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Abstract	

Laboratory	studies	of	value-based	decision-making	often	involve	choosing	among	a	few	discrete	

actions.	Yet	in	natural	environments,	we	encounter	a	multitude	of	options	whose	values	may	be	unknown	

or	poorly	estimated.	Given	that	our	cognitive	capacity	is	bounded,	in	complex	environments,	it	becomes	

hard	to	solve	the	challenge	of	whether	to	exploit	an	action	with	known	value	or	search	for	even	better	

alternatives.	In	reinforcement	learning,	the	intractable	exploration/exploitation	tradeoff	is	typically	

handled	by	controlling	the	temperature	parameter	of	the	softmax	stochastic	exploration	policy	or	by	

encouraging	the	selection	of	uncertain	options.	

We	describe	how	selectively	maintaining	high-value	actions	in	a	manner	that	reduces	their	

information	content	helps	to	resolve	the	exploration/exploitation	dilemma	during	a	reinforcement-based	

timing	task.	By	definition	of	the	softmax	policy,	the	information	content	(i.e.,	Shannon’s	entropy)	of	the	

value	representation	controls	the	shift	from	exploration	to	exploitation.	When	subjective	values	for	

different	response	times	are	similar,	the	entropy	is	high,	inducing	exploration.	Under	selective	

maintenance,	entropy	declines	as	the	agent	preferentially	maps	the	most	valuable	parts	of	the	

environment	and	forgets	the	rest,	facilitating	exploitation.	We	demonstrate	in	silico	that	this	memory-

constrained	algorithm	performs	as	well	as	cognitively	demanding	uncertainty-driven	exploration,	even	

though	the	latter	yields	a	more	accurate	representation	of	the	contingency.	

We	found	that	human	behavior	was	best	characterized	by	a	selective	maintenance	model.	

Information	dynamics	consistent	with	selective	maintenance	were	most	pronounced	in	better-

performing	subjects,	in	those	with	higher	non-verbal	intelligence,	and	in	learnable	vs.	unlearnable	

contingencies.	Entropy	of	value	traces	shaped	human	exploration	behavior	(response	time	swings),	

whereas	uncertainty-driven	exploration	was	not	supported	by	Bayesian	model	comparison.		In	summary,	

when	the	action	space	is	large,	strategic	maintenance	of	value	information	reduces	cognitive	load	and	

facilitates	the	resolution	of	the	exploration/exploitation	dilemma.	
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Author	summary	

A	much-debated	question	is	whether	humans	explore	new	options	at	random	or	selectively	

explore	unfamiliar	options.		We	show	that	uncertainty-driven	exploration	recovers	a	more	accurate	

picture	of	simulated	environments,	but	typically	does	not	lead	to	greater	success	in	foraging.		The	

alternative	approach	of	mapping	the	most	valuable	parts	of	the	world	accurately	while	having	only	

approximate	knowledge	of	the	rest	is	just	as	successful,	requires	less	representational	capacity,	and	

provides	a	better	explanation	of	human	behavior.		Furthermore,	when	searching	among	a	multitude	of	

response	times,	people	cannot	indefinitely	maintain	information	about	every	experience.		A	good	strategy	

for	someone	with	limited	memory	capacity	is	to	selectively	maintain	a	valuable	subset	of	options	and	

gradually	forget	the	rest.		In	simulated	worlds,	a	player	with	this	strategy	was	as	successful	as	a	player	

that	represented	all	previous	experiences.		When	learning	a	time-varying	contingency,	humans	behaved	

in	a	manner	consistent	with	a	selective	maintenance	account.		The	amount	of	information	retained	under	

this	strategy	is	high	early	in	learning,	encouraging	exploration,	and	declines	after	one	has	discovered	

valuable	response	times.	
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Introduction	

It	is	better	to	understand	a	little	than	to	misunderstand	a	lot.	

-		Anatole	France	

	

Laboratory	studies	of	value-based	decision-making	typically	involve	choosing	among	a	few	actions	

according	to	their	perceived	subjective	value	(1).	In	real	life,	however,	we	often	face	a	multitude	of	

options	whose	values	may	be	unknown	or	poorly	estimated.	How	can	an	organism	with	limited	

computational	resources	learn	the	most	advantageous	actions	in	the	natural	environment?	Previous	

work	on	boundedly	rational	agents	has	considered	the	role	of	a	limited-capacity	working	memory	system	

(2)	and	the	possibility	that	metareasoning	(i.e.,	a	policy	guiding	how	to	allocate	resources)	reduces	the	

complexity	of	learning	in	large	action	spaces	(3).	This	study	provides	a	new,	complementary	account	

highlighting	how	the	selective	maintenance	of	value	information	facilitates	the	search	for	the	best	among	

many	actions.	

One	of	the	fundamental	dilemmas	in	reinforcement	learning	is	how	to	choose	between	exploiting	

an	action	with	a	known	positive	value	and	exploring	alternatives	in	search	of	even	more	advantageous	

actions	(4).	A	much-debated	question	is	whether	human	exploration	is	driven	by	uncertainty	(5).		An	

influential	idea	from	artificial	intelligence	is	that	agents	may	receive	‘exploration	bonuses’	for	exploring	

highly	uncertain	states	(6),	yet	studies	using	multi-armed	bandit	tasks	have	not	found	evidence	of	this	

(7).	Rather,	humans	appear	to	become	averse	to	uncertainty	as	the	number	of	options	increases	(8)	

unless	uncertainty-driven	exploration	is	explicitly	encouraged	(9).	On	the	other	hand,	Frank	and	

colleagues	presented	evidence	of	spontaneous	uncertainty-driven	exploration	on	an	instrumental	

reinforcement-based	timing	task	—	the	clock	task	—	using	their	Time-Clock	(TC)	computational	model	

(10,11).		Thus,	an	important	unanswered	question	is	whether	the	large	action	space	of	a	timing	task	

elicits	uncertainty-based	exploration	even	if	simpler	discrete	choice	paradigms	do	not.	
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In	reinforcement-based	timing	tasks,	optimal	timing	is	often	uncertain,	but	can	be	learned	by	

responding	at	different	moments	in	time	and	evaluating	the	outcome.	Unlike	learning	tasks	with	just	a	

few	actions,	reinforcement-based	timing	requires	one	to	explore	a	continuous	action	space	to	identify	

response	times	with	high	expected	value.	Assuming	some	degree	of	temporal	generalization,	the	

complexity	of	representing	time-varying	reinforcement	can	be	reduced	by	a	set	of	temporal	basis	

functions	(TBF)	that	approximate	expected	value	as	a	function	of	time.		A	TBF	representation	has	been	

validated	in	temporal	difference	(TD)	models	of	Pavlovian	conditioning	(12,13),	providing	a	

parsimonious	account	of	timing	that	limits	the	number	of	values	maintained	in	memory.		A	further	

challenge,	however,	is	that	memory	traces	inevitably	decay	over	time,	particularly	when	many	action	

values	are	kept	online	(14,15).		Thus,	effective	approaches	to	learning	need	to	be	robust	to	forgetting,	

ensuring	that	valuable	information	is	selectively	maintained	(cf.	16).		Building	on	models	of	working	

memory	(17,18)	and	the	dopamine	system	(19),		we	propose	that	in	reinforcement-based	timing,	the	

values	of	recently	sampled	actions	(response	times)	are	selectively	maintained,	whereas	more	temporally	

distant	action	values	decay.		As	we	illustrate	below,	such	selective	maintenance	trades	off	a	high-fidelity	

representation	of	all	available	rewards	for	the	opportunity	to	exploit	the	best	response	time	(cf.	20).	

Algorithmic	solutions	to	the	intractable	exploration/exploitation	dilemma	generally	focus	on	the	

policy,	which	translates	subjective	value	estimates	into	choices.		The	commonly	used	Boltzmann	softmax	

policy	probabilistically	selects	actions	in	proportion	to	their	value,	while	controlling	exploration	with	a	

temperature	parameter	(4).		The	degree	of	exploration	in	a	given	state	depends	on	the	entropy	of	the	

Boltzmann	distribution	of	action	probabilities,	a	logarithmic	measure	of	uncertainty	about	which	action	

to	choose	(21).		Entropy	is	maximal	when	all	actions	have	equal	probability	and	approaches	zero	as	the	

probability	of	choosing	one	action	approaches	one.		In	turn,	when	the	temperature	parameter	is	high,	

entropy	increases	and	actions	are	chosen	with	similar	probabilities	(exploration),	whereas	if	it	is	low,	the	

agent	prefers	high-value	actions	(exploitation).	
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While	prior	work	has	focused	on	controlling	the	softmax	temperature	or	encouraging	uncertainty-

driven	exploration,	the	similarity	among	the	learned	action	values	per	se	is	a	more	fundamental	

determinant	of	the	exploration/exploitation	tradeoff.		We	quantify	this	similarity	as	Shannon’s	entropy	

(22)	of	the	normalized	vector	of	action	values	(cf.	8),	which	represents	the	information	content	of	the	

learned	values.		For	example,	if	the	expected	value	of	one	action	is	much	greater	than	the	alternatives,	the	

entropy	of	action	values	will	be	low,	increasing	the	likelihood	of	exploiting	the	valued	action	in	the	

softmax	policy.	Below,	we	show	that	in	the	case	of	reinforcement-based	timing,	selective	maintenance	of	

action	values	across	learning	episodes	helps	to	resolve	the	exploration/exploitation	dilemma	by	reducing	

entropy.		We	demonstrate	in	silico	and	in	vivo	that	selectively	maintaining	values	of	recently	chosen	

actions	while	gradually	forgetting	temporally	remote	ones	is	generally	superior	to	tracking	the	value	of	

all	available	actions.	

Altogether,	these	considerations	motivated	the	hypothesis	that	humans	selectively	maintain	value	

traces	in	a	manner	that	compresses	them,	reducing	memory	load.		Second,	we	hypothesized	that	the	

resulting	entropy	dynamics	tune	the	exploration/exploitation	tradeoff	via	the	Boltzmann	softmax,	better	

accounting	for	human	sampling	behavior	than	directed	exploration	toward	uncertain	options	(6,11,23).	

To	test	these	hypotheses,	we	developed	a	new	reinforcement	learning	model,	StrategiC	

ExPloration/ExPloitation	of	Temporal	Instrumental	Contingencies	(SCEPTIC),	that	represents	continuous	

action	values	using	basis	functions.		We	tested	variants	embodying	alternative	hypotheses,	using	the	

temporal	difference	(TD)	model	as	a	benchmark	and	Frank’s	TC	as	a	comparator.	In	model	comparisons,	

we	used	model	and	parameter	identifiability	and	optimality	as	preliminary	criteria	and	fit	to	behavior	as	

the	final	criterion.		We	took	particular	care	to	rule	out	alternative	accounts	of	behavior	and	information	

maintenance,	such	as	exploration	driven	by	local	uncertainty,	variable	learning	rate,	and	choice	

autocorrelation.	

Results	
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The	clock	paradigm	and	model-free	overview	of	behavior	

The	clock	task	is	depicted	in	Figure	1a-b.		Subjects	were	asked	to	find	the	“best”	response	time	during	

a	4	s	interval.		Outcomes	were	controlled	by	one	of	the	four	probabilistic	contingencies	with	varying	

probability/magnitude	tradeoffs	(1b),	two	of	them	learnable	with	value	maxima	in	the	beginning	

(decreasing	expected	value,	DEV)	or	the	end	(increasing	expected	value,	IEV)	of	the	interval,	and	two	

unlearnable	(constant	expected	value,	CEV	and	constant	expected	value-reversed,	CEVR).		This	design	

results	in	a	high	level	of	uncertainty	and	encourages	trial-by-trial	learning,	making	it	difficult	to	find	an	

optimal	strategy.	

As	in	previous	studies	(10,24),	with	learning,	subjects’	response	times	(RT)	rapidly	shifted	toward	

value	maxima:	late	in	the	interval	in	IEV	and	very	early	for	DEV	(Figure	1c).		As	expected,	these	shifts	

were	more	prominent	in	better-performing	subjects	and	were	not	apparent	in	unlearnable	contingencies.		

The	rate	of	exploration,	as	measured	by	trial-wise	change	in	response	times	(i.e.,	‘RT	swings’),	declined	

with	learning	and	was	higher	in	unlearnable	contingencies	(CEV,	CEVR;	Figure	1d)	and	also	in	poorly	

performing	subjects	(Fig.	1d,	right	vs.	left	panel),	highlighting	a	stochastic	underlying	process.		

Interestingly,	RT	swings	declined	in	both	learnable	and	unlearnable	contingencies.		Even	more	

remarkable	was	the	fact	that	the	switch	from	exploration	to	exploitation	in	both	unlearnable	

contingencies	was	more	pronounced	in	better-performing	subjects,	indicating	that	they	tended	to	settle	

into	a	perceived	value	maximum	even	where	objectively	there	was	none.		This	suggests	that	successful	

learners	rely	on	a	mechanism	that	accelerates	the	transition	from	exploration	to	exploitation.		At	the	

same	time,	these	results	cast	doubt	on	the	strategic	uncertainty-driven	nature	of	RT	swings,	at	least	

beyond	the	first	few	trials,	for	two	reasons.		First,	uncertainty-driven	exploration	should	improve	

performance	by	uncovering	a	value	maximum,	while	we	see	the	exact	opposite:	persistent	RT	swings	

reflect	stochastic	responding	and	indicate	ignorance	of	the	value	maximum	in	learnable	contingencies.		

Second,	uncertainty-driven	exploration	cannot	explain	higher	RT	swings	in	unlearnable	contingencies,	
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since	constant	expected	value	leads	to	more	uniform	sampling	(Figure	1c),	which	diminishes	uncertainty	

gradients.		In	summary,	stochastic	exploration	appears	to	underlie	RT	swings	without	an	obvious	need	to	

invoke	uncertainty-seeking.	

	 	

Figure	1.	The	clock	paradigm	and	typical	human	behavior.	a)	The	clock	paradigm	consists	
of	decision	and	feedback	phases.	During	the	decision	phase,	a	dot	revolves	360°	around	a	
central	 stimulus	 over	 the	 course	 of	 four	 seconds.	 Participants	 press	 a	 button	 to	 stop	 the	
revolution	 and	 receive	 a	 probabilistic	 outcome.	 b)	 Rewards	 are	 drawn	 from	 one	 of	 four	
monotonically	 time-varying	 contingencies:	 increasing	 expected	 value	 (IEV),	 decreasing	
expected	value	(DEV),	constant	expected	value	(CEV),	or	constant	expected	value–reversed	
(CEVR).	 CEV	 and	 CEVR	 thus	 represent	 unlearnable	 contingencies	 with	 no	 true	 value	
maximum.	 Reward	 probabilities	 and	 magnitudes	 vary	 independently.	 c)	 Evolution	 of	
subjects’	 response	 times	 (RT)	 by	 contingency	 and	 performance.	 	 Panels	 represent	
participants	whose	total	earnings	were	above	or	below	the	sample	median.		d)	Evolution	of	
subjects’	response	time	swings	(RT	swings)	by	contingency	and	performance.	
	

