 

to a specific cell line. By applying a stringent and multi-step validation approach, we 

confirmed robust synergistic interactions between temozolomide and olaparib, and also a 

combination of nilotinib and MEK inhibitors. Since the combination of alkylating agents and 

PARP inhibitors has failed to elicit clinical benefit in melanoma clinical trials13, 14, 29, we 

focussed our efforts on the nilotinib/trametinib combination. Notably, nilotinib and trametinib 

are approved for the treatment of leukemia and melanoma, respectively12, and we detected 

synergy at concentrations far below the peak of plasma concentration achieved in patients12, 

30, 31. Additionally, our results in mouse models show that the nilotinib/trametinib 

combination can be tolerated in vivo with a regimen that induced regression in a PDX model 

of BRAF/NRAS WT human melanoma. 

 

In sum, the nilotinib/trametinib combination showed synergy (AUC>0.1) in 42.5% (17/40) of 

all melanoma cell lines including 6/24 BRAF/NRAS wild type lines. Further, we also 

observed strong activity of the drug combination (AUC <0.4) in 65% (26 out of 40) of lines, 

including 62.5% (15 out of 24) of our BRAF/NRAS WT lines. Collectively, this effect on 

melanoma cell growth is the result of high single agent activity, additivity, and synergy and 

suggests that the combination could benefit a broad range of patients. 

 

Notably, we did not identify a biomarker linked to drug synergy from the genomic data but 

discovered that AXL expression was associated with synergy between nilotinib and 

trametinib in BRAF/NRAS WT cell lines. AXL expression was frequently found in 

BRAF/NRAS WT PDX (five out of six, Fig. 5b) and is reported in a significant fraction of 

melanomas17, 32, thus suggesting that a sizeable fraction of patients with BRAF/NRAS WT 

melanoma may benefit from the nilotinib/trametinib combination. Previous studies have 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195354doi: bioRxiv preprint 

https://doi.org/10.1101/195354


 13

suggested that AXL expression is associated with a phenotype switch of melanoma cells 

towards a transcriptional status associated with drug resistance16, 17. In agreement, we 

observed that BRAF/NRAS WT AXLpos cell lines display resistance to MEK inhibitors alone, 

yet display sensitivity to the nilotinib/trametinib combination. Interestingly, despite the 

overexpression or knockdown of AXL was not sufficient to revert the sensitive/non-sensitive 

status, in agreement with previous findings16, we observed that AXL knockdown reduced the 

synergy between nilotinib and trametinib. Overall, our and previous studies suggest a 

complex involvement of AXL in drug sensitivity, with  AXL basal expression indicative of a 

cancer transcriptional status associated with differential drug sensitivity, rather than the 

exclusive determinant of the phenotype itself16, 17.   

Given the promising results obtained by combining targeted and immune therapy33, 34, 35, we 

also envision the possible use of the nilotinib/trametinib combination with immune 

checkpoint inhibitors to improve patient outcome and disease control, or as a second line 

treatments following relapse after immune checkpoint therapy. Notably, the 

nilotinib/trametinib combination did not induce PD-L1 in BRAF/NRAS WT melanomas 

(n=4), suggesting that the treatment does not provoke an immune-suppressive phenotype 

(Supplementary Fig. 5) and might be compatible with immune-checkpoint blockade.  

 

We undertook an unbiased high-throughput phosphoproteome approach to shed light on 

potential mechanisms of synergy between nilotinib and trametinib. Mechanistically we 

revealed that the synergy is due to the potent reduction of ERK phosphorylation. Since our 

and previous findings indicate that nilotinib inhibits RAFs19, 20, and trametinib is a well-

established MEK1/2 inhibitor, our results suggest that the 2 drugs synergise by  blunting 

ERK activation. This potent pERK inhibition was confirmed in vivo in a PDX model and 

further supported by the CRISPR/Cas9 screening in sensitive lines which revealed that 

nilotinib/trametinib resistance can be mediated by the same genes responsible for resistance 

to other MAPK pathway inhibitors24, 25.  

 

Among the common nilotinib/trametinib resistance genes, we found 7 previously identified 

vemurafenib resistance genes24, including members of the SAGA complexes, MED12 and 

NF2, and also regulators of the estrogen beta pathway which have anti-proliferative activity 

in melanoma36, 37. Some of these genes are mutated in a fraction of melanomas (see 

Supplementary Fig 4i), thus representing putative prospective markers of response. 

Remarkably, we detected that fewer genes upon loss confer resistance to the 
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nilotinib/trametinib combination compared to trametinib alone (18 vs 29, Fig 4b), suggesting 

that the combination is protective from some molecular mechanisms of trametinib resistance. 

 

In summary, we performed high-throughput drug screenings in melanoma cell lines and 

found that the combination of nilotinib with trametinib was synergistic in BRAF/NRAS WT 

melanoma in vitro and in vivo. Our results provide a rationale for the clinical development of 

the nilotinib/trametinib combination. 
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FIGURE LEGENDS 

 

Figure 1. High-throughput drug screening of melanoma cell lines 

a) Outline of data generated for the collection of 22 melanoma cell lines (see Methods). b) 

Correlation between the frequency of mutation in BRAF/NRAS WT melanoma drivers in the 

20 BRAF/NRAS WT cell lines of our collection (X axis) and in 74 BRAF/NRAS WT tumors 

from the TCGA cohort4 (Y axis). P value, R2 and r by Pearson correlation. c) Delta AUC (Y 

axis, see Methods) of the library drugs combined with the different concentrations of the 

anchor drugs (X axis). Each dot represents the delta AUC of a drug combination in a cell line; 

the black line shows the mean, the dashed line the 0.2 delta AUC value. d) Number of 

combination that achieved a delta AUC>0.2 (Y axis) in recurrent (X axis) cell lines.  

See also Supplementary Fig. 1 and Supplementary Tables 1-9. 

 

Figure 2. Confirmation of the synergy between nilotinib and MEK inhibitors in 

BRAF/NRAS WT melanoma 

a) Survival curves of two representative cell lines treated with temozolomide plus olaparib 

(top panels, representative of two independent experiments), nilotinib plus PD-0325901 

(middle panel, representative of three independent experiments) and nilotinib plus trametinib 

(bottom panel, representative of three independent experiments). The Y axis shows viability 

vs vehicle treated control, X axis the concentration (µM for olaparib, nM for PD-0325901 

and trametinib) of the library drug. The red line shows the viability of the cells treated with 

the library drug alone, the blue line the viability with the anchor drug alone, the yellow line 

the viability with the drug combination, the grey line the predicted additivity (see Methods). 