	

SCEPTIC	architecture	(Table	1).	

Unlike	tasks	with	a	few	actions	whose	values	can	be	learned	discretely,	the	clock	task	has	a	rather	

large	action	space	in	which	the	expected	value	of	responding	at	any	particular	moment	may	be	unique	

(Figure	1a-b).	The	SCEPTIC	model	approaches	this	as	a	function	approximation	problem	in	which	an	

agent	with	limited	cognitive	resources	and	an	imprecise	representation	of	time	learns	a	heuristic	
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representation	of	expected	value	(cf.	25).		Extending	earlier	work	on	time	representation	in	Pavlovian	

learning	(12),	SCEPTIC	uses	Gaussian	TBFs	to	approximate	the	time-varying	contingency.		Each	function	

has	a	temporal	receptive	field	with	a	mean	and	variance	defining	its	point	of	maximal	sensitivity	and	the	

range	of	times	to	which	it	is	sensitive.		The	weights	of	each	TBF	are	updated	according	to	a	delta	learning	

rule	(Figure	2;	detailed	in	Materials	and	Methods).		Further,	whereas	learning	and	choice	in	TD	occur	on	a	

moment-to-moment	basis,	humans	are	often	more	strategic,	considering	the	entire	interval	at	once,	an	

observation	reflected	in	Frank’s	TC	model	(11).		Building	on	this	insight,	SCEPTIC	considers	updates	and	

choices	at	interval	level.		All	SCEPTIC	models	(Table	1)	shared	this	general	architecture.	

	

Figure	2.	The	SCEPTIC	model	represents	the	clock	paradigm	using	a	set	of	temporal	basis	
functions	(TBFs)	spaced	evenly	over	the	time	interval	(middle	row).	These	TBFs	approximate	
a	continuous	 time-varying	expected	value	 function	(top	row).	The	effect	of	prediction	errors	
on	value	 estimates	 are	 spread	 symmetrically	 in	 time	according	 to	 a	 temporal	 generalization	
function	 centered	 on	 the	 chosen	 response	 time	 (bottom	 row).	 The	 red	 dot	 represents	 the	
chosen	 response	 time	 and	 the	 adjacent	 text	 indicates	 the	 reward	 outcome.	 Data	 from	 a	
randomly	selected	subject.		AU	=	arbitrary	units.	
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Table	1.	Summary	of	key	models	tested	

Model	 Temporal	basis	
function	

Uncertainty-driven	
exploration	

Value	learning	rule	
Interval-level	(vs.	time	
step-level)	policy	 Response	

Number	of	free	
parameters	Delta	rule	with	

fixed	learning	rate	
Kalman	
filter	

S
C
E
P
T
IC

	

Fixed	learning	rate,	
value	(LR	V)	

+	 -	 +	 -	 +	

Multinomial	

2	

Fixed	LR	uncertainty	+	
value	(U+V)	

+	 +	 +	 -	 +	 3	

Fixed	LR	selective	
maintenance	

+	 -	 +	 -	 +	 3	

Kalman	filter	(KF),	
softmax	

+	 -	 -	 +	 +	 1	

KF	U+V	 +	 +	 -	 +	 +	 2	
Time-clock	(TC)	 -	 +	 +	 -	 +	 Continuous	 7	

Temporal	difference	(TD),	
Q-learning	

-	 -	 -	 -	 -	 Multinomial	 2	
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SCEPTIC:	selective	maintenance.		To	test	the	hypothesis	of	selective	maintenance	of	value	

representations	under	cognitive	constraints,	we	developed	a	version	of	the	SCEPTIC	model,	Fixed	LR	V	

selective	maintenance,	that	allowed	for	the	forgetting	of	value	traces	that	were	not	selected	on	a	given	

trial	(illustrated	in	Figure	3).		Its	reward	values	reverted	toward	zero	in	inverse	proportion	to	a	temporal	

generalization	function	(Figure	2).		Below,	we	refer	to	it	as	the	“selective	maintenance	model”.		By	erasing	

the	reinforcement	history	in	seldom-visited	parts	of	the	interval,	such	selective	maintenance	tends	to	

decrease	the	information	content	of	the	action	value	representation	later	in	learning	(Fig	3b).	We	

quantified	the	amount	of	information	contained	in	the	value	representation	as	Shannon’s	entropy	of	the	

vector	of	basis	function	weights,	w.	The	weights	were	first	normalized	to	have	an	area	under	the	curve	of	

unity	(cf.	26),	although	we	note	that	other	normalization	methods	will	yield	similar	results.	

! " =	− &'
(

')*

log*.(&')	
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Figure	3.	Representation	of	expected	value	 in	SCEPTIC	models	with	and	without	selective	
maintenance	 (data	 from	 a	 representative	 subject).	 Top:	 evolution	 of	 entropy	 over	 trials;	

bottom	 left:	 action	 values	 at	 trial	 3;	 bottom	 right:	 action	 values	 at	 trial	 50.	 Notable	

differences	emerge	late	in	learning	(right).		Whereas	the	full-maintenance	model	(Fixed	LR	

V;	 green	 line)	 contains	 a	 more	 detailed	 representation	 of	 the	 contingency,	 the	 selective	

maintenance	model	 (orange	 line)	 tends	 to	 track	 a	 single	 value	 bump	 corresponding	 to	 a	

hypothesis	about	the	best	response	time.	This	corresponds	to	a	lower	information	content	

(entropy)	of	value	representations	in	the	selective	maintenance	model	compared	to	the	full	

model	 (see	Figure	7	 for	more	detail).	 The	dots	 in	 the	 figure	denote	 the	weights	 for	 each	

basis	 function,	 which	 are	 multiplied	 by	 the	 Gaussian	 basis	 to	 form	 the	 integrated	 value	

representation,	 V(i).	 Although	 the	 agent	 selects	 actions	 based	 on	 V(i),	 we	 depict	 basis	
weights	here	because	they	are	used	to	compute	entropy,	as	shown	in	the	top	panel.	

The	maximum	of	 each	 representation	 is	 rescaled	 to	 the	 same	 value	 (1.0)	 to	 facilitate	

comparison.		Absolute	values	will	be	depressed	by	selective	maintenance,	but	only	relative	

values	impact	choice.	a.u.	=	arbitrary	units.	
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SCEPTIC:	the	impact	of	uncertainty	on	exploration		

To	embody	the	alternative	hypothesis	that	exploration	is	modulated	by	uncertainty,	we	developed	

SCEPTIC	variants	where	choice	was	influenced	by	both	uncertainty	(U),	estimated	by	Bayesian	filtering,	

and	reward	value	(V).		In	U+V	models,	choice	was	controlled	by	a	weighted	sum	of	uncertainty	and	value	

according	to	a	parameter,	1,	that	could	assume	positive	values	reflecting	uncertainty-driven	exploration,	

or	negative	values	reflecting	uncertainty	aversion.	Since	uncertainty	may	impact	not	only	exploration	but	

also	the	learning	rate	(25–28),	we	examined	the	impact	of	uncertainty	in	both	fixed	learning	rate	(LR)	

models	and	in	models	where	the	learning	rate	was	controlled	by	a	Kalman	filter	(KF).		Further,	to	

ascertain	that	our	model	comparison	results	are	not	limited	to	this	specific	implementation	of	

uncertainty-driven	exploration	and	fixed	or	dynamic	learning	rate,	we	tested	a	number	of	alternative	

models,	described	in	the	Supplementary	Materials.	

Alternative	account	of	uncertainty-driven	exploration:	the	time-clock	(TC)	model	

Developed	by	Frank	and	colleagues	for	the	clock	task	(11),	TC	represents	response	times	as	a	function	

of	seven	decision	signals,	including	three	free	parameters	of	no	interest	reflecting	subject’s	mean	

response	time,	choice	autocorrelation	(27),	and	modulation	toward	the	best	outcome	experienced	thus	

far.	Two	parameters	represent	speeding	or	slowing	of	response	times	due	to	prediction	errors,	inspired	

by	a	computational	model	of	the	basal	ganglia	(28).	Two	final	parameters	represent	the	influence	of	

expected	value	and	outcome	uncertainty.	One	noteworthy	aspect	of	the	TC	model	is	that	instead	of	

separating	the	learning	rule	from	the	choice	rule,	decision	signals	contribute	additively	to	the	predicted	

response	time.	

Benchmark:	modified	temporal	difference	(TD)	model	

TD	has	previously	been	shown	to	fail	on	the	clock	task	(24)	due	to	an	erroneous	back-propagation	of	

value.	To	obtain	a	robust	benchmark,	we	adapted	a	TD	Q-learning	model	with	a	complete	serial	

compound	stimulus	representation.		As	detailed	in	Materials	and	Methods,	two	modifications	were	
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needed	to	improve	the	performance	of	TD.		First,	to	encourage	the	agent	to	sample	the	entire	time	

interval,	we	modified	the	2-greedy	choice	rule	to	make	responding	less	likely	for	early	than	late	time	

steps.	Second,	to	overcome	the	shift	of	estimated	value	from	later	to	earlier	regions	of	the	interval,	the	

value	update	for	a	reinforced	response	was	back-propagated	only	to	preceding	wait	actions,	crediting	

them	appropriately	for	the	reward.		Lastly,	we	compared	Q-learning	and	SARSA	variants	of	TD	in	

simulations	and	participant	behavior,	finding	Q-learning	to	be	superior	(data	available	upon	request).	

Validation	of	models	in	simulated	environments	

	 In	order	to	examine	whether	model	parameters	could	be	estimated	reliably	from	behavioral	data,	

we	conducted	a	series	of	parameter	recovery	simulations.	In	a	variety	of	environments,	the	parameters	of	

key	SCEPTIC	models	(Table	1)	were	identifiable	(all	R2	>	.93),	whereas	the	TD	and	TC	models	had	

problems	with	parameter	indeterminacy	(see	Supplemental	Results	for	details).	As	described	below,	

Bayesian	model	comparison	provided	strong	evidence	that	the	selective	maintenance	model	

characterized	human	behavior	better	than	alternatives.	In	additional	simulations,	we	corroborated	that	

the	selective	maintenance	model	was	reliably	recovered	when	it	generated	the	behavioral	data	

(exceedance	probability	[EP]	=	1.0),	whereas	it	did	not	characterize	data	simulated	from	other	models	

(EPs	<	.02;	additional	details	in	Supplemental	Results).	

Does	uncertainty-driven	exploration	improve	foraging	success	in	simulations?	

We	tested	models’	optimality	—	or	foraging	success	—	in	multiple	novel	environments,	simulated	

with	a	set	of	complex	temporal	contingencies	with	local	minima	(Supplementary	Figure	2).	Using	the	five	

best	parameter	sets	for	each	model	from	an	initial	search	for	optimal	parameters,	we	simulated	the	

proportion	of	possible	points	earned	across	100	novel	contingencies.		We	varied	run	lengths	(40,	60,	or	

110	trials;	detailed	in	Materials	and	Methods)	to	gauge	models’	relative	performance	early	and	late	in	

learning.		The	average	proportions	earned	as	a	function	of	model	and	run	length	are	depicted	in	Figure	4.	
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Figure	4.	Mean	proportion	of	possible	points	earned	in	simulated	learning	of	sinusoidal	time-
varying	contingencies	as	a	 function	of	computational	model	and	run	 length.	Outcomes	were	

drawn	from	100	phase-shifted	variants	of	a	sinusoidal	contingency	(details	 in	Materials	and	

Methods).	 Dots	 represent	 the	 mean,	 whereas	 the	 intersecting	 line	 represents	 the	

bootstrapped	 95%	 confidence	 interval	 around	 the	 mean.	 The	 model	 naming	 scheme	 is	

detailed	in	Table	1.	

We	 found	 significant	main	 effects	 of	model	 and	 run	 length	 on	 the	 proportion	 of	 points	

earned	(ps	<	.0001)	that	were	qualified	by	a	model	x	run	length	interaction,	χ2(14)	=	228.13,	p	
<	 .0001.	Regardless	of	 run	 length,	models	 that	 explicitly	 represented	uncertainty	 (KF	U	+	V	

and	 Fixed	 LR	 U	 +	 V)	 did	 not	 perform	 significantly	 better	 than	 simpler	 fixed	 learning	 rate	

models	 (Fixed	 LR	 V	 Selective	Maintenance	 and	 Fixed	 LR	 V),	 adj.	ps	 >	 .49.	 The	 KF	 V	model	
performed	significantly	worse	than	other	SCEPTIC	variants	at	all	run	lengths,	adj.	ps	<	.01.	TD	
performed	worse	than	the	top	four	SCEPTIC	models	at	run	lengths	of	40	and	60	trials	(adj.	ps	
<	.05),	but	not	110	(adj.	p	>	.10).	Likewise,	TD	was	not	significantly	better	than	TC	for	40-	and	
60-trial	 runs,	 but	 outperformed	 TC	 for	 110-trial	 runs,	 adj.	 p	 <	 .001.	 Finally,	 TC	 did	 not	
significantly	 exceed	 the	 random	 exploration	 null	 model	 at	 any	 run	 length,	 adj.	 ps	 >	 .10,	
whereas	all	other	models	did,	adj.	ps	<	.05.	

	

Contrary	to	our	expectation,	SCEPTIC	variants	that	leveraged	uncertainty	to	guide	choice	did	not	

outperform	fixed	learning	rate	models	guided	by	value	alone,	despite	having	access	to	information	that	

could	be	used	to	sample	the	action	space	more	systematically.	Notably,	however,	the	correlation	between	

the	model's	expected	value	and	the	underlying	contingency	was	significantly	higher	early	in	learning	

(especially	in	the	first	10	trials)	for	models	that	represented	uncertainty	compared	to	models	that	did	
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not,	p	<	.0001	(Supplementary	Figure	3).	Thus,	despite	yielding	a	higher	fidelity	representation	of	the	

contingency,	uncertainty	representation	did	not	enhance	overall	model	performance	in	simulations.		

The	selective	maintenance	model	did	not	perform	worse	than	its	full	maintenance	analog	(Fixed	LR	V;	

adj.	p	>	.10),	suggesting	that	selective	maintenance	of	the	value	representation	did	not	hamper	foraging.		

Crucially,	in	a	model	variant	where	value	traces	decayed	randomly	across	the	interval,	rather	than	as	a	

function	of	choice	history,	performance	was	impaired	(40	trials	adj.	p	=	.15,	60	trials	adj.	p	<	10-5;	110	

trials	adj.	p	=	.002;	optimized	parameter	set	with	3 = 0.24).		This	demonstrates	that	selective,	but	not	

random,	decay	promotes	adaptive	exploitation	by	maintaining	the	value	of	preferred	actions	(potentially	

stabilizing	a	value	bump).	Finally,	to	identify	boundary	conditions	where	entropy-driven	exploration	

would	not	suffice,	we	tested	our	models	in	sparse,	discontinuous	environments	with	competing	value	

maxima.		As	detailed	in	the	Supplemental	Results,	SCEPTIC	variants	with	an	explicit	uncertainty	

representation	gained	a	modest	advantage.		Nevertheless,	the	selective	maintenance	model	was	superior	

to	its	full-maintenance	equivalent,	suggesting	that	maintaining	a	subset	of	valuable	actions	is	efficient	

even	in	sparse	environments,	perhaps	in	order	to	avoid	the	inferior	parts	of	the	action	space.	