Each point is the average value of a technical triplicate. b) Clonogenic assays confirming the 

synergy between nilotinib and MEK inhibitors. The concentrations of the library and anchor 

drugs are indicated on the top or on the right, respectively. These assays are representative of 

a biological duplicate. c-d) Summary of the delta AUC (c) and AUC combination (d) values 

for nilotinib/trametinib combination in the two collections of cell lines. The dashed lines 

represent values of delta AUC=0.1 and AUC=0.4 (see Methods). Red symbols indicate cell 

lines with delta AUC>0.1. 

See also Supplementary Fig. 1-2 and Supplementary Tables 10-11. 

 

Figure 3. AXL expression and p-ERK downregulation are associated with the synergy 

between nilotinib and MEK inhibitors 
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a) Western blot (WB) for AXL and MITF expression in 5 sensitive and 4 non-sensitive cell 

lines. HSP90 is displayed below as loading control. b-c) Western blot for p-ERK in non-

sensitive (b) and sensitive (c) cell line upon treatment with DMSO vehicle, nilotinib (2µM), 

trametinib (1nM) or combination for 6h (see Methods). Beta tubulin (β-tubulin) loading 

control is displayed below the blot. The blot is representative of experiments conducted in 

biological triplicate. * indicates NRASQ61R-mutant, ^ indicates BRAFV600E-mutant cell lines. d) 

Level of p-ERK quantified by WB in sensitive and non-sensitive cell lines. Each cell line was 

assayed in 3 independent experiments. For each experiment, the levels of p-ERK were 

normalized for the loading control, then the average per line was calculated among the 3 

experiments (each point in the dot plots). The dot plot shows the average and the standard 

error mean of the group (sensitive/non-sensitive cell lines). Significance is calculated by 

unpaired Student’s t-test. The analysis of the images was performed by an operator blinded to 

the sample identifiers. See also Supplementary Fig. 3 and Supplementary Tables 12-15. 

 

Figure 4. Identification of the mechanisms of drug resistance to the nilotinib/trametinib 

combination by CRISPR-Cas9 genome-wide library screening 

a) Venn diagram of genes conferring resistance to the drug combination in CHL-1, C077, 

MeWo cell lines; number of genes and % of total are indicated. We considered genes with 

FDR<0.1 (by MAGeCK, see Methods) in both replicates. b) Venn diagram of the genes 

conferring resistance to the nilotinib/trametinib combination or trametinib in 2 or more cell 

lines (criteria as in a). c) Network of protein-protein interaction for the genes conferring 

resistance to nilotinib/trametinib combination (criteria as in b). Blue lines indicate binding, 

black lines reaction, grey lines unspecified interaction; PPI enr is the protein-protein 

interaction enrichment P-value calculated by STRING (see Methods). The coloured circles 

highlight genes belonging to top enriched pathways (see Supplementary Table 19a). d) 

Log2 of the normalized sgRNA count (see Methods) for each gRNA in vehicle treated (X 

axis) and drug combination treated (Y axis) CHL-1 cells after 18 days of treatment. The 

different sgRNAs targeting each of the top 10 enriched genes are color coded as detailed in 

the legend.  

See also Supplementary Fig. 4 and Supplementary Tables 18-21. 

 

Figure 5. The combination of nilotinib plus trametinib is synergistic in two in vivo 

models 
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a) Volume (Y axis) of tumors from MeWo cell line inoculated in NOD.Cg-Prkdcscid 

Il2rgtm1Wjl/SzJ (NSG) mice upon treatment with vehicle (green), nilotinib 75mg/kg/day 

(blue), trametinib 0.1mg/kg/day (red) or their combination (yellow) (n=10 tumors/group, see 

Methods). The graph shows the mean and the standard error mean. The vertical dashed red 

line highlights the start of the treatment. P-value calculated by unpaired Student’s t-test on 

the last time point; *P<0.05, **P<0.01, ****P<0.0001. b) Western blot for AXL, MITF and 

vinculin loading control in a collection of BRAF/NRAS WT melanoma PDX. c) 

Quantification of AXL RNA expression by Q-PCR in BRAF/NRAS WT PDX. d) Volume (Y 

axis) of tumors from M003.X2 PDX inoculated in NSG mice upon treatment with vehicle 

(green), nilotinib 75mg/kg/day (blue), trametinib 0.3mg/kg/day (red) or their combination 

(yellow). Graph as in a). P-value calculated by unpaired Student’s t-test at 51 days, the last 

time point when all the 4 experimental cohorts were viable; ****P<0.0001. The suffix .X1-

.X2 indicates the passage number of the PDX line. e) Top panel: western blot for p-ERK, 

total ERK and vinculin loading control in 4 representative M003.X2 tumors per group of 

treatment (indicated above the plots) collected at the experimental endpoint. Bottom panel: 

quantification in p-ERK levels (Y axis, normalized for total ERK) from the western blot 

displayed above. Box plot extends from the 25th to 75th percentiles, whiskers from min to 

max, the middle line indicates the median. P-value by one way Anova and Tukey's multiple 

comparisons test; *P<0.05, **P<0.01 f) Representative hematoxylin and eosin stained 

section of a tumor per each treatment group collected at the experimental endpoint. Scale bar 

=100µm, the bottom left corner displays a higher magnification. 
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Methods 
 
Cell line 
The origin of the melanoma cell lines and the culture medium used to grow them is detailed 
in Supplementary Table 1b. Media was supplemented with 10% Fetal Bovine Serum, 
Penicillin (100U/ml), Streptomycin (100U/ml) and L-glutamine (292µg/ml) from Gibco. All 
cell lines were maintained at 37°C and 5% CO2 and were tested and found negative for 
mycoplasma contamination. Cell line identity was confirmed by STR profiling. The 
nomenclature of PDX lines (and derived samples) include suffixes; indicating the in vivo 
passage number, as described previously27. 
 