Human	Behavior	

Representation:	TBF	is	superior	to	TD.		SCEPTIC	models	using	TBFs	afforded	a	better	fit	to	

behavior	than	TD	(Figure	5a).	The	representational	power	of	the	temporal	basis	was	not	simply	due	to	a	

high	number	of	hidden	states	(k=24,	cf.	80	actions	tracked	by	TD).		SCEPTIC	fits	were	qualitatively	

unchanged	regardless	of	the	number	of	basis	function	elements	(data	available	upon	request).	

Selective	maintenance	of	value	representations.		In	a	Bayesian	model	comparison,	the	selective	

maintenance	model	dominated	(Figure	5a;	EP	=	1,	Bayesian	omnibus	risk	(29)	[BOR]	<	10-51),	indicating	

that	subjects	preferred	recently	visited	segments	of	the	interval	much	more	than	would	be	predicted	by	

their	long-term	expected	value.	The	advantage	of	the	selective	maintenance	model	—	measured	by	the	
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log	ratio	of	free	energies	vs.	all	other	models	—	was	greater	in	better-performing	subjects,	all	rs(74)	>	

.40,	ps	<.	001,	except	in	comparison	with	TD:	r(74)	=	.06,	p	=	.48),	suggesting	that	the	selective	

maintenance	model	captured	an	adaptive	strategy.		Moreover,	the	selective	maintenance	parameter,	3,	

correlated	significantly	with	total	points	earned	on	the	task,	r(74)	=	.37,	p	<	.001.	Posterior	predictive	

checks	on	the	fit	of	the	model	to	subjects’	behavior	suggested	that	the	selective	maintenance	model	

captured	trial-by-trial	variation	in	behavior,	as	well	as	individual	differences	in	response	tendencies	

(Figure	5b).	
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Figure	5.	 a)	 Random-effects	 Bayesian	model	 comparison	 of	 SCEPTIC	 variants	 and	 TD.	 EP	 =	
exceedance	probability.	Dots	 represent	 the	estimated	model	 frequency,	and	 the	 intersecting	

line	 represents	 the	 standard	 error	 of	 the	 estimate.	 BOR	 =	 Bayesian	 omnibus	 risk.	 Model	

variants	 are	 detailed	 in	 Table	 1.	 For	 a	 group	 model	 comparison	 including	 supplemental	

SCEPTIC	 variants,	 see	 Supplementary	 Figure	 6.	 b)	 Trial-by-trial	 fits	 of	 the	 selective	

maintenance	model	in	three	randomly	selected	subjects	at	uninformative	prior	values	of	the	

parameters	(left)	and	at	posterior	values	(right).	Subjects'	responses	are	indicated	in	red;	the	

model’s	 posterior	 predictive	 density	 is	 depicted	 in	 blue.	 Exploitative	 choices	 are	 predicted	

precisely,	 whereas	 exploratory	 choices	 marked	 by	 large	 RT	 swings	 have	 lower	 posterior	

predictive	densities	(high	entropy).	 	The	latter	observation	is	particularly	valid	at	the	priors	

(left),	where	the	temperature	of	the	softmax	is	fixed	at	a	low	value.		
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In	addition,	we	found	a	significant	correlation	between	3	and	nonverbal	intelligence,	r(74)	=	0.39,	p	=	

.0005	(Figure	6)	and,	more	weakly,	with	verbal	intelligence,	r(74)	=	0.23,	p	=	.045.	Learning	rate	and	

performance	intelligence	were	also	moderately	correlated,	r(74)	=	0.25,	p	=	.03.	However,	when	3,	

learning	rate,	and	the	learning	rate	x	3	interaction	were	entered	into	a	multiple	regression	model,	they	

did	not	predict	incremental	variance	in	nonverbal	intelligence	beyond	3	alone,	F(2,	83)	=	1.73,	p	=	.19.	

The	relationship	between	nonverbal	intelligence	and	selective	maintenance	was	not	moderated	by	age	(p	

=	.19)	or	sex	(p	=	.97).		

	

Figure	 6.	 Association	 between	 Reynolds	 Intellectual	 Screening	 Test	 (RIST)	 nonverbal	
intelligence	score	(scaled	relative	 to	population	norms	where	M	=	100	and	SD	=	15)	and	the	
selective	 maintenance	 parameter.	 Note	 that	 the	 strength	 of	 the	 association	 was	 not	

substantially	weaker	when	the	two	lowest	intelligence	scores	were	excluded,	r(73)	=	 .34,	p	=	
.003.	

Entropy	of	the	expected	value	distribution	tunes	the	explore/exploit	tradeoff	and	is	shaped	by	

selective	maintenance.		As	illustrated	above	(Figure	3),	selective	maintenance	of	value	traces	should	

result	in	a	compressed	representation	later	in	learning,	as	the	value	of	unchosen	actions	decays	toward	

zero,	and	entropy	decreases.	Supporting	this	prediction,	for	the	selective	maintenance	model,	entropy	

(information	content)	was	high	when	participants	entered	a	new	contingency,	then	declined	with	

learning	(depicted	in	Figure	7).		Conversely,	for	the	Fixed	LR	V	model,	mean	entropy	was	much	higher	on	

average	(t	=	246.03,	p	<	10-16)	and	remained	relatively	stable	with	learning.	
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Figure	 7.	 Evolution	 of	 value	 entropy	 starting	 from	 random	 uniform	 prior	 estimates	 on	
value.	Lines	represent	the	mean	entropy	across	trials,	averaging	across	subjects.	Trial-wise	

entropy	was	derived	from	the	estimated	value	distributions	of	subjects	at	their	best-fitting	

parameters.	 Shaded	 ribbons	 represent	 the	 bootstrapped	 95%	 confidence	 interval	 of	 the	

mean	 at	 each	 trial.	 In	 panel	 a,	 dark	 vertical	 lines	 depict	 boundaries	 between	 different	

contingencies	 (50	 trials	 each),	 explicitly	 signaled	 to	 participants.	 Panel	 b	 depicts	 the	

average	 change	 in	 entropy,	 averaging	 over	 subjects	 and	 runs	 (excluding	 run	 1);	 this	

represents	the	typical	increase	in	entropy	during	initial	exploration	followed	by	its	decline	

as	 high-value	 actions	 are	 discovered	 and	 exploited.	 Better-performing	 subjects	 (right	

panel)	 exhibit	 proportionately	 greater	 entropy	 increases	 early	 in	 learning	 under	 the	

selective	 maintenance	 model,	 whereas	 poorer	 subjects	 (left	 panel)	 have	 higher	 mean	

entropy.	Value	traces	were	carried	forward	from	one	block	to	the	next,	an	implementation	

that	resulted	in	better	fits	for	both	models	compared	to	resetting	values	in	each	block	(data	

available	upon	request).	Apart	from	differences	in	the	first	few	trials	of	the	experiment,	the	

essential	dynamics	of	entropy	under	the	Fixed	LR	V	and	Selective	Maintenance	models	are	
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unchanged	 if	 the	 model	 is	 initialized	 with	 zero	 prior	 estimates	 on	 value	 (see	

Supplementary	Figure	7).	

Because	entropy	tunes	the	exploit/explore	tradeoff	(30),	we	hypothesized	that	early	increases	in	

entropy	facilitate	exploration	and	the	discovery	of	valuable	actions,	whereas	entropy	declines	late	in	

learning	enable	a	shift	to	exploitation,	contributing	to	foraging	success.		To	test	this	hypothesis,	we	

estimated	the	effect	of	entropy	early	and	late	in	learning	(averages	in	trials	2–10	and	41–50,	respectively)	

on	the	total	number	of	points	earned	in	each	run.		As	predicted,	for	the	selective	maintenance	model,	

higher	entropy	early	in	learning	predicted	greater	earnings	over	the	run,	t	=	5.77,	p	<	10-5,	whereas	

entropy	late	in	learning	was	associated	with	poorer	earnings,	t	=	-3.85,	p	<	.001.	Furthermore,	we	

anticipated	that	greater	early:late	entropy	ratios	reflect	an	adaptive	transition	from	exploration	to	

exploitation	and	would	be	associated	with	better	performance.		We	found	strong	support	for	this	

hypothesis:	across	subjects,	higher	early:late	entropy	ratios	were	associated	with	greater	total	earnings	

on	the	task,	r(74)	=	.56,	p	<	.0001.		Crucially,	the	early:late	entropy	ratio	for	the	Fixed	LR	V	model	(lacking	

a	selective	maintenance	process),	was	uncorrelated	with	performance,	r(74)	=	-.16,	p	=	.18	(see	Figure	8).	
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Figure	8.	Relationship	between	early:late	entropy	ratio	and	total	earnings	during	the	clock	
task.	The	early:late	entropy	ratio	was	calculated	as	the	quotient	of	entropy	early	in	learning	

(trials	2-10)	and	late	in	learning	(trials	41-50).	To	account	for	between-subjects	variability	

in	average	entropy,	 for	each	run,	early	and	late	entropy	were	normalized	by	the	subject's	

mean	entropy.	One	extreme	high	value	of	the	early:late	ratio	and	one	participant		with	low	

total	 earnings	 were	 Winsorized	 for	 plotting	 and	 calculations	 based	 on	 regression	

diagnostics.	 The	 correlation	 between	 entropy	 ratio	 and	 performance	 was	 qualitatively	

unchanged	using	 the	 original	 data:	 selective	maintenance	model	 r(74)	 =	 0.53,	p	 <	 .0001.	
The	blue	lines	denote	the	least-squares	regression	line.	

	

The	entropy-performance	relationship	was	specific	to	the	selective	maintenance	model,	suggesting	

that	adaptive	entropy	dynamics	are	shaped	by	selective	maintenance	of	value	traces.		To	test	this	idea,	we	

examined	whether	the	positive	association	between	selective	maintenance,	3,	and	earnings	was	mediated	

by	the	early:late	entropy	ratio.		Corroborating	this	account,	in	a	path	analysis	the	indirect	effect	of	3	on	

earnings	via	the	early:late	entropy	ratio	was	significant,	8	=	.33,	z	=	3.41,	p	<	.001	(p-values	based	on	

bootstrapped	standard	errors;	(31)).	Importantly,	the	direct	effect	of	selective	maintenance	on	

performance	was	nonsignificant	(p	=	.80)	after	accounting	for	early:late	entropy	ratio,	and	the	total	effect	

was	largely	explained	by	the	mediated	path,	indirect/total	effect		=	.91.	Conversely,	an	alternative	model	

in	which	individual	differences	in	selective	maintenance	mediated	the	relationship	between	early:late	

entropy	ratios	and	performance	was	non-significant,	z	=	.26,	p	=	.79.	

Entropy-driven	softmax	exploration	explains	RT	swings.	Our	findings	are	inconsistent	with	the	

idea	that	RT	swings	(defined	as	the	absolute	change	in	response	time	on	the	current	trial	compared	to	the	

previous	trial)	reflect	shifts	toward	uncertain	options.		Drawing	on	the	observation	that	successful	

learners	rely	on	early	entropy	to	learn	the	contingency,	however,	an	alternative	hypothesis	is	that	RT	

swings	result	from	high	entropy	of	the	expected	value	representation.		Consistent	with	this	account,	

greater	entropy	(computed	from	the	selective	maintenance	model)	predicted	larger	RT	swings,	B	=	

174.00,	t	=	16.15,	p	<	10-16.		Importantly,	this	effect	could	not	be	accounted	for	by	many	other	factors	—	

distance	from	the	point	of	maximum	estimated	value,	value	of	the	chosen	RT	relative	to	the	global	
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maximum,	distance	from	the	edge	of	the	time	interval,	trial,	the	magnitude	of	the	previous	RT	swing,	and	

whether	the	previous	action	resulted	in	a	reward	or	omission.		Even	after	controlling	for	these	variables	

and	their	interactions	in	a	multilevel	model,	the	magnitude	of	the	entropy	effect	remained	essentially	

unchanged,	B	=	144.04,	t	=	14.19,	p	<	10-16	(depicted	in	Supplementary	Figure	8).		To	rule	out	the	

possibility	that	the	entropy-exploration	relationship	reflected	high	average	levels	of	entropy	(e.g.,	

reflecting	consistently	random	responses),	rather	than	trial-level	effects,	we	decomposed	entropy	into	

between-run	versus	within-run	variability.		Although	RT	swings	were	larger	in	runs	with	high	average	

entropy	(t	=	16.75,	p	<	10-16),	high	entropy	on	a	given	trial	(relative	to	the	run	mean)	predicted	larger	RT	

swings	on	the	subsequent	trial,	and	this	relationship	became	stronger	as	learning	unfolded	(main	effect	t	

=	3.26,	p	=	.003;	trial	x	entropy	interaction	t	=	5.04,	p	<	10-7),	suggesting	a	greater	role	of	entropy	in	

continual	rather	than	initial	exploration.	Interestingly,	higher	entropy	was	associated	with	longer	

response	times,	t	=	10.34,	p	<	10-16,	consistent	with	the	idea	that	tracking	more	value	information	

increases	cognitive	load,	slowing	response	times	or	promoting	indecision.	

Uncertainty	and	exploration.	Although	the	selective	maintenance	model	was	uncertainty-

insensitive,	the	next-best	model,	Fixed	U	+	V,	recovered	a	negative	τ	parameter,	indicating	uncertainty	

aversion,	for	71	of	76	subjects,	t(75)	=	-6.9,	p	<	10-8.		Within	the	KF	family,	the	KF	U	+	V	model	dominated	

(EP	=	1,	BOR	<	10-23)	and	also	recovered	negative	τ	parameter	values	for	67	of	76	subjects,	t(75)	=-5.8,	p	

<	10-6.	Exploring	the	large	action	space	of	the	clock	task,	participants	can	shift	their	response	times	

substantially	from	trial	to	trial,	particularly	early	in	learning.		RT	swings	were	first	described	by	Frank	

and	colleagues	(10,11),	who	viewed	them	as	a	form	of	uncertainty-driven	exploration	in	some	

individuals.	An	advantage	of	the	SCEPTIC	model	is	that	the	tendency	of	subjects	to	shift	toward	or	away	

from	the	moment	of	maximal	uncertainty	(i.e.,	the	RT	about	which	the	least	is	known)	can	be	estimated.	