Catologue of somatic variants in cell lines 
Whole exome sequencing (WES) was performed on 21 melanoma cell lines and the available 
matched germline (see Supplementary Table 2b). DNA libraries were prepared from 
genomic DNA, exonic regions were captured with the Agilent SureSelect Target Enrichment 
System, 50 Mb Human All Exon kit or with baits from the Illumina’s TruSeq Exome kit. For 
C037 whole-genome sequencing (WGS) was performed: libraries were prepared using the 
standard Illumina library preparation protocol. Paired-end reads of between 70 and 100 bp 
were generated on the HiSeq 2000 Illumina platform. 
WES reads were aligned to the reference genome GRCh37 using the Burrows-Wheeler 
Aligner software (version 0.7.5a-r406)38. MuTect (v1.1.4)39, with default parameters, was 
used to identify somatic point mutations from read alignments by comparing cell lines with 
matched germlines. For MeWo, Colo-792, CHL-1, M002.X1.CL, D10 lines without a normal 
germline reference, we used WGS data from C037 germline as reference. The effects of 
mutations on protein sequences was predicted using the Variant Effect Predictor40 and gene 
models from Ensembl release 7541. Each mutation was also annotated with data from the 
ExAC database (ExAC allele frequency from version 0.3)40, and the COSMIC database 
(mutation ID and number of human tumor samples in COSMIC carrying that mutation, 
database version 71)42. To reduce the number of false somatic mutations in cell lines without 
matched germline, we removed: 1) single nucleotide variants reported by SAMtools mpileup 
against the human reference genome (GRCh37) in any of the 16 germline samples in our 
collection; 2) all the mutations with an ExAC allele frequency >0.5%. 
We considered all the mutations in splice sites or coding regions and used the Variant Effect 
Predictor annotation to define missense and loss of function (LOF) mutations according to 
the following table: 
 

VEP annotation Binary classification 
missense_variant MISSENSE 

stop_gained LOF 

missense_variant&splice_region_variant MISSENSE 

stop_gained&splice_region_variant LOF 

initiator_codon_variant MISSENSE 
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splice_acceptor_variant LOF 

splice_donor_variant LOF 

stop_lost MISSENSE 

initiator_codon_variant&splice_region_variant MISSENSE 

stop_gained&initiator_codon_variant LOF 
 
These mutations were reported in Supplementary Table 2a and are the set of somatic 
mutations throughout the manuscript. 
The NRASQ61R mutation in D38s was identified from the RNA Sequencing data (see 
“Mutation validation with RNA-seq”) and validated by Sanger sequencing. 
To compare data between bait sets used for WES and also WGS, we considered only the 
mutations within the overlap between Agilent SureSelect Target Enrichment System 50 Mb 
Human All Exon kit and Illumina’s TruSeq Exome kit. These mutations were used to 
compile the plots in Supplementary Figure 1a-d and Supplementary Table 2b-c. 
The mutations of the cell lines from the Sanger Institute Cancer Cell Line Panel have been 
described previously8. The BRAF and NRAS status of the cell lines from the Herlyn’s lab 
collection have been described previously (https://www.wistar.org/lab/meenhard-herlyn-
dvm-dsc/page/melanoma-cell-lines-0). 
According to the criteria defined by TCGA for human tumors4, we defined as BRAF/NRAS 
wild type melanoma lines that do not carry any mutations at these amino acid positions: 
BRAFV600, BRAFV601, NRASG12, NRASG13, NRASQ61. None of our cell lines carry any 
mutation in HRAS or KRAS. We classified as NF1 mutant the BRAF/NRAS wild type 
melanoma cell lines carrying any non-synonymous mutation in the NF1 gene (NF1m), and 
the others as triple wild type (TWT). 
 
Mutation validation with RNA-seq 
RNA-sequencing reads (see “Gene expression analysis by RNA sequencing”) from 
melanoma cell lines were aligned to the reference genome GRCh37 using the STAR aligner 
(version 2.5.0)43. A 2-pass STAR alignment was performed, and BAM files from replicates 
were merged. PCR duplicates were flagged using Picard (version 1.135; 
http://broadinstitute.github.io/picard/) and base quality score recalibration (BQSR) performed 
using the Genome Analysis Toolkit (GATK; version 3.5)44 prior to running the GATK 
HaplotypeCaller. Sites covered with a minimum of 20 reads were considered for comparison 
with mutations called from WES. We only considered missense mutations since LOF 
mutations would likely be associated with unstable mRNA thus leading to an 
underrepresentation over the wild type allele in the RNA-Seq reads. Most of the cell lines 
displayed a very high concordance between RNA-seq and exome mutation calls (median 
92.5%). Overall, we validated by RNA-seq 15,290 mutations, corresponding to 91.95 of the 
mutation covered by RNA-seq reads. 
 
Analysis of copy number variation 
Genome wide copy number was determined using the Affymetrix Genome-Wide Human 
SNP Array 6.0. Data analysis was performed with PICNIC45. The copy number information 
for each gene is presented as (Supplementary Table 3a): maximum and minimum copy 
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number (of any genomic segment containing coding sequence of the gene); zygosity (scored 
‘0’, ‘L’ or ‘H’ if any genomic segment is homozygously deleted, has loss of heterozygosity 
or the whole region is heterozygous, respectively) and disruption status (D, if the gene resides 
on more than one genomic segment). 
 
Gene expression analysis by RNA sequencing 
The 22 cell lines used for the high-throughput drug screen were grown in biological triplicate 
(>3 independent passages among replicates, named A-B-C in Supplementary Table 4) and 
collected at 60-80% confluence. Total RNA, including small RNA, was extracted with the 
microRNAeasy mini kit (Qiagen). We prepared 2µg of RNA for each sample which was 
spiked with ERCCv92 Mix 1 (Ambion, Thermo Fisher) to measure the dynamic range of 
detection. Stranded RNA-Sequencing libraries were prepared with the standard Illumina 
cDNA protocol with a library fragment size between 200 and 300bp. Three multiplexed 
libraries were prepared each with 22 samples and containing a biological replicate for each 
cell line. For each sample we obtained ~ 55 10^6 paired end reads of 100bp on the 
HiSeq2000 platform. 
The RNA sequencing reads were mapped against the human genome (GRCh37d5) using 
Tophat246 (v2.0.10) and an annotation file containing ENSEMBL v75 with the following 
parameters (--library-type fr-firststrand -g 1 -G). Subsequently, read pairs were counted using 
htseq-count from HTSeq47, based on the ENSEMBL v75 annotation (Parameters; -m 
intersection-nonempty -a 10 -i gene_id -s reverse). Using the counts obtained and the average 
transcript length per gene, we calculated the number of Fragments Per Kilobase per Million 
reads mapped (FPKM) per gene to assess expression (Supplementary Table 4a). RNA-seq 
data from cell-lines C022 and D35 were too low quality to reliably assess gene expression 
hence, they were not considered for any further analyses.  
 