To	test	whether	response	times	were	related	to	uncertainty	seeking	or	aversion,	in	a	multilevel	model	we	

regressed	trial-wise	RT	on	the	previous	RT,	whether	the	prior	response	was	rewarded,	the	RT	of	maximal	
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value,	and	the	RT	of	maximal	uncertainty.	Trial-wise	value	and	uncertainty	estimates	were	obtained	from	

the	Fixed	U	+	V	model	using	fitted	subject	parameters.	As	expected,	there	was	a	strong	positive	

relationship	between	the	highest	value	option	and	the	chosen	response	time,	t	=	38.58,	p	<		.0001.	We	

also	observed	a	negative	association	between	RTs	and	the	most	uncertain	option,	t	=	-3.09,	p	=	.002,	

indicating	that	subjects	were	uncertainty	averse.	Importantly,	the	effect	of	uncertainty	was	moderated	by	

trial,	such	that	subjects	were	increasingly	averse	to	the	most	uncertain	option	later	in	learning,	RT	

uncertain	x	trial	t	=	-8.11,	p	<	.0001.	Finally,	consistent	with	the	idea	that	the	U	+	V	model	captures	

individual	differences	in	uncertainty	aversion,	subjects	with	more	negative	1	parameters	tended	to	avoid	

the	most	uncertain	option	to	a	greater	extent,	RT	uncertain	x	1	t	=	3.19,	p	=	.001.	

Are	selective	maintenance	of	action	values	and	uncertainty	aversion	proxies	for	sticky	choice?		

Using	various	implementations	of	choice	autocorrelation	(27,32),	we	ascertained	that	sticky	choice	did	

not	account	for	either	value	selective	maintenance	or	uncertainty	aversion	(Supplemental	Results).	

Time-Clock	(TC)	model.	One	cannot	directly	compare	fits	of	the	TC	model	to	SCEPTIC	and	TD	

because	of	the	different	nature	of	the	response	variable	(a	single	predicted	response	time	for	TC	vs.	a	

multinomial	choice	distribution	in	SCEPTIC	and	TD).		We	did,	however,	assess	the	explanatory	power	of	

each	parameter	in	the	TC	model	by	fitting	model	variants	with	an	increasing	number	of	parameters,	

following	the	order	in	the	model	equation	(i.e.,	varying	from	one	to	seven	parameters;	see	Materials	and	

Methods).	In	so	doing,	we	tested	whether	models	that	included	only	descriptive	parameters	fit	

substantially	worse	than	models	that	included	RT	modulation	due	to	prediction	errors,	value-based	

learning,	or	uncertainty.	

Surprisingly,	the	substantively	interesting	parameters	of	TC	—	expected	value	of	fast	versus	slow	

responses	(9),	uncertainty-driven	exploration	(2),	go	(:;),	and	no-go	(:<)	terms	—	did	not	contribute	

substantially	to	fits.	Rather,	a	comparison	among	models	revealed	a	strong	preference	for	a	model	

containing	three	parameters	of	no	interest:	mean	RT	(K),	choice	autocorrelation	(=),	and	RT	of	maximum	
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reward	(>);	exceedance	probability	(EP)	=	1.0,	Bayesian	omnibus	risk	(BOR)	<	10-35	(Figure	9).		In	

generative	simulations	using	the	TC	model	(based	on	code	from	(11),	and	using	published	parameters),	

we	replicated	the	findings	of	model	sensitivity	to	different	contingencies,	but	observed	poor	performance	

in	longer	learning	episodes	and	under	moderate	variations	in	parameters	(see	Supplementary	Figure	9).	

	

Figure	 9.	 Random-effects	 Bayesian	 model	 comparison	 of	 time-clock	 (TC)	 model	 variants	
incorporating	 free	 parameters	 incrementally	 (top	 to	 bottom).	 Each	 tick	 on	 the	 vertical	 axis	

represents	the	addition	of	that	parameter	into	a	TC	model	variant	containing	all	parameters	

above	 it.	 Thus,	models	 varied	 from	 one	 to	 seven	 parameters.	 EP	 =	 exceedance	 probability.	

BOR	 =	 Bayesian	 omnibus	 risk,	 a	 measure	 of	 statistical	 risk	 in	 group	 model	 comparisons	

quantifying	whether	chance	is	likely	to	explain	differences	in	estimated	model	frequencies.	

Discussion	

Reinforcement-based	timing	involves	exploration	of	a	large	continuous	action	space.		We	aimed	to	

understand	(1)	how	value	information	may	be	represented	and	maintained	in	this	context,	given	realistic	

cognitive	constraints,	and	(2)	how	information	maintenance	might	shape	exploration.		Humans’	sampling	

trajectories	reflected	selective	maintenance:	actions	with	high	perceived	value	were	updated	by	sampling	
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(and	prediction	error),	whereas	infrequently	sampled	action	values	decayed.		Selective	maintenance	

dynamically	shaped	the	information	content	(entropy)	of	the	model-estimated	value	representation.	

Upon	entering	a	new	environment,	entropy	was	high	during	initial	exploration	and	declined	later	in	

learning.		These	dynamics	were	associated	with	successful	performance	and	intelligence.		This	was	not	

the	case	under	full	maintenance	of	value	traces,	where	entropy	was	high	throughout	learning	and	did	not	

predict	performance.		Consistent	with	softmax	exploration	based	on	a	Gibbs/Boltzmann	distribution	

(30),	entropy	controlled	exploration	(response	time	swings).		The	idea	that	the	shrinking	of	entropy	by	

selective	maintenance	facilitates	the	transition	from	exploration	to	exploitation	is	new	to	the	study	of	

human	decision-making.	

By	contrast,	we	found	no	evidence	of	uncertainty-driven	exploration	in	this	context;	rather,	subjects	

generally	avoided	uncertain	areas	of	the	time	interval	to	a	greater	extent	than	dictated	by	their	reward	

value.	In	simulations,	uncertainty-driven	exploration	yielded	a	more	precise	representation	of	the	

environment	early	in	learning	but	conferred	no	appreciable	foraging	advantage	over	softmax	exploration,	

with	the	possible	exception	of	extremely	difficult,	discontinuous	environments	where	high-value	regions	

were	sparse.	Extending	prior	work	on	TD	models	of	Pavlovian	learning	(12,13)	we	found	that	a	

neurobiologically	plausible	temporal	basis	function	representation	accounted	well	for	instrumental	

reinforcement-based	timing.		Finally,	we	did	not	find	evidence	of	computational	mechanisms	that	might	

control	a	dynamic	learning	rate	on	the	clock	task,	and	models	with	a	fixed	learning	rate	afforded	the	best	

fit	to	behavior.		

Information	dynamics:	selective	maintenance	of	value	traces	and	its	effects	on	entropy	

Under	the	best-fitting	selective	maintenance	model,	the	information	content	(entropy)	of	value	traces	

is	high	during	the	initial	exploration	of	a	new	environment	and	declines	later	in	learning,	facilitating	the	

shift	toward	exploitation	(Figure	7).	These	information	dynamics	are	more	pronounced	in	successful	
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subjects,	indicating	that	they	describe	an	adaptive	approach.		Although	the	idea	that	adaptive	learning	

involves	loss	of	information	may	at	first	seem	paradoxical,	it	fits	the	intuition	that	cognitive	load	is	

highest	when	one	enters	a	new	(or	altered)	environment,	declining	later	as	one	learns	to	exploit	the	

contingency.		Consistent	with	this	account,	high	entropy	was	associated	with	longer	response	times,	

which	parallel	the	detrimental	effects	of	working	memory	load	on	reinforcement-based	timing	(33).		

More	generally,	the	concept	of	a	maximum-entropy	information	source	that	emits	exploratory	actions,	as	

is	the	case	of	Boltzmann’s	softmax	with	a	uniform	input,	is	not	new.		It	directly	relates	to	Borel’s	so-called	

infinite	monkey	theorem	(34)	—	proposed	as	a	comment	on	Boltzmann’s	work	—	where	a	million	

monkeys	typing	randomly	eventually	produce	volumes	that	will	include	“books	of	any	nature”	(also	see	

Borges’	the	Library	of	Babel;	36).		

In	simulations,	a	selective	maintenance	strategy	was	generally	as	successful	as	comparators	that	

maintained	learned	values	for	all	sampled	actions.	In	other	words,	it	typically	suffices	to	track	a	subset	of	

valuable	alternatives	without	maintaining	a	detailed	representation	of	the	rest	of	the	environment.	In	

many	individuals,	later	in	learning,	the	decision	function	for	the	selective	maintenance	model	had	a	

peaked	unimodal	distribution	around	the	perceived	value	maximum.	Epistemically,	such	dynamics	lead	

one	to	test	a	hypothesis	about	the	location	of	the	maximum	value	(i.e.,	when	in	time	am	I	most	likely	to	

obtain	the	best	outcome?)	rather	than	tracking	the	expected	value	of	all	options.		In	this	framework,	

uncertainty	about	the	temporal	occurrence	of	maximum	reward	is	encoded	implicitly	by	the	entropy	of	

the	value	distribution	(36).	

Moreover,	our	results	suggest	one	possible	computational	mechanism	of	selective	maintenance	of	

value	representations.	Short-term	memory	traces	decay	with	time,	but	can	be	maintained	by	a	refreshing	

process,	such	as	rehearsal	or	memory	search	(17,33,37–39).	Extending	these	observations	to	

reinforcement-based	timing,	we	tested	a	model	where	(1)	regardless	of	their	valence	and	magnitude,	

prediction	errors	enhance	the	maintenance	of	action	values	and	that	(2)	this	enhancement	is	relatively	
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precise	in	time	following	a	temporal	generalization	gradient.		Thus,	prediction	error	updates,	requiring	a	

retrieval	of	value	traces,	can	serve	as	a	refreshing	process	similar	to	explicit	rehearsal	or	memory	search.	

Similar	to	the	pruning	of	branching	action	sequences	described	by	Huys	and	colleagues	(40),	TBFs	and	

selective	maintenance	exemplify	heuristic	computational	mechanisms	for	reducing	the	dimensionality	of	

the	environment	to	make	learning	tractable.	Our	findings	with	respect	to	cognitive	constraints	on	

learning	also	echo	Collins	and	colleagues	(14),	who	found	that	working	memory	capacity	limits	learning	

in	a	large	action	space,	accounting	for	reward	learning	deficits	in	schizophrenia.		Similarly,	Otto	and	

colleagues	found	that	the	limits	of	working	memory	constrained	learning	in	an	environment	with	a	

sequential	structure	(15).	

One	may	note	a	homology	between	our	algorithmic	selective	maintenance	model	and	neural	network	

models	with	attractor	dynamics.		Basis	function	elements	can	be	thought	of	as	tuning	curves	of	excitatory	

neurons,	whereas	selective	maintenance	is	homologous	to	inputs	from	inhibitory	neurons.		Thus,	

inhibitory	inputs	could	stabilize	the	attractor	bump	in	order	to	maintain	a	hypothesis	about	the	global	

value	maximum,	a	testable	hypothesis.		Reinforcement-based	timing	is	not	entirely	abolished	by	any	

specific	brain	lesion	(41–45),	and	it	is	likely	that	TBF	dynamics	are	found	in	multiple	networks	implicated	

in	both	timing	and	reward	learning	such	as	the	basal	ganglia/dopaminergic	midbrain,	the	cerebellum,	

and	the	premotor	cortex	(46–48).		It	is	also	likely	that	selective	maintenance	is	an	active	process	

mediated	by	circuits	involved	in	time-based	resource	allocation,	such	as	the	frontoparietal	networks.		We	

predict	that	entropy	should	scale	with	the	number	of	active	value-sensitive	elements	in	these	circuits.	

Uncertainty-Driven	or	Entropy-Driven	Exploration?	

Intuitively,	when	choosing	among	a	multitude	of	actions	with	uncertain	reward	values,	an	agent	

should	benefit	from	uncertainty-driven	exploration,	at	least	early	in	learning	(10,49).		Yet	the	resulting	

need	to	appraise	uncertainty	complicates	the	already	intractable	exploration/exploitation	dilemma	(50),	

giving	rise	to	a	number	of	specific	problems	and	objections.		Our	simulations	showed	that	optimizing	a	
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single	tradeoff	between	directed,	uncertainty-driven	exploration	and	exploitation,	despite	yielding	a	

more	precise	map	of	the	environment	early	in	learning,	did	not	confer	an	advantage	over	models	with	

undirected,	stochastic	exploration.		These	results	likely	generalize	beyond	temporal	contingencies	to	

other	action	spaces	with	correlated	returns	along	a	continuous	dimension	and	may	help	to	explain	why	

humans	do	not	engage	in	uncertainty-driven	exploration	in	other	tasks	(7,51).		Importantly,	cognitive	

constraints	likely	limit	tracking	of	uncertainty.		If	we	assume	that	uncertainty	representation	decays	like	

other	memory	traces,	representations	in	the	infrequently	visited	(and	most	uncertain)	regions	of	the	

action	space	would	be	most	subject	to	decay,	causing	the	uncertainty	estimate	to	revert	toward	a	prior	

(cf.	51)	and	hindering	directed	exploration.		The	total	loss	of	information	about	unsampled	actions	given	

a	fixed	representational	capacity	and	a	decay	of	uncertainty	estimates	also	scales	with	the	size	of	the	

action	space.		

Although	uncertainty-driven	exploration	can	be	efficient	initially	in	complex	environments	(e.g.,	large	

spatial	landscapes	(23)	or	discontinuous	environments	with	sparse	high-value	regions),	the	tasks	used	in	

studies	of		human	value-based	decision-making	typically	emphasize	continual	exploration,	where	one	

exploits	the	perceived	contingency	and	periodically	explores	to	adjust	the	policy	to	the	environment.		Our	

results	suggest	that	an	implicit	representation	of	uncertainty	expressed	in	the	entropy	of	action	

probability	distribution	may	be	necessary	for	continual	exploration.	That	said,	things	change	in	sparse,	

discontinuous	environments	in	which	only	a	small	fraction	of	possible	actions	are	reinforced.	In	

additional	simulations	(Supplementary	Figure	4	and	5)	of	such	environments,	models	incorporating	

uncertainty-guided	exploration	gained	a	small	advantage	over	value-guided	choice	alone.		At	the	same	

time,	these	very	challenging	environments	could	not	be	learned	by	TD	probably	because	of	their	

temporal	discontinuity,	which	defeats	value	back-propagation.		Considering	that	and	the	human	

performance	on	the	much	simpler	monotonic	contingencies	(Figure	1),	we	doubt	that	an	average	person	

can	learn	sparse,	discontinuous	contingencies	reliably	even	given	hundreds	of	trials.	
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Basis	Function	Representation	of	a	Temporal	Contingency	

The	SCEPTIC	model	represented	expected	value	using	several	radial	basis	functions	with	contiguous	

and	overlapping	temporal	receptive	fields.		We	note	that	discrete	Gaussian	elements	were	employed	here	

for	computational	convenience,	and	we	make	no	claims	about	the	superiority	of	this	solution	over	

alternatives	such	as	cosine	basis	(52).		Extending	earlier	findings	in	Pavlovian	conditioning	(12,13),	we	

found	that	TBF	representations	afforded	a	better	fit	to	human	instrumental	behavior	on	the	clock	task	

than	a	delay	line	TD	model.		TD	has	been	previously	reported	to	fail	on	the	clock	task	due	to	erroneous	

back-propagation	of	value	from	later	to	earlier	points	in	the	interval	(24).		Importantly,	our	TD	model	

with	a	task-specific	state	space	partition	successfully	overcame	this	problem,	as	indicated	by	its	foraging	

success.		We	can	thus	be	confident	that	SCEPTIC’s	superiority	is	specifically	due	to	the	combination	of	

TBF	value	representation	and	the	strategic	consideration	of	the	entire	interval	in	the	choice	rule.		Like	

Ludvig,	Sutton,	and	Kehoe	(12,13),	we	did	not	attempt	to	estimate	the	functional	form,	number,	and	

placement	of	TBF	elements,	fixing	them	at	reasonable	priors.		New	experiments	are	needed	to	constrain	

the	parameterization	of	TBF	with	behavioral	and	physiological	data.		One	testable	hypothesis	—	

articulated	but	not	tested	by	Ludvig	and	colleagues	—	is	that	the	density	of	elements	decreases	

progressively	with	the	passage	of	time	within	the	interval,	which	would	reflect	Weber’s	law	(53).		This	

question	relates	to	the	broader	unresolved	problem	of	interval	adaptation	(47,53),	or	in	computational	

terms,	how	the	agent	learns	to	optimally	place	the	TBF	elements	based	on	time	intervals	experienced	in	a	

particular	context.		

Limitations	

While	our	data	support	entropy-driven	continual	exploration	on	the	clock	task,	they	do	not	rule	out	

the	possibility	that	initial	exploration	is	driven	by	uncertainty	seeking.	That	said,	we	tested	a	model	

variant	(KF	U	→	V)	designed	to	switch	from	initial	exploration	to	later	exploitation,	which	was	inferior	in	
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model	comparisons	(details	in	Supplemental	Materials).	The	time	course	of	exploration	(Figure	1)	and	

information	dynamics	(Figure	7)	suggest	that	the	period	of	initial	exploration	on	the	clock	task	may	be	as	

short	as	5-8	trials.	One	possibility	is	that	humans	track	uncertainty	explicitly	during	the	first	few	trials	in	

order	to	seed	potentially	valuable	actions	in	the	softmax	function,	essentially	defining	a	subset	of	eligible	

actions	for	further	refinement	in	continual	exploration.	Further,	in	environments	where	participants	are	

explicitly	told	that	they	will	repeatedly	sample	a	stable	contingency	(i.e.,	there	is	a	longer	horizon	for	

learning),	they	are	more	likely	to	use	directed	exploration	to	identify	the	best	action	than	when	they	have	

only	a	single	choice	(54).		More	speculatively,	the	cognitive	load	of	an	explicit	uncertainty	representation	

combined	with	a	high-entropy	value	representation	may	be	overwhelming	early	in	learning.		On	the	other	

hand,	the	shift	toward	continual	exploration	using	a	Boltzmann	strategy	may	ease	working	memory	

demands.	Our	null	findings	with	respect	to	learning	rates	should	be	taken	with	caution	since	there	are	a	

number	of	other	approaches	to	volatility-modulated	learning	rates	that	could	be	potentially	adapted	to	

SCEPTIC	(51,55,56).	Finally,	our	analyses	did	not	address	the	issues	of	opportunity	cost	and	the	intrinsic	

cost	of	waiting	(52),	important	independent	influences	on	behavior,	which	will	need	to	be	examined	in	

the	context	of	the	clock	task.		

Conclusions	

In	contrast	to	previous	proposals	for	resolving	the	exploration/exploitation	dilemma	at	policy	level,	

we	show	that	this	can	be	also	accomplished	at	the	level	of	updating	and	maintaining	the	value	

representation.		In	this	study	of	reinforcement-based	timing	a	simple	selective	value	maintenance	

strategy	reduced	information	load	and	facilitated	the	transition	to	exploitation,	further	work	is	needed	to	

evaluate	alternative	information	maintenance	strategies	and	their	putative	neural	implementations.		At	

the	same	time,	our	findings	broadly	align	with	emerging	evidence	that	the	implementation	of	optimal	

inference	is	limited	by	representational	capacity	(2)	and	that	heuristic	approaches	to	reinforcement	

learning	are	more	likely	to	be	effective	in	complex	environments	(20,57).	
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Materials	and	Methods	

Ethics	Statement	

	 Participants	and/or	their	legal	guardians	provided	informed	consent	or	assent	prior	to	

participation	in	this	study.	Experimental	procedures	for	this	study	complied	with	Code	of	Ethics	of	the	

World	Medical	Association	(1964	Declaration	of	Helsinki)	and	the	Institutional	Review	Board	at	the	

University	of	Pittsburgh	(protocol	PRO10090478).	Participants	were	compensated	$75	for	completing	

the	experiment.	

Participants	

We	enrolled	76	normally	developing	youth	and	young	adults,	aged	14	to	30	(M	=	21.32,	SD	=	5.10).	

Thirty-nine	participants	(51.3%)	were	female.	Prior	to	enrollment,	participants	were	interviewed	to	

verify	that	they	had	no	history	of	neurological	disorder,	brain	injury,	pervasive	developmental	disorder,	

or	psychiatric	disorder	(in	self	or	first-degree	relatives).		

Procedure	

Participants	completed	eight	runs	of	a	reinforcement-based	timing	task	(hereafter	called	the	“clock	

task”)	during	an	fMRI	scan	in	a	Siemens	Tim	Trio	3T	scanner.	Runs	consisted	of	fifty	trials	in	which	a	

darkened	circle	resembling	a	clock	hand	revolved	360°	around	a	central	stimulus	over	the	course	of	four	

seconds	(Figure	1a).	Participants	pressed	a	button	on	a	button	glove	to	end	the	trial	and	receive	a	

probabilistic	reward.	Time-varying	contingencies	were	taken	from	the	paradigm	developed	by	Moustafa	

and	colleagues	(24)	and	included	monotonically	increasing	expected	value	(IEV;	reinforcing	late	

responses),	decreasing	expected	value	(DEV;	reinforcing	early	responses),	constant	expected	value	(CEV),	

and	constant	expected	value–reversed	(CEVR;	see	Figure	1b).	The	CEV	and	CEVR	conditions	had	constant	

expected	value	for	all	response	times,	but	varied	in	probability	and	magnitude.	The	central	stimulus	was	

a	face	with	a	happy	expression	or	fearful	expression,	or	a	phase-scrambled	version	of	face	images	
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intended	to	produce	an	abstract	visual	stimulus	with	equal	luminance	and	coloration.	Faces	were	

selected	from	the	NimStim	database	(58).	All	four	contingencies	were	collected	with	scrambled	images,	

whereas	only	IEV	and	DEV	were	also	collected	with	happy	and	fearful	faces.	The	emotion	manipulation	

and	fMRI	results	will	be	reported	in	separate	manuscripts	because	they	are	not	central	for	the	validation	

of	our	model.	

Participants	also	completed	the	Reynolds	Intellectual	Screening	Test	(RIST),	a	brief	inventory	of	

verbal	and	nonverbal	intelligence	(59)	consisting	of	a	verbal	subtest	measuring	verbal	reasoning	and	

vocabulary,	as	well	as	a	nonverbal	subtest	in	which	examinees	identify	which	stimulus	does	not	belong	

with	the	others	in	a	series	of	progressively	more	abstract	displays.	The	RIST	has	strong	test-retest	

reliability	and	convergent	validity,	and	correlates	highly	with	full	assessments	of	intellectual	ability.	The	

RIST	was	administered	by	personnel	proficient	in	psychological	testing	and	supervised	by	one	of	the	

authors	(MNH).	In	our	sample,	the	average	RIST	Index	(a	measure	of	overall	intellectual	ability)	was	

105.46	(SD	=	9.39;	range	=	80–129).	

StrategiC	ExPloration/ExPloitation	of	Temporal	Instrumental	Contingencies	(SCEPTIC)	

	 Temporal	basis	representation.	The	SCEPTIC	model	represents	time	using	a	set	of	

unnormalized	Gaussian	radial	basis	functions	(RBF)	spaced	evenly	over	an	interval	T	in	which	each	

function	has	a	temporal	receptive	field	with	a	mean	and	variance	defining	its	point	of	maximal	sensitivity	

and	the	range	of	times	to	which	it	is	sensitive,	respectively	(a	conceptual	depiction	of	the	model	is	

provided	in	Figure	2).	The	number,	width,	and	spacing	of	these	basis	functions	can	be	varied	without	loss	

of	generality	to	more	substantive	parts	of	the	reinforcement	learning	model,	although	a	richer	basis	set	

can	represent	more	fine-grained	temporal	information.	A	set	of	overlapping	radial	basis	functions	(RBFs)	

provides	an	efficient	approximation	of	an	arbitrary	function,	f(T),	over	a	finite	interval	(60,61).	From	a	

biological	standpoint,	the	advantages	of	this	approach	are	that	1)	given	a	fixed	number	of	basis	functions,	
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approximation	imprecision	scales	with	the	length	of	the	interval	(53);	and	2)	it	is	compatible	with	

accounts	of	response-sensitive	neurons	with	distinct	temporal	tuning,	for	example	in	the	medial	

premotor	cortex	(62).	

The	primary	quantity	tracked	by	the	basis	is	the	expected	value	of	a	given	choice.	To	represent	

time-varying	value,	the	heights	of	each	basis	function	are	scaled	according	to	a	set	of	weights,	" =

[&*, &A, … ,&'].	The	contribution	of	each	basis	function	to	the	integrated	value	representation	at	a	

particular	moment	in	time,	t,	is	represented	by	multiplying	the	relevant	weight	by	the	bth	RBF:	

D' E = 	&' exp −
E − I' A

2J'A
		

And	more	generally,	the	expected	value	function	on	a	trial	i	is	obtained	by	the	evaluation	of	the	

basis	across	time:	

K(L) = "(L)M	

Parameterization	of	temporal	basis	functions	in	SCEPTIC.	In	order	to	represent	temporal	

decision-making	during	the	clock	task,	where	the	probability	and	magnitude	of	reward	varied	over	the	

course	of	four-second	trials,	we	spaced	the	centers	of	24	Gaussian	RBFs	evenly	across	the	discrete	

interval	and	chose	a	fixed	width,	J'A,	to	represent	the	temporal	variance	(width)	of	each	basis	function.	

Because	of	the	challenges	of	approximating	functions	over	discrete	intervals	(the	Runge	phenomenon;	

see	(60,63)),	two	additional	modifications	of	the	basis	were	required	to	obtain	an	accurate	function	

approximation:	(1)	the	centers	of	some	basis	functions	were	extended	beyond	the	interval	to	be	

represented,	and	(2)	weight	updates	were	performed	using	a	truncated	Gaussian	basis	such	that	the	area	

under	the	curve	within	the	time	interval	of	interest	was	equal	for	all	basis	functions	(additional	details	

provided	in	Supplementary	Methods).	
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Although	it	is	plausible	that	a	system	coding	time-dependent	information	about	rewards	may	

update	its	temporal	width,	height,	or	center	of	maximal	sensitivity	on	the	basis	of	reinforcement,	here	we	

updated	only	the	heights	of	each	basis	function	based	on	the	reinforcement	history.	For	treatments	of	

basis	function	adaptation	in	reinforcement	learning	models,	see	(64)	and	(65).	For	the	widths	of	the	

RBFs,	J'A,	we	chose	a	moderate	degree	of	overlap	between	adjacent	basis	functions	in	order	to	provide	

reasonable	coverage	of	each	moment	within	the	time	interval.	More	specifically,	J'A	was	chosen	such	that	

the	distribution	of	adjacent	RBFs	overlapped	by	approximately	50%,	but	overlap	between	30%	and	70%	

provided	similar	results.	The	parameterization	of	the	temporal	basis	is	not	a	crucial	component	of	the	

SCEPTIC	model,	and	another	temporal	basis	(e.g.,	piecewise	polynomial	splines	or	discrete	cosine	

transform)	would	likely	yield	similar	results.	

	 Updating	expected	value	on	the	basis	of	reinforcement.	A	straightforward	model	of	temporal	

instrumental	learning	can	be	specified	by	combining	the	delta	learning	rule	(66)	with	the	temporal	

representational	structure	defined	above.	More	specifically,	the	weight	for	a	basis	function	b	can	be	

updated	according	to	the	equation:				

&' L + 1 = 	&' L + P' L|E : reward L E − &'(L) 	

	 where	i	is	the	current	trial	in	the	task,	t	is	the	observed	response	time,	and	reward(i|t)	is	the	

reward	obtained	on	trial	i	given	the	choice	t.	The	effect	of	prediction	error	is	scaled	according	to	the	

learning	rate	:	and	the	temporal	generalization	function	P' .	Of	note,	this	learning	rule	updates	the	weight	

of	each	basis	function,	&'(L),	individually	without	assuming	knowledge	of	the	integrated	value	

representation,	K(L).	Thus,	the	value	function	approximation	does	not	converge	absolutely	on	the	

temporal	distribution	of	rewards,	instead	preserving	relative	differences	(i.e.,	the	rank	ordering)	of	

alternative	values.		We	note	that	to	make	the	model	converge	on	the	underlying	value	function,	the	

learning	rule	of	SCEPTIC	variants	can	be	altered	to	compute	prediction	errors	as	the	difference	between	
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actual	reward	and	the	integrated	value	representation,	K(L).		Implementing	such	a	function-wise	update	

does	not	qualitatively	change	any	of	our	substantive	results.	This	alternative,	however,	suffers	from	lower	

identifiability	and	provides	a	poorer	fit	to	subjects’	behavior.		It	also	requires	a	stronger	assumption	

about	value	representation,	namely	that	basis	functions	query	each	other	during	learning	to	update	their	

weights	(details	available	from	authors	upon	request).	We	acknowledge	that	Ludvig	and	colleagues’	TBF	

model	of	Pavlovian	learning	applies	function-wise	value	updates	(12),	and	the	reasons	for	the	apparent	

superiority	of	elementwise	updates	here	remain	to	be	investigated.	