Definition of the differentially expressed genes between sensitive and non-sensitive cell 
lines 
We compared the gene expression of cell lines sensitive to nilotinib/trametinib combination 
with the gene expression of cell lines non-sensitive to the combination (5 vs 6 cell line with 
RNASeqd data available, see “Definition of the delta AUC threshold for synergy” for 
definition). The statistical approach took as input the RNA sequencing reads data from the 
biological triplicate of each cell line through the following steps. Firstly we considered only 
those genes that are expressed with FPKM>1 in >2 cell lines of the collection. Then Voom48 
was used to normalize the read counts for the library size, log-transform the read counts such 
that the distribution becomes Gaussian-like and estimate precision weights to account for 
variation in precision between observations48484848515151515151. Limma’s49 
duplicateCorrelation() function was used to incorporate the information from replicates using 
a mixed modelling framework. Voom was used both before and after duplicateCorrelation(), 
to normalize the input and to take into account the replicates in the normalization, 
respectively. Finally, Limma was used to identify differentially expressed genes. We 
considered as differentially expressed those genes that had a False Discovery Rate (FDR) 
corrected P-value <0.05 and fold change >2 or <0.5. 
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Interrogation of the genes differentially expressed in sensitive and non-sensitive cell line 
in human tumor transcriptome data 
The genes differentially expressed between sensitive and non-sensitive cell lines were used to 
probe the transcriptome of melanoma tumors from TCGA and Leeds Melanoma Cohort 
(LMC)50 using the nearest centroid method15, 50. We averaged the 320 genes of the synergy 
signature within each cell type class (sensitive and non-sensitive), creating a ‘synergy’ and a 
‘non-synergy’ centroid vector, each gene having been standardised (mean 0 and variance 1) 
beforehand. To classify each tumor as synergy-like or non-synergy-like, its standardised 
expression values (mean 0 and variance 1) were correlated with each centroid. Then the 
tumors was assigned to the group showing the highest correlation, with at least a difference of 
0.1 in Spearman correlation coefficients between the 2 groups. A tumor was deemed 
unclassified if the difference in correlation coefficients was lower than 0.1. A similar 
approach was used to classify tumors in one of the 4 molecular classes defined by the Jonsson 
et al. signature (proliferative, pigmentation, high-immune and normal-like15, 51). For this 
analysis, a tumor was deemed classifiable if its Spearman correlation coefficient with one of 
the 4 classes was greater than 0.1, with the highest correlation coefficient determining the 
Jonsson’s class to which the sample was allocated. 
 
Quantitative RT-PCR for AXL in PDX samples 
RNA from BRAF/NRAS WT PDX was isolated using Trizol, according to manufacturers’ 
protocol. cDNA was generated using the Maxima First Strand cDNA Synthesis Kit (Thermo) 
according to manufacturers’ protocol. Real-time PCR was performed using the following 
primers: 
HPRT-F:5’-CGGCTCCGTTATGGCG-3’; 
HPRT-R: 5’- GGTCATAACCTGGTTCATCATCAC-3’; 
AXL-F: 5‘-GGTGGCTGTGAAGACGATGA-3’; 
AXL-R: 5’- CTCAGATACTCCATGCCACT-3’; 
The SYBR-Hi ROX kit (Roche) was used according to manufacturers’ protocol with the Step 
One Plus Real Time PCR System (Applied Biosystems). AXL expression levels were 
normalized to the HPRT housekeeping control. 
 
MicroRNA expression analysis 
Libraries for microRNA sequencing were prepared from the RNA extracted as described 
above with the Illumina Small RNA library kit. For each sample we obtained ~ 9 10^6 single 
end reads of 50bp on the HiSeq2000 platform. The sequencing reads were mapped with 
Chimera52 and Blasted against microRNA precursor sequences obtained from the miRBase 
version 21 (http://www.mirbase.org/) database. Counts were normalised using DESeq253. To 
define up or downregulated microRNAs, we compared each cell line vs all the other cell lines 
within the collection and calculated statistical significance of the difference with Voom48. We 
considered significant those microRNAs with a Voom t-statistic value >10 or <-10, and with 
an absolute value of the log2 fold change >√2. If more than 50 microRNAs resulted, we 
selected only the top 50 microRNAs (by T value ranking). If fewer than 5 microRNAs 
resulted, we selected the top 5 regardless of the threshold criteria. 
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Definition of BRAF/NRAS WT melanoma drivers  
To identify cancer drivers specific for BRAF/NRAS WT disease, we analysed the mutation 
calls from 74 BRAF/NRAS WT melanomas (i.e. NF1 mutant plus triple wild type) from the 
TCGA collection4 using the IntOGEn pipeline10 with the 3 algorithms Mutsig, 
OncodriveClust and OncodriveFM. We considered as mutation drivers those genes that have 
a significant signal (Q-value<0.05) with one of the 3 algorithms and that are known drivers in 
other tumor types. Given the difficulty to identify recurrently amplified and deleted genes 
from a small collection of samples such as the BRAF/NRAS WT melanomas, we considered 
as CNV melanoma drivers the genes that map within chromosomal regions previously 
defined as significantly amplified or deleted in the TCGA melanoma collection (n= 333)4. 
 
High throughput drug screening 
We tested a library of 60 drugs targeting the main pathways deregulated in cancers. The 
range of the drug concentrations was defined according to the activity of each compound 
against a large panel of cell lines8, 54 (see Supplementary Table 8 for drug description, 
supplier and concentrations used). The 3 anchor drugs temozolomide, nilotinib and 
roscovitine were used at 2 different concentrations.  
Cell lines were seeded in 384-well microplates at low confluency in culture medium. The 
optimal cell number for each cell line was determined to ensure that each was in growth 
phase at the end of the assay (~85% confluency). After overnight incubation cells were 
treated with 5 concentrations of each compound (4-fold dilution series, covering a 256-fold 
drug concentration range), using liquid handling robotics (Beckman Coulter), and then 
returned to the incubator for 6 days. At day 6, cells were fixed in 4% formaldehyde for 30 
minutes, then stained with 1µM of Syto60 red fluorescent nucleic acid stain (Molecular 
Probes, Thermo Fisher) for 1 hour. Quantitation of fluorescent signal intensity was performed 
using a fluorescent plate reader at excitation and emission wavelengths of 630/695nm. All 
screening plates were subjected to stringent quality control measures and to assess the quality 
of our screening a Z-factor score comparing negative and positive control wells was 
calculated across all screening plates. 
 
Analysis of high-throughput viability data 
We derived the Area Under the Curve (AUC) parameter from the cell line viability data 
normalized for vehicle treated control. Empirical values above 1 or below 0 were capped to 
values of 1 or 0, respectively. The AUC was computed using a trapezoid integration below 
the 5 measured viability values of the dose-response curve. We calculated the AUC for the 
library drug, anchor drug and drug combination. 
We derived the delta AUC value to measure drug synergy. We used the Bliss independence 
model11 to compute the expected viability of the cell line when exposed to the drug pair (as 
arithmetic product of the viability measured with the library drug alone and the viability 
measured with the anchor drug alone). This defined the expected dose-response curve on the 
5 measured concentrations of the library drug used in combination with the anchor drug. 
Throughout the manuscript we called the predicted AUC of the combination defined by the 
Bliss model as predicted additivity. The delta AUC is defined as the difference between the 
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AUC below the predicted additivity dose-response curve and the AUC below the 
experimentally observed dose-response curve. 
 
Low throughput viability assays 
We performed low throughput viability assays to validate the results obtained with the high-
throughput drug screening. Each experimental point was performed in technical triplicate. 
We used the same anchor drug concentration and the same 256 fold range of library drug 
concentrations of the high-throughput drug screening, but with 9 points with a 2-fold dilution 
series for the library drugs. 
The cell lines were seeded in 96 wells-microplates at a non-saturating density (confluency 
60-90% after the 6 days in vehicle treated control, see Supplementary Table 10d) were 
drugged them the day after. At 6 days the cells were fixed in 4% formaldehyde and staining 
was performed with 1µM Syto 60 red fluorescent nucleic acid stain (Molecular Probes, 
Thermo Fisher). The MW96 plates were read using a Biomek FX� Liquid Handling 
Automation Workstation (Beckman Coulter). The analysis of the AUCs and delta AUCs was 
performed as described above for the high-throughput drug screening. 
 
Clonogenic assays 
We seeded in each well of a 6 well microplates the same number of cells used for the low 
throughput viability assays in 2ml of media. 24h after seeding we added 2ml of media 
containing the dilution of the drug(s). After 10-15 days of drug treatment, when clones 
became evident, the cells were fixed with methanol for 1h, then stained for 30 seconds with 
0.5% crystal violet (Sigma-Aldrich) dissolved in 25% methanol and washed twice in water. 
The assays were performed for representative cell lines that grew efficiently at the required 
low density. 
 
Definition of the delta AUC threshold for synergy 
In order to triage the drug combinations for validation, firstly we selected the five drug 
combinations with the top average delta AUC in the high-throughput screening that met the 
criteria of having a delta AUC synergy score >0.2 in three or more cell lines. Priority was 
given to the highest dose of anchor drug as this resulted in increased activity of the 
combination. The threshold of delta AUC>0.2 was selected as it corresponds to the top 1.5% 
delta AUC of all the screened drug combinations. In an effort to extend the pool of validated 
drug combinations, we also tested the three combinations with delta AUC>0.2 in two cell 
lines only, displaying the highest activity (AUC<0.4). None of those three combinations was 
successfully validated in any of the cell lines, suggesting that decreasing the threshold is 
unlikely to identify reliable hits. 
Biological replication of the low throughput assay (n=8) in C077 cell lines showed high 
reproducibility, with a standard deviation of the delta AUC of 0.0475267. We therefore 
considered as synergistic those drug combinations that displayed a delta AUC>0.1 in the low 
throughput assays, a value that is above 2 fold the standard deviation of the assay. The 
agreement among the biological replicates of the so-defined synergy confirmed the reliability 
of the delta AUC threshold (Supplementary Table 11). 
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To flag cell lines where the drug combination achieved a high killing activity (Fig. 2d), we 
used an AUC combination threshold below 0.4, a value that in the high-throughput screens 
represents the bottom 5% values of AUC combination (i.e. the combination with the top 5% 
activity). 
For 21 melanoma cell lines we tested nilotinib combined with 2 MEK inhibitors (trametinib 
and PD-0325901). We classified as ‘sensitive’ those cell lines displaying a delta AUC>0.1 
for both nilotinib plus trametinib and nilotinib plus PD-0325901. We classified as ‘non-
sensitive’ those cell lines that displayed a delta AUC<0.1 for both nilotinib plus trametinib 
and nilotinib plus PD-0325901. The cell lines which displayed delta AUC>0.1 for one of the 
MEK inhibitors combined with nilotinib and a delta AUC<0.1 for the other MEK inhibitor 
were classified as “intermediate”. The cell lines that displayed an AUC<0.3 for the anchor 
drug alone or the library drug alone were classified as synergy not detectable (“ND”), since 
the high activity of a single drug alone hampered the reliable detection of synergy (see 
Supplementary Table 10b-c).  
For the definition of synergy and for the association with mutation, CNV, gene and 
microRNA expression data, we used the data from the low throughput validation described in 
Supplementary Table 10b. 
The observed synergies were tested in biological replicates (range of biological replicates 2-
8, Supplementary Table 11 a-b); at least 2 biological replicates were performed by 2 
different operators. 
 