To	take	advantage	of	temporal	generalization,	it	is	crucial	that	feedback	obtained	at	a	given	response	

time	t	is	propagated	to	adjacent	times	to	avoid	tracking	separate	value	estimates	for	each	possible	

moment.	Thus,	to	represent	temporal	generalization	of	expected	value	updates,	we	used	a	Gaussian	RBF	

centered	on	the	response	time	t,	having	width	JVA	and	normalized	to	have	an	area	under	the	curve	of	

unity.	The	eligibility	of	a	basis	function	D'	to	be	updated	by	prediction	error	is	defined	by	the	area	under	

the	curve	of	its	product	with	the	temporal	generalization	function:	

P' L E = W(E
X

.
, JVA)D'YE	

	 This	parameterization	leads	to	a	scalar	value	for	each	RBF	between	zero	and	one	representing	the	

proportion	of	overlap	between	the	temporal	generalization	function	and	the	receptive	field	of	the	RBF.	In	

the	case	of	perfect	overlap,	where	the	response	time	is	perfectly	centered	on	a	given	basis	function	and	

the	width	of	the	generalization	function	matches	the	basis	(i.e.,	JVA = J'A),	P'	will	reach	unity,	resulting	a	

maximal	weight	update	according	to	the	learning	rule	above.	Conversely,	if	there	is	no	overlap	between	

an	RBF	and	the	temporal	generalization	function	P'	will	be	zero	and	no	learning	will	occur	in	the	

receptive	field	of	that	RBF.	
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Choice	rule.	Finally,	having	defined	a	framework	for	tracking	and	updating	estimates	of	expected	

value	over	time,	SCEPTIC	variants	select	an	action	based	on	a	softmax	choice	rule,	analogous	to	simpler	

reinforcement	learning	problems	(e.g.,	two-armed	bandit	tasks	(67)).	For	computational	speed,	we	

arbitrarily	discretized	the	interval	into	10ms	time	bins	such	that	the	agent	selected	among	500	potential	

responses.	The	agent	chose	responses	in	proportion	to	their	expected	value:	

Z [E L + 1 = 	\	 	K(L)) = 	
exp	(K L ]/8)
exp	(K L _/8)X

_).
	

where	j	is	a	specific	response	time	and	the	temperature	parameter,	8,	controls	the	sharpness	of	the	

decision	function	(at	higher	values,	actions	become	more	similar	in	selection	probability).	

The	softmax	function	has	two	potentially	desirable	properties	in	the	temporal	instrumental	

learning	context.	First,	if	several	actions	are	associated	with	similar	expected	value,	even	if	substantially	

separated	in	time,	they	will	be	selected	with	similar	probability.	Second,	by	virtue	of	the	temporal	basis	

representation	(where	reinforcement	information	is	generalized	in	time),	response	times	adjacent	to	the	

global	maximum	of	learned	expected	value	are	more	likely	to	be	selected,	promoting	temporally	local	

exploration	of	advantageous	areas.	To	highlight	the	advantages	of	the	softmax	policy,	we	contrasted	it	

with	a	2-greedy	choice	rule,	which	was	predictably	inferior	in	optimality	simulations	(details	provided	in	

Supplemental	Materials).	

Overcoming	cognitive	constraint	on	value	representation:	the	selective	maintenance	

model.	We	tested	a	selective	maintenance	model	(Figure	3)	in	which	basis	weights	reverted	toward	zero	

in	inverse	proportion	to	the	temporal	generalization	function:	

&' L + 1 = 	&' L + P' L|E : reward L E − &'(L) − 3 1 − P' L E &' L − ℎ 	
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where	3	is	a	selective	maintenance	parameter	between	zero	and	one	that	scales	the	degree	of	

reversion	toward	a	point	h,	which	is	taken	to	be	zero	here,	but	could	be	replaced	with	an	alternative,	such	

as	a	prior	expectation.		

Representing	value	and	uncertainty	according	to	the	Kalman	filter.		

The	Kalman	filter	(KF)	is	a	classic	Bayesian	approach	to	estimating	the	expectation	(mean)	and	

uncertainty	(variance)	of	a	Gaussian	process	that	unfolds	in	discrete	time	(for	a	classic	example	of	

Kalman	filters	in	reinforcement	learning	models,	see	(68)).	We	also	note	that	Frank	and	colleagues	tested	

a	Kalman	filter	variant	of	their	model	to	track	expected	value,	rather	than	the	probability	of	prediction	

error,	and	our	work	built	on	this	useful	insight.	In	the	SCEPTIC	model,	each	basis	function	can	be	

reconceptualized	as	a	Kalman	filter	that	tracks	information	about	both	the	expected	value	of	a	response	

(i.e.,	the	mean)	in	its	temporal	receptive	field	as	well	as	uncertainty	about	expected	value.	Crucially,	

integrating	across	basis	functions,	KF	variants	of	the	SCEPTIC	model	represent	both	time-varying	value	

and	uncertainty	functions	(V	and	U,	respectively),	enabling	policies	that	integrate	information	from	both	

sources.	

Compared	to	SCEPTIC	variants	described	above	that	rely	on	a	fixed	learning	rate	to	update	basis	

weights,	there	are	three	major	differences	for	KF	variants:	1)	the	effective	learning	rate	(gain)	declines	

with	experience	such	that	early	outcomes	have	the	greatest	effect	on	learning,	2)	the	model	tracks	the	

evolution	of	uncertainty	about	expected	value,	and	3)	the	choice	rule	(policy)	for	some	models	involves	a	

tradeoff	between	exploratory	and	exploitative	influences.	The	learning	rule	for	KF	SCEPTIC	variants	is:	

I' L + 1 = I' L +	P' L E a' L reward L E − I'(L) 	

where	I' L 	represents	the	contribution	of	basis	function	b	on	trial	i	to	the	expected	value	

function,	V(i).	The	gain	(learning	rate)	for	a	given	basis	function	on	trial	i	is	defined	as	
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a' L =
b' L A

b' L A + bcdeA
	

where	bcdeA 	represents	the	expected	volatility	(measurement	noise)	of	the	environment.	Here,	we	

provided	the	model	the	variance	of	returns	from	a	typical	run	of	the	experiment	as	an	initial	estimate	of	

measurement	noise,	although	other	priors	led	to	similar	model	performance.	We	also	initialized	prior	

estimates	of	uncertainty	for	each	basis	function	to	be	equal	to	the	measurement	noise,	b'A 0 ∶= bcdeA ,	

leading	to	a	gain	of	0.5	on	the	first	trial	(as	in	(69)).	

Under	the	KF,	the	contribution	of	each	basis	function	to	uncertainty	about	expected	value	is	

represented	as	the	standard	deviation	of	its	Gaussian	distribution.	Likewise,	posterior	estimates	of	

uncertainty	about	responses	proximate	to	the	basis	function	b	decline	in	inverse	proportion	to	the	gain	

according	to	the	following	update	rule:	

b' L + 1 = 1 − P' L E a' L b'(L)	

Note	that	the	temporal	generalization	function	P'(L|E)	is	parameterized	identically	across	SCEPTIC	

variants	and	is	used	in	KF	variants	to	update	both	value	and	uncertainty	estimates.		Extending	the	

temporal	representation	described	above,	for	KF	variants,	estimates	of	the	time-varying	value	and	

uncertainty	functions	are	provided	by	the	evaluation	of	the	basis	over	time:	

K(L) = g(L)M	

h(L) = i(L)M	

	 Integrating	uncertainty	and	expected	value	in	response	selection	under	KF	SCEPTIC	variants.	

Early	in	learning,	expected	value	will	be	low	for	most	responses	and	uncertainty	will	be	high,	whereas	the	

converse	will	be	true	late	in	learning.	Thus,	a	policy	that	combines	value	and	uncertainty	may	confer	

particular	advantages	because	uncertainty-driven	responses	early	in	learning	would	facilitate	more	
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robust	and	efficient	sampling.	The	KF	U	+	V	policy	represents	a	decision	function,	j L ,	as	a	weighted	sum	

of	the	value	and	uncertainty	functions	according	to	a	free	parameter,	1.	As	uncertainty	decreases	with	

sampling	and	expected	value	increases	with	learning,	value-related	information	will	begin	to	dominate	

over	uncertainty.	Positive	values	of	1	promote	uncertainty-driven	exploration,	whereas	negative	values	

yield	uncertainty	aversion.	

j L = 	K L + 1h(L)	

To	ensure	that	our	model	comparison	results	were	robust	to	the	specific	implementation	of	the	

uncertainty-sensitive	choice	rule	and	dynamic	learning	rate,	we	tested	a	number	of	alternatives,	detailed	

in	the	Supplemental	Material,	all	of	which	proved	to	be	inferior	to	the	variants	described	above.	

Sensitivity	analyses:	choice	autocorrelation	(sticky	choice).	To	rule	out	the	possibility	that	the	

Selective	maintenance	model	fit	well	because	it	better	represented	sticky	choices,	we	extended	SCEPTIC	

models	with	two	choice	autocorrelation	functions	(ACF):	a	simple	first-order	autoregressive	(AR[1])	ACF	

and	an	ACF	extended	over	multiple	trials	(32).		The	AR(1)	model	modulated	the	probability	of	choosing	a	

given	time	point	t	in	a	trial	by	k ⋅ m|_nco p |	(we	omit	the	trial	index	i	for	simplicity	in	this	paragraph),	

where	k	is	the	autocorrelation	parameter	and	m	is	the	temporal	generalization	parameter,	followed	by	

divisive	normalization.		The	extended	ACF	maintained	for	each	time	point	t	an	index	ct	of	how	recently	it	

was	chosen.		When	t	was	chosen,	ct	was	set	to	1;	otherwise	it	decayed	by	a	factor	=.		The	probability	of	t	

being	chosen	in	the	softmax	was	a	function	of	its	value	and	the	additive	term	k ⋅ q_ .		We	also	tested	a	

version	of	extended	ACF	with	temporal	generalization	implemented	using	Gaussian	smoothing	with	a	

kernel	representing	a	temporal	generalization	parameter,	but	this	resulting	model	had	inferior	fits	(data	

available	upon	request).		

TD	(Q-learning)	Model	
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To	design	a	robust	benchmark	for	the	clock	task,	we	amended	the	standard	Q-learning	model	in	

two	ways.		First,	to	overcome	the	problem	of	erroneous	value	back-propagation,	where	earlier	responses	

become	over-valued	(24),	we	set	up	the	state	space	such	that	each	time	step	t	has	a	pair	of	actions,	A	=	

{wait,	respond}.		For	wait	actions,	we	ensured	that	value	was	appropriately	back-propagated	only	to	

previous	waits:	

j J_, r_|r_ = wait ← j J_, r_ + :[3 ⋅ max
w
j(J_x*, r) − j J_, r_ ]	

where	:	is	the	learning	rate	and	3	is	the	discount	parameter.		We	use	the	conventional	j J_, r_ 	

notation	here,	but	since	time	steps	t	always	map	onto	the	same	states	(potential	response	times),	J_	is	

redundant	and	j r_ 	would	suffice.		Conversely,	because	respond	actions	led	to	the	absorbing	terminal	

state,	ending	the	trial,	they	were	directly	updated	by	actual	rewards	and	not	by	back-propagation:	

j J_, r_|r_ = respond ← j J_, r_ + :[P ⋅ [_x* − j J_, r_ ]		

where	e	is	the	eligibility	trace	or	credit	for	a	reward	assigned	to	a	given	action	based	on	its	

temporal	proximity.		We	assumed	e	to	decay	exponentially	over	time.	

Second,	we	employed	a	modified	e-greedy	choice	rule	to	ensure	that	the	agent	explored	the	later	

part	of	the	interval:	

m J_x* = 	
wait if	|	 ≤ 1 −

1
~ − E

respond otherwise
if	Ä < 2	(explore)

argmax
w

j(J_, r) otherwise	(exploit)
	

where	2	is	the	exploration/exploitation	parameter,	t	is	the	current	time	step,	T	is	the	total	number	

of	time	steps,	and	Ä	and	R	are	[0,1]	uniform	random	numbers	drawn	at	each	time	step.		While	a	simple	e-

greedy	agent	does	not	effectively	explore	later	time	steps	because	of	the	fixed	exploration	probability,	the	

1 − *
Xn_

	term	produces	more	exploratory	waits	early	in	the	trial	and	more	responses	late	in	the	trial.		A	
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SARSA	model	was	also	tested,	but	is	not	included	here	because	it	was	inferior	to	TD	in	almost	every	

respect	(data	available	upon	request).	

Frank	Time-Clock	(TC)	Model	

To	date,	the	TC	model	of	Frank	and	colleagues	(11)	has	been	applied	in	behavioral,	genetic,	and	

neuroimaging	studies	of	uncertainty-driven	exploration	and	dopaminergic	influences	on	response	times	

(10,24).	The	TC	model	represents	trial-wise	response	times	on	the	clock	task	as	a	linear	combination	of	

several	potentially	neurobiological	processes:	

RT E = 	Ñ + =RT E − 1 + > RTÖdÜo − RTáàâ − Go E + 	NoGo E + 9 IÜåçe E − IéáÜo E + ε[σÜåçe E

− béáÜo E ]	

The	details	of	each	parameter	and	the	underlying	representation	are	provided	in	the	

Supplemental	Methods.	With	respect	to	value-based	decisions,	the	TC	model	separately	updates	the	

probability	of	a	positive	prediction	error	(PPE)	for	RTs	that	are	slower	or	faster	than	the	subject’s	

average	(IÜåçe	and	IéáÜo,	respectively).	With	learning,	the	model	predicts	that	subjects	shift	toward	faster	

or	slower	RTs	that	are	associated	with	a	greater	expectation	of	a	PPE	according	to	a	free	parameter,	9.	

Data	Analysis	

	 Tests	of	model	optimality.	In	order	to	test	and	compare	the	efficacy	of	each	model	in	learning	

temporal	contingencies,	we	identified	parameter	sets	that	maximized	the	quality	of	choices	in	

simulations	of	the	clock	task.	More	specifically,	for	each	model,	we	fit	parameters	using	a	genetic	

algorithm	(ga	function	in	MATLAB)	that	returned	the	greatest	summed	expected	value	across	60	runs	

consisting	of	50	trials	each.	The	temporal	contingency	was	based	on	two	sinusoidal	functions	for	

expected	value	and	probability	(see	Supplementary	Methods	and	Supplementary	Figure	2	for	details).	

Next,	we	validated	the	robustness	of	parameter	sets	to	contingencies	that	were	not	part	of	the	parameter	

optimization.	For	this	step,	we	simulated	rewards	earned	by	each	model	at	the	five	best	parameter	sets	
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from	optimization.	Each	model	was	exposed	to	100	instances	of	a	randomly	phase-shifted	variant	of	the	

sinusoidal	contingency	and	made	choices	according	to	its	parameters.	We	then	analyzed	the	distribution	

of	returns	for	each	model	using	multilevel	regression	models	(lmer	function	in	R	3.2.5)	where	

contingency	instances	were	modeled	by	a	random	intercept	(since	contingencies	were	drawn	from	the	

population	of	possible	contingencies)	and	model	was	treated	as	a	fixed	factor.	Because	models	differed	

considerably	in	the	variability	of	earnings	across	replications,	we	allowed	for	heteroscedastic	residual	

variance	by	model.	

Because	the	objective	functions	for	most	models	were	non-convex	and	prone	to	local	minima,	

optimization	using	a	genetic	algorithm	(ga	function	in	MATLAB)	was	repeated	100	times	using	different	

random	starting	values	spanning	the	parameter	space	for	the	initial	population.	This	resulted	in	a	

distribution	of	returns	on	policy,	as	well	as	multivariate	distributions	of	parameters	for	each	

optimization.	These	data	provided	information	about	the	ability	of	each	model	to	learn	the	temporal	

contingency	when	parameters	were	tuned	for	that	environment.	