Definition of the cell lesions used for the association with the drug sensitivity data 
We collected a list of high confidence cancer driver lesions defined by previous studies55, 56, 

57, 58, 59, 60 (Supplementary Table 7d), following an approach previously successful in the 
identification of drug sensitivity markers8. To generate the list of driver lesions in melanoma 
driver genes, we collated all the somatic LOF mutations in the 24 BRAF/NRAS WT 
melanoma drivers (see “Definition of BRAF/NRAS WT melanoma drivers” and 
Supplementary Table 2) and selected only the somatic missense mutations that matched the 
previously defined list of high confidence cancer driver lesions (Supplementary Table 7d). 
To extend the list of considered lesions, we compiled a list of all lesion in melanoma driver 
genes considering all the LOF and all the missense somatic mutations in any position within 
the 24 BRAF/NRAS WT melanoma drivers (Supplementary Table 7b). We then defined the 
list of copy number alterations in our cell lines by considering only the 39 genes in region 
significantly amplified/deleted in melanoma and the 24 BRAF/NRAS WT melanoma drivers 
genes (Supplementary Table 7b-c). We defined each of those genes as amplified (AMP) if 
the gene is in a segment with >5 copies or deleted (DEL) if the gene is in a segment with <2 
copies according to the SNP6 array data analysis with PICNIC algorithm (Supplementary 
Table 3a).We defined the list of up and downregulated genes for these 24 BRAF/NRAS WT 
drivers and the 39 genes in region significantly amplified/deleted in melanoma by 1) 
averaging the biological triplicate per cell line; 2) removing the genes that have FPKM>1 in 
less than 3 cell lines (poorly expressed genes); 3) dividing the cell line specific FPKM 
expression value of each gene for the median of expression of that gene in the whole 
collection; 4) defining as upregulated (UP) those genes with a fold change over the median 
>4 and as downregulated those genes with a fold change over the median <0.25. We defined 
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the up/downregulated microRNAs as described above (see “MicroRNA expression 
analysis”). We then summarized by gene the two versions (driver lesions in driver genes and 
all lesions in driver genes) of cell lesions and analysed their association with drug synergy 
data (Supplementary Table 12 a-b). For both sets we considered the different types of 
lesions combined together, as a single input, or grouped according to putative functional 
impact, as detailed in Supplementary Table 13d. 
For the identification of the statistical association with the drug synergy score, identical 
alteration profiles were merged. Only genes with a lesion in >2 cell lines were considered for 
the analysis. For each cell lesion defined as detailed above, we compared the delta AUC 
score between the cell lines with or without the lesion using a t-test. The p-values obtained 
were corrected for multiple testing with the Benjamini-Hochberg method. Statistical analyses 
were performed with R/Bioconductor61. 
 
Western blot analysis 
To measure the level of p-ERK upon drug treatment, cells were seeded at twice the density of 
that used for low throughput viability assays (Supplementary Table 10d). They were 
drugged the day after, and proteins were collected 6h later using NP40 lysis buffer (Thermo 
Fisher Scientific) containing Protease/Phosphatase Inhibitor Cocktail (Cell signalling). 
Protein lysates were quantified with Pierce BCA Protein Assay kit (Thermo Fisher 
Scientific). 
Proteins were denatured by adding 25% of NuPAGE LDS Sample Buffer (Thermo Fisher 
Scientific) and 5% of dithiothreitol 1M (Sigma) and incubating 15 minutes at 75°C. 5-10µg 
of protein were loaded on NuPAGE™ Novex™ 4-12% Bis-Tris Protein Gels (Thermo Fisher 
Scientific) and electrophoresis was performed at 120V in NuPAGE® MOPS SDS Running 
Buffer with NuPage Antioxidant (both from Thermo Fisher Scientific) in a Xcell Surelock 
electrophoresis cell. Proteins were transferred to Amersham Hybond N+ nylon membrane 
(GE Healthcare) by overnight blotting at 4°C at 10V in XCell II blot machine (Lifetech) in 
NuPAGE Transfer Buffer with NuPage Antioxidant (both from Thermo Fisher Scientific). 
Membrane blocking was performed in 5% non-fat milk (Cell Signalling) or 5% BSA (Acros 
Organics) dissolved in Tris buffered saline with 0.25% of Tween 20 (TBS-Tween, Sigma-
Aldrich, see table below). 
Antibodies usage is described in the table below  

target protein 

catalogue 

number company dilution blocking species 

AXL for cell lines #8661 Cell Signalling 1:1000 BSA rabbit 

MITF ab12039 abcam 1:1000 BSA mouse 

HSP-90 #4875 Cell Signalling 1:2000 BSA rabbit 

total ERK #9102 Cell Signalling 1:2000 BSA rabbit 

P-ERK #4370 Cell Signalling 1:6000 BSA rabbit 

beta tubulin  
#5346 Cell Signalling 1:3000 BSA rabbit 

vinculin V9131 Sigma 1:1000 milk mouse 

AXL for PDX sc-20741 Santa Cruz Biotechnology 1:1000 milk rabbit 
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Membranes were incubated overnight at 4°C with the primary antibody. After washing with 
TBS-Tween, incubation with secondary antibody (anti-rabbit or anti-mouse IgG HRP-linked 
(1:6000 and 1:3000, #7074 and #7076, respectively, from Cell Signalling) was performed at 
RT for 1h. The membrane was washed with TBS-Tween and the signal detected with 
Amersham ECL Select Western blotting detection reagent (GE Healthcare) using Image 
Quant Las4000. 
Immunoblotting for PDX samples was performed following the protocol previously 
described62. 
The signal on the western blots images were quantified using ImageJ (Rasband, W.S., 
ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 
http://imagej.nih.gov/ij/, 1997-2016.)”. Each gel lane was outlined and the densitometry 
plotted. The peak of interest was then defined and quantified. Each value obtained was 
normalised to a loading control. Each experiment for the detection of P-ERK levels was 
performed in biological triplicate. The analysis of the images was performed by an operator 
blinded to the sample identifiers. 
 
AXL overexpression and knockdown. 
We used two lentiviral vectors expressing two short hairpin RNAs (shRNA1 and shRNA3) 
targeting the AXL transcript (from theTRC shRNA library, Dharmacon). A luciferase 
targeting shRNA sequence in the same lentiviral backbone was used as a negative control. 
The lentiviral vector used to overexpress AXL was generated by cloning the human AXL 
ORF into the pCDH backbone. The empty pCDH backbone was used as negative control. 
Lentiviral vectors were produced as previously described63. The melanoma cell lines were 
infected with different volumes of lentiviral vectors as indicated throughout the manuscript to 
account for the different viral titers and the different transducibility of each cell lines. Three 
days after infections cells were selected with puromycin 2 µg/ml for 1-2 weeks. Proteins were 
collected for Western blot analysis and low throughput viability assays were performed as 
detailed above. 
 
CRISPR/Cas9 screening 
We performed CRISPR/Cas9 screens to identify mechanisms of resistance to the 
nilotinib/trametinib combination (see outline in Supplementary Fig. 4a). We used a 
previously described genome-wide library of synthetic guide RNAs (sgRNA) targeting the 
human genome (library V1, containing 90,709 sgRNA targeting 18,010 human genes22) for 
the CHL-1 cell line, and an updated version of the same library (library V1.1) for C077 and 
MeWo. The generation of Cas9 expressing cell lines, measurement of Cas9 activity and virus 
titration was performed as described previously22. For each cell line we infected 60 10^6 cells 
in duplicate at multiplicity of infection 0.3 (200X library representation in each replicate). 
Selection with puromycin 2 µg/ml was carried out for 4 days and 2 weeks after infection 60 
10^6 cells per replicate were seeded in drug regimens: trametinib (100nM for CHL-1; 12nM 
for C077 and MeWo), nilotinib (2µM for all the lines) plus trametinib (100nM for CHL-1; 
12nM for C077 and MeWo) and matched DMSO as a control. Given the limited activity of 
nilotinib alone (Supplementary Table 10b) which would have resulted in the absence of 
selective pressure, we did not screen using nilotinib alone. An aliquot of 60 10^6 was 
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collected before the start of drug selection as a reference population (PRE population, whose 
resulting sgRNA counts were used to calculate the ROC curve, see below). Cells were split 
when confluent maintaining >60 10^6 cells per population. After 18 days of drug selection, 
>60 10^6 cells were collected from each cell line population. DNA was extracted with the 
Qiagen Blood & Cell Culture DNA Maxi Kit (Qiagen). Amplification of sgRNA and 
sequencing was performed as described22, starting with 72 µg of template DNA and obtaining 
~ 50 10^6 sequencing reads per sample. To measure reproducibility, we compared the 
sgRNA normalized counts between the replicates of infection before the drug administration 
(PRE population) (R = 0.74-0.93). As a quality control we estimated the ability of each 
CRISPR/Cas9 screen to discriminate between genes belonging to known sets of essential and 
non-essential genes64, E and N respectively. To do this we aggregated sgRNA depletion p-
values through MAGeCK, yielding a gene level summary of essentiality. The genes were 
then sorted according to their gene-level depletion p-values. At each gene rank position in the 
sorted list we compiled the true positive rate (fraction of genes belonging to E) and false 
positive rate (fraction of genes belonging to N), and created a receiver operating 
characteristic (ROC) curve plotting Sensitivity vs. (1-Specificity) at each rank. The area 
under the ROC curve for the 3 cell lines was >0.9, indicative of a successful screen. Finally, 
we found that none of the significantly enriched genes with FDR<0.1 in both replicates of 
each cell lines (i.e. what we defined as hits) were poorly expressed genes (FPKM<1)), 
indicating the high specificity of the screen. 
Each replicate of infection and selection (with trametinib or drug combination) was compared 
with the sister DMSO treated control. MAGeCK65 was used to identify genes whose sgRNA 
targeting pool was significantly enriched or depleted compared to the control. We considered 
as significant hits those genes with  FDR corrected p-value <0.1 in both the replicates per cell 
line. 
 
Enrichment and protein-protein network analysis.  
The enrichment analysis was performed by MsigDB 
(http://software.broadinstitute.org/gsea/msigdb/annotate.jsp) considering Canonical pathways 
and Hallmark gene sets and the top 100 pathways with FDR<0.05. The database was 
accessed in December 2016. The Network of protein-protein interactions were defined using 
STRING23 (http://string-db.org). We interrogated multiple proteins from Homo Sapiens gene 
symbols and to obtain a protein network image. We also used the output of the Gene 
Ontology enrichment analysis from STRING and integrated with the MsigDB output 
described above to display the top enriched protein complex or pathways in Fig 4c. The 
STRING database was accessed in January 2017. 
 
Interrogation of the status of the drug resistance genes identified from CRISPR/Cas9 
screening in melanoma. 
We interrogated the cBioportal database (http://www.cbioportal.org/) in March 2017 to 
investigate the status of the 18 nilotinib/trametinib resistance genes found as significant hits 
of the CRISPR/Cas9 screening in ≥2 cell lines. Four datasets of skin melanoma were 
available: Broad Cell 2012 (121 samples); Broad/Dana Faber, Nature 2012 (25 samples); 
TCGA, provisional (287 samples); Yale, Nat Genet 2012 (91 samples). CCDC101 gene 
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symbol was present in the database with the alternative symbol SGF29. We reported the 
frequency of samples with an alteration in one of those genes in the four datasets, and 
provided detailed mutation type for the 2 larger dataset (TCGA and Yale). Only the TCGA 
dataset included copy number variation data.  
 
Interrogation of previously published screen in melanoma drug resistance. 
We interrogated the GenomeCRISPR website (http://genomecrispr.dkfz.de/) for Cas9 drug 
resistance screens in melanoma in (January 2017. We found 2 studies that performed 
genome-wide Cas9 screenings in A375 (BRAFV600E-mutant) with vermurafenib (BRAF 
inhibitor) and another screen that used selumetinib (MEK inhibitor) 24, 25. We compiled a list 
of vemurafenib resistance genes considering the hits identified by Shalem et al24 that were 
found as in the top 100 ranking genes by RIGER score in both the replicates; to this list we 
added 2 new hits found by Li et al.65 following a re-analysis of the same data with MAGeCK. 
We then included the list of vemurafenib resistance genes identified by Doench et al25 with 
the GeckoLV2 library with a FDR corrected P-value from the STARS algorithm<0.1.  
We compiled a list of selumetinib resistance genes with the gene genes identified by Doench 
et al25 with the GeckoLV2 library that have a FDR corrected P-value from STARS 
algorithm<0.1.  
 