To	compare	the	optimality	of	different	models	in	solving	temporal	instrumental	contingencies,	we	

estimated	a	multilevel	model	in	which	performance	was	regressed	on	model	and	run	length	(40,	60,	or	

110	trials);	parameter	set	(best	5	sets	for	each	model)	and	replication	(100)	were	treated	as	random	

effects.	Simple	effects	tests	of	model	for	each	run	length	were	estimated	adjusted	p-values	were	

computed	according	to	the	multivariate	distribution	of	coefficients	to	maintain	a	familywise	error	rate	of	

.05	for	each	run	length	(70).	We	varied	run	lengths	between	20	and	200	in	increments	of	5,	but	chose	to	

report	a	subset	of	contingencies	that	were	illustrative	model	performance	changes	as	a	function	of	run	

length.	

Identifiability.	In	addition	to	comparing	the	ability	of	each	model	to	solve	temporal	instrumental	

problems	in	simulated	environments,	we	tested	their	recovery	of	each	parameter	in	simulated	data.		As	in	

conventional	simulation	studies	of	estimators	(for	a	useful	treatment	in	a	neuroscience	context,	see	(71)),	
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we	focused	specifically	on	variance	(i.e.,	dispersion	of	estimated	values	around	the	population	value,	

reported	as	R2	between	original	and	recovered	parameters)	and	parameter	bias	(i.e.,	systematic	

deviations	between	population	and	estimated	values).		For	each	model,	we	simulated	the	behavior	of	100	

agents	by	drawing	all	parameters	from	the	uniform	distribution	and	fitting	all	parameters	at	once.		For	

models	using	a	softmax	choice	rule,	the	temperature	parameter	was	not	recoverable.		Since	this	

parameter	tends	to	absorb	misfit	and	account	for	exogenous	factors	when	fitting	behavior,	we	fixed	it	

here	at	0.1,	a	value	corresponding	to	high	exploitation	that	highlighted	more	substantive	parts	of	the	

model.		To	avoid	bias,	we	took	a	similar	approach	when	fitting	TD.	We	estimated	best-fitting	parameters	

using	the	ga	in	MATLAB	similarly	to	our	optimality	tests.	

Subject	behavior	fitting.	We	fit	computational	models	to	participant	behavior	in	a	deterministic	

state-space	framework	using	a	variational	Bayes	approach	(VBA)	implemented	in	MATLAB	(72).	An	

important	advantage	of	this	approach	is	that	the	relative	evidence	for	different	models	can	be	compared	

using	random	effects	Bayesian	model	comparison	(BMC)	(73).	VBA	parameterizes	the	choice	history	in	a	

state-space	framework	consisting	of	dependent	variables	(i.e.,	time	series	to	be	predicted	by	the	model),	

hidden	states	(i.e.,	latent	quantities	to	be	tracked	over	trials),	and	evolution	and	observation	functions	

that	define	the	dynamics	of	hidden	state	transitions	and	the	model-predicted	output,	respectively	(for	

details,	see	(72)).	For	SCEPTIC	models,	the	hidden	state	vector	was	composed	of	basis	function	weights	

representing	expected	value,	which	were	initialized	from	a	random	uniform	prior	distribution	spanning	

the	range	of	values	on	the	underlying	contingencies.	For	variants	that	also	tracked	uncertainty,	posterior	

uncertainty	estimates	were	also	tracked	for	each	basis	function	and	initialized	as	the	variance	of	values	

across	all	timesteps	in	the	distribution.		We	used	uninformative	Gaussian	priors	(M	=	0,	SD	=	10)	for	all	

other	free	parameters.	
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For	Q-learning,	the	hidden	state	vector	consisted	of	estimated	Q	values	for	respond	and	wait	

actions	at	each	time	step	(80	total	hidden	states).	Similar	to	SCEPTIC,	we	used	uninformative	Gaussian	

priors	(M	=	0,	SD	=	10)	for	both	free	parameters.	

For	TC,	the	hidden	states	tracked	by	the	model	were	a)	the	response	time	associated	with	the	

largest	reward	experienced	in	a	block,	b)	the	:	and	8	hyperparameters	for	two	beta	distributions	

tracking	the	value	and	uncertainty	of	slow	and	fast	responses,	c)	the	expected	value	of	each	choice	

tracked	according	to	a	delta-rule	model	with	learning	rate	of	0.1,	and	d)	the	value	of	Go	and	NoGo	

decision	signals,	e)	the	locally	averaged	response	time,	RTlocavg.	Model	parameters	were	initialized	with	

broad	uninformative	priors,	although	because	of	differences	in	scaling	and	parameterization	(e.g.,	

learning	rates	vary	between	zero	and	one),	the	distributional	form	of	parameters	varied	(see	

Supplemental	Table	1).	Initial	values	for	parameters	were	chosen	based	on	Frank	and	colleagues	(11)	and	

code	generously	provided	by	Michael	Frank.	Parameter	distributions	were	chosen	based	on	optimization	

bounds	in	the	previous	TC	implementation,	as	well	as	observations	about	TC	parameters	in	this	and	

previous	datasets.	
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Note.	The	codes	and	data	for	all	analyses	reported	in	this	paper	are	publicly	available	at:	

https://github.com/DecisionNeurosciencePsychopathology/temporal_instrumental_agent	

Acknowledgements.	The	authors	thank	Michael	J.	Frank	for	helpful	comments	on	validation	and	

comparison	of	reinforcement	learning	models,	as	well	as	codes	for	the	experimental	paradigm	and	time-

clock	model.	We	thank	Jonathan	Wilson	for	help	with	figure	preparation	and	model	implementation.	We	

are	grateful	to	Peter	Molenaar	for	useful	suggestions	regarding	adaptive	filtering	and	autoregressive	

processes.		We	appreciate	Yael	Niv’s	comment	about	the	role	of	basis	representation	in	our	learning	rule.		

We	also	thank	Michael	Woodford	for	his	suggestion	of	examining	information	theory	measures	in	

behavioral	analyses.	We	thank	Beatriz	Luna	for	help	with	data	collection	and	quality	assurance.	

This	research	was	performed,	in	part,	using	resources	and	the	computing	assistance	of	the	

Pennsylvania	State	University	Institute	for	CyberScience	Advanced	CyberInfrastructure	(ICS-ACI).		 	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195453doi: bioRxiv preprint 

https://doi.org/10.1101/195453


SELECTIVE	MAINTENANCE	AND	ENTROPY-DRIVEN	EXPLORATION	 47	

References	

1.		 Glimcher	PW,	Fehr	E.	Neuroeconomics:	Decision	Making	and	the	Brain.	Academic	Press;	2013.	606	p.		

2.		 Collins	AGE,	Frank	MJ.	How	much	of	reinforcement	learning	is	working	memory,	not	reinforcement	learning?	

A	behavioral,	computational,	and	neurogenetic	analysis.	Eur	J	Neurosci.	2012	Apr	1;35(7):1024–35.		

3.		 Russell	S,	Wefald	E.	Principles	of	metareasoning.	Artif	Intell.	1991;49(1–3):361–395.		

4.		 Sutton	RS,	Barto	AG.	Reinforcement	learning:	An	introduction.	Cambridge,	MA:	MIT	Press;	1998.	322	p.		

5.		 Dayan	P,	Daw	ND.	Decision	theory,	reinforcement	learning,	and	the	brain.	Cogn	Affect	Behav	Neurosci.	2008	

Dec	1;8(4):429–53.		

6.		 Sutton	RS.	Integrated	architectures	for	learning,	planning,	and	reacting	based	on	approximating	dynamic	

programming.	In:	Proceedings	of	the	Seventh	International	Conference	on	Machine	Learning.	Austin,	TX:	

Morgan	Kaufmann;	1990.	p.	216–24.		

7.		 Daw	ND,	O’Doherty	JP,	Dayan	P,	Seymour	B,	Dolan	RJ.	Cortical	substrates	for	exploratory	decisions	in	humans.	

Nature.	2006	Jun	15;441(7095):876–9.		

8.		 Payzan-LeNestour	E,	Bossaerts	P.	Risk,	Unexpected	Uncertainty,	and	Estimation	Uncertainty:	Bayesian	

Learning	in	Unstable	Settings.	PLOS	Comput	Biol.	2011	Jan	20;7(1):e1001048.		

9.		 Wilson	RC,	Geana	A,	White	JM,	Ludvig	EA,	Cohen	JD.	Humans	use	directed	and	random	exploration	to	solve	

the	explore–exploit	dilemma.	J	Exp	Psychol	Gen.	2014;143(6):2074.		

10.		 Badre	D,	Doll	BB,	Long	NM,	Frank	MJ.	Rostrolateral	prefrontal	cortex	and	individual	differences	in	

uncertainty-driven	exploration.	Neuron.	2012	Feb	9;73(3):595–607.		

11.		 Frank	MJ,	Doll	BB,	Oas-Terpstra	J,	Moreno	F.	Prefrontal	and	striatal	dopaminergic	genes	predict	individual	

differences	in	exploration	and	exploitation.	Nat	Neurosci.	2009	Aug;12(8):1062–8.		

12.		 Ludvig	EA,	Sutton	RS,	Kehoe	EJ.	Evaluating	the	TD	model	of	classical	conditioning.	Learn	Behav.	2012	

Sep;40(3):305–19.		

13.		 Ludvig	EA,	Sutton	RS,	Kehoe	EJ.	Stimulus	Representation	and	the	Timing	of	Reward-Prediction	Errors	in	

Models	of	the	Dopamine	System.	Neural	Comput.	2008	Jul	14;20(12):3034–54.		

14.		 Collins	AGE,	Brown	JK,	Gold	JM,	Waltz	JA,	Frank	MJ.	Working	Memory	Contributions	to	Reinforcement	

Learning	Impairments	in	Schizophrenia.	J	Neurosci.	2014	Oct	8;34(41):13747–56.		

15.		 Otto	AR,	Raio	CM,	Chiang	A,	Phelps	EA,	Daw	ND.	Working-memory	capacity	protects	model-based	learning	

from	stress.	Proc	Natl	Acad	Sci.	2013	Dec	24;110(52):20941–6.		

16.		 Maxcey-Richard	AM,	Hollingworth	A.	The	strategic	retention	of	task-relevant	objects	in	visual	working	

memory.	J	Exp	Psychol	Learn	Mem	Cogn.	2013;39(3):760–72.		

17.		 Baddeley	AD,	Logie	RH.	Working	memory:	The	multiple-component	model.	In:	Miyake	A,	Shah	P,	editors.	

Models	of	working	memory:	Mechanisms	of	active	maintenance	and	executive	control.	New	York,	NY,	US:	

Cambridge	University	Press;	1999.	p.	28–61.		

18.		 Barrouillet	P,	Bernardin	S,	Camos	V.	Time	Constraints	and	Resource	Sharing	in	Adults’	Working	Memory	

Spans.	J	Exp	Psychol	Gen.	2004;133(1):83–100.		

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195453doi: bioRxiv preprint 

https://doi.org/10.1101/195453


SELECTIVE	MAINTENANCE	AND	ENTROPY-DRIVEN	EXPLORATION	 48	

19.		 Kato	A,	Morita	K.	Forgetting	in	Reinforcement	Learning	Links	Sustained	Dopamine	Signals	to	Motivation.	

PLOS	Comput	Biol.	2016	Oct	13;12(10):e1005145.		

20.		 Geana	A,	Niv	Y.	Causal	Model	Comparison	Shows	That	Human	Representation	Learning	Is	Not	Bayesian.	Cold	

Spring	Harb	Symp	Quant	Biol.	2014	Jan	1;79:161–8.		

21.		 Achbany	Y,	Fouss	F,	Yen	L,	Pirotte	A,	Saerens	M.	Tuning	continual	exploration	in	reinforcement	learning:	An	

optimality	property	of	the	Boltzmann	strategy.	Neurocomputing.	2008	Aug;71(13–15):2507–20.		

22.		 Cover	TM,	Thomas	JA.	Elements	of	Information	Theory.	2nd	ed.	Hoboken,	NJ:	Wiley-Interscience;	2006.		

23.		 Makarenko	AA,	Williams	SB,	Bourgault	F,	Durrant-Whyte	HF.	An	experiment	in	integrated	exploration.	In:	

Intelligent	Robots	and	Systems,	2002	IEEE/RSJ	International	Conference	on	[Internet].	IEEE;	2002	[cited	

2016	Jun	9].	p.	534–539.	Available	from:	http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1041445	

24.		 Moustafa	AA,	Cohen	MX,	Sherman	SJ,	Frank	MJ.	A	role	for	dopamine	in	temporal	decision	making	and	reward	

maximization	in	Parkinsonism.	J	Neurosci.	2008	Nov	19;28(47):12294–304.		

25.		 Tsitsiklis	JN,	Van	Roy	B.	An	analysis	of	temporal-difference	learning	with	function	approximation.	Autom	

Control	IEEE	Trans	On.	1997;42(5):674–690.		

26.		 Hausser	J,	Strimmer	K.	Entropy	Inference	and	the	James-Stein	Estimator,	With	Application	to	Nonlinear	Gene	

Association	Networks.	J	Mach	Learn	Res.	2008	Nov	21;10.		

27.		 Lau	B,	Glimcher	PW.	Dynamic	response-by-response	models	of	matching	behavior	in	rhesus	monkeys.	J	Exp	

Anal	Behav.	2005	Nov;84(3):555–79.		

28.		 Frank	MJ.	Hold	your	horses:	A	dynamic	computational	role	for	the	subthalamic	nucleus	in	decision	making.	

Neural	Netw.	2006	Oct;19(8):1120–36.		

29.		 Rigoux	L,	Stephan	KE,	Friston	KJ,	Daunizeau	J.	Bayesian	model	selection	for	group	studies	—	Revisited.	

NeuroImage.	2014	Jan	1;84:971–85.		

30.		 Achbany	Y,	Fouss	F,	Yen	L,	Pirotte	A,	Saerens	M.	Tuning	continual	exploration	in	reinforcement	learning:	An	

optimality	property	of	the	Boltzmann	strategy.	Neurocomputing.	2008	Aug;71(13–15):2507–20.		

31.		 MacKinnon	DP,	Fairchild	AJ,	Fritz	MS.	Mediation	Analysis.	Annu	Rev	Psychol.	2007;58:593–614.		

32.		 Schönberg	T,	Daw	ND,	Joel	D,	O’Doherty	JP.	Reinforcement	Learning	Signals	in	the	Human	Striatum	

Distinguish	Learners	from	Nonlearners	during	Reward-Based	Decision	Making.	J	Neurosci.	2007	Nov	

21;27(47):12860–7.		

33.		 Barrouillet	P,	Bernardin	S,	Portrat	S,	Vergauwe	E,	Camos	V.	Time	and	cognitive	load	in	working	memory.	J	Exp	

Psychol	Learn	Mem	Cogn.	2007	May;33(3):570–85.		

34.		 Borel	É.	La	mécanique	statique	et	l’irréversibilité.	J	Phys	Théorique	Appliquée.	1913;3(1):189–196.		

35.		 Borges	JL.	Collected	Fictions.	New	York,	NY:	Penguin;	1998.		

36.		 Pouget	A,	Beck	JM,	Ma	WJ,	Latham	PE.	Probabilistic	brains:	knowns	and	unknowns.	Nat	Neurosci.	2013	

Sep;16(9):1170–8.		