Mass spectrometry for proteomics and phosphoproteomics analyses 
Proteomics and phosphoproteomics analysis was performed as previously described with 
minor modifications66. The cell pellets were dissolved in 0.1 M triethylammonium 
bicarbonate (TEAB), 0.1% SDS, 10% isopropanol with pulsed probe sonication (EpiShear™, 
power 40%) on ice for 20 sec and direct boiling at 95 °C. Protein concentration was measured 
with Quick Start Bradford Protein Assay (Bio-Rad). Cysteine disulfide bonds were reduced 
with tris-2-carboxymethyl phosphine (TCEP) and cysteine residues were blocked with 
Iodoacetamide (IAA). Trypsin (Pierce, MS grade) was added at mass ratio 1:30 for overnight 
digestion. The resultant peptides were labelled with the TMT 10-plex reagents (Thermo 
Scientific) according to manufacturer’s instructions. Samples were combined and the mixture 
was dried with speedvac concentrator and stored at -20 °C. High pH Reverse Phase (RP) 
peptide fractionation was performed with the Waters, XBridge C18 column (2.1 x 150 mm, 
3.5 μm, 120 Å) on a Dionex Ultimate 3000 HPLC system over a 35 min gradient. Fractions 
were collected every 30 sec and were dried with SpeedVac concentrator. The peptide 
fractions were reconstituted in 10 uL of 20% isopropanol, 0.5% formic acid binding solution 
and were loaded on 10 uL of phosphopeptide enrichment IMAC resin (PHOS-Select™ Iron 
Affinity Gel) already conditioned with binding solution. The resin was washed three times 
with 40 uL of binding solution and centrifugation at 300 g after 2 h of binding and the flow-
through solutions were collected. Phosphopeptides were eluted three times with 70 uL of 
40% acetonitrile, 400 mM ammonium hydroxide solution. Both the eluents and flow-through 
solutions were dried in a speedvac and stored at -20 °C until the phosphoproteomic and 
proteomic LC-MS analysis respectively. LC-MS analysis was performed on the Dionex 
Ultimate 3000 UHPLC system coupled with the Orbitrap Fusion Tribrid Mass Spectrometer 
(Thermo Scientific). The peptide fractions were subjected to separation on the Acclaim 
PepMap RSLC (75 μm × 50 cm, 2 μm, 100 Å) C18 capillary column over a 95 min gradient. 
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Precursors were selected with mass resolution of 120k in the top speed mode and were 
isolated for CID fragmentation with collision energy 35%. MS3 quantification spectra were 
acquired with Synchronous Precursor Selection (SPS) and 50k resolution. Phosphopeptide 
samples were analyzed with a top15 HCD method at the MS2 level. The acquired mass 
spectra were submitted to SequestHT search in Proteome Discoverer 2.1 for protein 
identification and quantification. The precursor mass tolerance was set at 20 ppm and the 
fragment ion mass tolerance was set at 0.5 Da for the CID and at 0.02 Da for the HCD 
spectra used for the phosphopeptide analysis. TMT6plex at N-termimus, K and 
Carbamidomethyl at C were defined as static modifications. Dynamic modifications included 
oxidation of M and Deamidation of N, Q. Search for phospho-S,T,Y was included only for 
the IMAC data. Peptide confidence was estimated with the Percolator node. Peptide FDR was 
set at 0.01 and validation was based on q-value and decoy database search. All spectra were 
searched against a UniProt fasta file containing 20,165 reviewed human entries. The Reporter 
Ion Quantifier node included a TMT-10plex Quantification Method with integration window 
tolerance 15 ppm at the MS3 level or at the MS2 level for the IMAC data. Only peptides 
uniquely belonging to protein groups were used for quantification. Phosphopeptides with 
signal/noise ratio<5 and carrying oxidation or deamidation were not considered for the 
analyses. The FDR corrected P-value presented in Supplementary Table 17 were calculated 
with the function software ‘Perseus’ using the ‘Significance’ function, considering the 
phosphopeptides that represents significant outliers in the variations vs the DMSO-treated 
controls and among all the phopshopeptides within the sample. We considered the list of 
nilotinib targets as published by Davis et al18

. 
 
In vivo animal experiments 
Animal experiments were approved by the animal experimental committee of the Netherlands 
Cancer institute and performed according to Dutch law in the Netherlands. PDX were 
generated as described28. We injected 70,000 (M003.X2) – 300,000 (MeWo) cells in both 
flanks of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. After the tumors reached ~50-
90mm3 volume, mice were randomized in 4 treatment groups (n=5 mice/group, n=10 
tumors/group) that were administered by oral gavage: a) vehicle (0.5% hydroxypropylmethyl 
cellulose (HPMC, Sigma) aqueous solution containing 0.05% Tween 80); b) nilotinib 
75mg/kg/day (administered 37.5mg/kg twice daily), c) trametinib 0.1-0.3 mg/kg/day for 
MeWo and M003.X2, respectively; d) nilotinib plus trametinib combination. Mouse weight 
was monitored weekly; tumor size was measured by caliper 3 times per week. Mice were 
euthanized either when the tumor volume reached 1000mm3 or when the weight loss of the 
mice was more than 30%, or at the experimental endpoint. 
 
Statistical analyses 
Graphs and statistics were generated using the GraphPad Prism software. The statistical test 
applied is indicated in the respective Figure legends. Briefly, when two groups were 
analysed, the P-value was calculated by unpaired Student’s t-test; when three or more groups 
were analysed, the P-value was calculated by one way Anova and Tukey's multiple 
comparisons test. For the tumor growth curve in vivo, the group treated with the drug 
combination was compared to each of the other 3 groups by unpaired Student’s t-test 
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considering the tumor volumes measured at the last experimental time point when all 4 
cohorts were viable. A two tailed Fisher’s exact test was used to compare the number of 
tumors classified as synergy like and non-synergy like between one of the 4 Jonsson’s 
expression classes and the remaining 3 classes (Supplementary Fig 3c-d), as well as to 
assess the association between AXL expression and nilotinib/trametinib synergy 
(Supplementary Table 15c).  
 
Data Availability 
The WES data (and WGS data for C037), the SNP6 array raw data (for CNV) and the RNA 
sequencing data for the first collection of cell lines are deposited in ArrayExpress with 
Accession number (E-ERAD-293) and ENA, with accession number (EGAS00001000815). 
The small RNA sequencing data are deposited in ArrayExpress with Accession Number (E-
ERAD-294) and ENA with Accession Number (EGAS00001000816). 
For the interrogation of the gene expression pattern associated to synergy in the transcriptome 
of human tumors, the data from the extended TCGA cohort of melanoma (n=474) were 
downloaded from TCGA database in early 2016 as RSEM values; the RSEM values that we 
used for our analysis can be downloaded from the following link: 
ftp://ftp.sanger.ac.uk/pub/users/vvi/tcga_rnaseq_v2_level3_skcm/tcga_sckm_rnaseqv2.tsv.gz. 
The data from the Leeds Melanoma Cohort (LMC) have been published previously50. 
The mass spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE partner repository with the dataset identifier PXD007649. 
Temporary reviewer username reviewer51625@ebi.ac.uk and password p0R7pMF5. 
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