37.		 Engle	RW,	Tuholski	SW,	Laughlin	JE,	A	R.	Working	memory,	short-term	memory,	and	general	fluid	

intelligence:	A	latent-variable	approach.	J	Exp	Psychol	Gen.	1999;128(3):309–31.		

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195453doi: bioRxiv preprint 

https://doi.org/10.1101/195453


SELECTIVE	MAINTENANCE	AND	ENTROPY-DRIVEN	EXPLORATION	 49	

38.		 Henson	RNA.	Short-Term	Memory	for	Serial	Order:	The	Start-End	Model.	Cognit	Psychol.	1998	Jul;36(2):73–

137.		

39.		 Page	M,	Norris	D.	The	primacy	model:	a	new	model	of	immediate	serial	recall.	Psychol	Rev.	1998;105(4):761.		

40.		 Huys	QJM,	Eshel	N,	O’Nions	E,	Sheridan	L,	Dayan	P,	Roiser	JP.	Bonsai	Trees	in	Your	Head:	How	the	Pavlovian	

System	Sculpts	Goal-Directed	Choices	by	Pruning	Decision	Trees.	PLOS	Comput	Biol.	2012	Mar	

8;8(3):e1002410.		

41.		 Yin	B,	Troger	A.	Exploring	the	4th	dimension:	hippocampus,	time,	and	memory	revisited.	Front	Integr	

Neurosci.	2011;36.		

42.		 Meck	WH,	Church	RM,	Olton	DS.	Hippocampus,	time,	and	memory.	Behav	Neurosci.	1984;98(1):3–22.		

43.		 Meck	WH,	Church	RM,	Matell	MS.	Hippocampus,	time,	and	memory—A	retrospective	analysis.	Behav	

Neurosci.	2013;127(5):642–54.		

44.		 Coslett	HB,	Wiener	M,	Chatterjee	A.	Dissociable	Neural	Systems	for	Timing:	Evidence	from	Subjects	with	Basal	

Ganglia	Lesions.	PLOS	ONE.	2010	Apr	23;5(4):e10324.		

45.		 Aparicio	P,	Diedrichsen	J,	Ivry	RB.	Effects	of	focal	basal	ganglia	lesions	on	timing	and	force	control.	Brain	

Cogn.	2005	Jun;58(1):62–74.		

46.		 Wiener	M,	Turkeltaub	P,	Coslett	HB.	The	image	of	time:	A	voxel-wise	meta-analysis.	NeuroImage.	2010	Jan	

15;49(2):1728–40.		

47.		 Merchant	H,	Harrington	DL,	Meck	WH.	Neural	Basis	of	the	Perception	and	Estimation	of	Time.	Annu	Rev	

Neurosci.	2013;36(1):313–36.		

48.		 Klein-Flugge	MC,	Hunt	LT,	Bach	DR,	Dolan	RJ,	Behrens	TE.	Dissociable	reward	and	timing	signals	in	human	

midbrain	and	ventral	striatum.	Neuron.	2011	Nov	17;72(4):654–64.		

49.		 Meuleau	N,	Bourgine	P.	Exploration	of	Multi-State	Environments:	Local	Measures	and	Back-Propagation	of	

Uncertainty.	Mach	Learn.	1999;35(2):117–54.		

50.		 Dayan	P,	Sejnowski	TJ.	Exploration	bonuses	and	dual	control.	Mach	Learn.	1996;25(1):5–22.		

51.		 Payzan-LeNestour	E,	Bossaerts	P.	Risk,	Unexpected	Uncertainty,	and	Estimation	Uncertainty:	Bayesian	

Learning	in	Unstable	Settings.	PLoS	Comput	Biol.	2011	Jan	20;7(1):e1001048.		

52.		 Drugowitsch	J,	Moreno-Bote	R,	Churchland	AK,	Shadlen	MN,	Pouget	A.	The	Cost	of	Accumulating	Evidence	in	

Perceptual	Decision	Making.	J	Neurosci.	2012	Mar	14;32(11):3612–28.		

53.		 Fiorillo	CD,	Newsome	WT,	Schultz	W.	The	temporal	precision	of	reward	prediction	in	dopamine	neurons.	Nat	

Neurosci.	2008	Aug;11(8):966–73.		

54.		 Wilson	RC,	Geana	A,	White	JM,	Ludvig	EA,	Cohen	JD.	Humans	use	directed	and	random	exploration	to	solve	

the	explore–exploit	dilemma.	J	Exp	Psychol	Gen.	2014;143(6):2074–81.		

55.		 Behrens	TEJ,	Woolrich	MW,	Walton	ME,	Rushworth	MFS.	Learning	the	value	of	information	in	an	uncertain	

world.	Nat	Neurosci.	2007;10(9):1214–21.		

56.		 Iglesias	S,	Mathys	C,	Brodersen	KH,	Kasper	L,	Piccirelli	M,	den	Ouden	HE,	et	al.	Hierarchical	prediction	errors	

in	midbrain	and	basal	forebrain	during	sensory	learning.	Neuron.	2013;80(2):519–30.		

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195453doi: bioRxiv preprint 

https://doi.org/10.1101/195453


SELECTIVE	MAINTENANCE	AND	ENTROPY-DRIVEN	EXPLORATION	 50	

57.		 Niv	Y,	Daniel	R,	Geana	A,	Gershman	SJ,	Leong	YC,	Radulescu	A,	et	al.	Reinforcement	Learning	in	

Multidimensional	Environments	Relies	on	Attention	Mechanisms.	J	Neurosci.	2015	May	27;35(21):8145–57.		

58.		 Tottenham	N,	Tanaka	JW,	Leon	AC,	McCarry	T,	Nurse	M,	Hare	TA,	et	al.	The	NimStim	set	of	facial	expressions:	

judgments	from	untrained	research	participants.	Psychiatry	Res.	2009;168(3):242–9.		

59.		 Reynolds	CR,	Kamphaus	RW.	Reynolds	Intellectual	Assessment	Scales.	Odessa,	Florida:	Psychological	

Assessment	Resources;	2003.		

60.		 Boyd	JP.	Error	saturation	in	Gaussian	radial	basis	functions	on	a	finite	interval.	J	Comput	Appl	Math.	2010	Jul	

1;234(5):1435–41.		

61.		 Buhmann	MD.	Radial	Basis	Functions:	Theory	and	Implementations.	Cambridge:	Cambridge	University	Press;	

2003.	272	p.		

62.		 Merchant	H,	Zarco	W,	Pérez	O,	Prado	L,	Bartolo	R.	Measuring	time	with	different	neural	chronometers	during	

a	synchronization-continuation	task.	Proc	Natl	Acad	Sci	U	S	A.	2011	Dec	6;108(49):19784–9.		

63.		 Boyd	JP.	Six	strategies	for	defeating	the	Runge	Phenomenon	in	Gaussian	radial	basis	functions	on	a	finite	

interval.	Comput	Math	Appl.	2010	Dec;60(12):3108–22.		

64.		 Menache	I,	Mannor	S,	Shimkin	N.	Basis	function	adaptation	in	temporal	difference	reinforcement	learning.	

Ann	Oper	Res.	2005;134(1):215–238.		

65.		 Mahadevan	S,	Giguere	S,	Jacek	N.	Basis	adaptation	for	sparse	nonlinear	reinforcement	learning.	In:	

Proceedings	of	the	Twenty-Seventh	AAAI	Conference	on	Artificial	Intelligence.	2013.		

66.		 Bush	RR,	Mosteller	F.	Stochastic	models	for	learning.	Oxford,	England:	John	Wiley	&	Sons,	Inc.;	1955.	365	p.		

67.		 Sutton	RS,	Barto	AG.	Dynamic	Programming:	Policy	Evaluation.	In:	Reinforcement	learning:	An	introduction.	

Cambridge	Univ	Press;	1998.	p.	89–93.		

68.		 Dayan	P,	Kakade	S,	Montague	PR.	Learning	and	selective	attention.	Nat	Neurosci.	2000	Nov	1;3:1218–23.		

69.		 Frank	MJ,	Doll	BB,	Oas-Terpstra	J,	Moreno	F.	The	neurogenetics	of	exploration	and	exploitation:	Prefrontal	

and	striatal	dopaminergic	components.	Nat	Neurosci.	2009	Aug;12(8):1062–8.		

70.		 Hothorn	T,	Bretz	F,	Westfall	P.	Simultaneous	inference	in	general	parametric	models.	Biom	J.	2008	Jun	

1;50(3):346–63.		

71.		 Kass	RE,	Eden	U,	Brown	E.	Analysis	of	Neural	Data.	New	York,	NY:	Springer;	2014.	648	p.		

72.		 Daunizeau	J,	Adam	V,	Rigoux	L.	VBA:	A	Probabilistic	Treatment	of	Nonlinear	Models	for	Neurobiological	and	

Behavioural	Data.	PLoS	Comput	Biol.	2014	Jan	23;10(1):e1003441.		

73.		 Stephan	KE,	Penny	WD,	Daunizeau	J,	Moran	RJ,	Friston	KJ.	Bayesian	model	selection	for	group	studies.	

NeuroImage.	2009	Jul	15;46(4):1004–17.		

	 	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195453doi: bioRxiv preprint 

https://doi.org/10.1101/195453


SELECTIVE	MAINTENANCE	AND	ENTROPY-DRIVEN	EXPLORATION	 51	

Supplementary	Figure	Captions	

Supplementary	Figure	1.	Identifiability	of	model	parameters	in	simulations.	Original	parameters	used	in	

simulations	(x-axis)	vs.	recovered	parameters	(y-axis).	Parameters	for	all	models	in	the	SCEPTIC	fixed	

learning	rate	family	(left	column)	were	recovered	with	high	precision	and	minimal	bias.		Among	the	

SCEPTIC	KF	models	(middle	column),	KF	process	noise	and	KF	U+V	parameters	were	recovered	reliably.		

Only	some	parameters	in	the	KF	U	→	V	and	KF	volatility	model	were	identified.		None	of	the	TC	

parameters	(right	column,	top)	were	identified.	In	TD,	e	was	identified	while	a	was	not.	 	
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Supplementary	Figure	2.	Expected	value	(EV),	probability,	and	magnitude	of	rewards	for	sinusoidal	

temporal	contingency	used	for	model	optimality	comparisons.	 	
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Supplementary	Figure	3.	Median	correlation	between	trial-wise	model-estimated	value	and	true	value	

across	500	simulated	contingencies	as	a	function	of	SCEPTIC	parameterization.	Shaded	ribbons	represent	

the	standard	error	of	the	median	estimated	using	a	LOESS	smoother.		Contrary	to	our	prediction,	models	

that	allowed	for	uncertainty-driven	exploration	(especially	KF	U	→	V	and	KF	U	+	V)	did	not	have	an	

advantage	over	similar	fixed	learning	rate	models	in	optimality	tests.	We	expected	that	including	

uncertainty	in	the	SCEPTIC	choice	rule	would	confer	an	advantage	early	in	learning	because	the	agent	

would	recover	a	higher	fidelity	representation	of	expected	value	across	the	entire	action	space.	

Compared	to	a	simple	softmax	choice	rule	over	the	expected	value	vector,	V(i),	uncertainty-driven	

sampling	is	more	likely	to	sample	the	action	space	systematically	and	develop	a	better	representation	of	

the	contingency.	This	advantage	should	be	especially	pronounced	early	in	learning	because	uncertainty-

driven	sampling	enhances	the	unique	information	gained	by	each	action.	More	specifically,	incremental	

information	is	maximized	by	choosing	the	most	uncertain	action	each	time	(an	extension	of	entropy	

reduction;	[1]).			

To	test	the	hypothesis	that	models	that	included	uncertainty	in	the	choice	rule	would	more	rapidly	

recover	an	approximation	of	the	true	reinforcement	contingency,	for	each	model	we	computed	the	

Pearson	correlation	between	the	trial-wise	estimate	of	expected	value,	V(i),	and	the	true	reinforcement	

schedule.	This	step	was	repeated	for	each	of	the	500	simulated	replications/contingencies,	generating	a	

distribution	of	correlation	estimates	at	each	trial.	The	tradeoff	between	exploration	and	exploitation	

means	that	an	agent	that	explored	until	it	had	very	little	uncertainty	about	each	action	would	do	quite	

poorly	on	the	clock	task	(unless	there	were	an	inordinate	number	of	trials)	because	it	would	miss	the	

opportunity	to	exploit	high-value	regions.	Thus,	to	obtain	a	positive	control,	we	simulated	an	infinitely	

exploratory	agent,	a	model	that	selected	a	random	action	(time	step)	on	each	trial	with	equal	probability.	

The	KF	U	→	V	model,	which	used	uncertainty-driven	exploration	to	choose	actions	early	in	learning,	

tended	to	outperform	other	models	in	the	first	few	trials.	In	addition,	models	that	incorporated	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195453doi: bioRxiv preprint 

https://doi.org/10.1101/195453


SELECTIVE	MAINTENANCE	AND	ENTROPY-DRIVEN	EXPLORATION	 54	

uncertainty	into	choice	tended	to	recover	a	better	estimate	of	the	contingency	in	the	first	10–15	trials	

than	those	that	chose	based	on	value	alone.	Finally,	whereas	models	that	shifted	toward	value	

exploitation	later	in	learning	did	not	improve	their	approximation	of	the	value	function,	the	pure	

exploration	null	agent	further	refined	its	estimate.	 	
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Supplementary	Figure	4.	 The	effect	of	 entropy	on	 trial-wise	absolute	 response	 time	 changes	 (RT	

swings),	 derived	 from	 a	multilevel	model	 of	 all	 subjects.	 Predictors	 of	 RT	 swings	 in	 the	model	

were:	1)	entropy	of	the	value	representation,	2)	trial,	3)	distance	of	the	previously	chosen	action	

from	 the	 maximum	 estimated	 value,	 4)	 value	 of	 the	 chosen	 action	 compared	 to	 the	 estimated	

global	 maximum	 value,	 5)	 the	 magnitude	 of	 the	 previous	 RT	 swing,	 6)	 whether	 the	 previous	

outcome	was	 a	 reward	 or	 omission,	 and	 7)	 distance	 of	 the	 prior	 RT	 from	 the	 edge	 of	 the	 time	

interval.	Interactions	among	these	predictors	were	also	included	in	the	model,	and	subject	and	run	

were	included	as	random	effects.	The	data	depicted	represent	the	model-predicted	marginal	effect	

of	 entropy	 on	 RT	 swings	 at	 the	 mean	 of	 all	 other	 predictors.	 Vertical	 bars	 adjoining	 the	 dots	

denote	the	standard	error	of	the	predicted	value.	 	
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Supplementary	Figure	5.	Simulated	performance	of	Frank	TC	model	at	different	parameter	values	across	

contingencies.	Response	time	data	were	simulated	for	500	simulated	participants	(replications)	who	

completed	500	trials	in	each	of	four	contingencies:	increasing	expected	value	(IEV),	decreasing	expected	

value	(DEV),	constant	expected	value	(CEV),	and	constant	expected	value–reversed	(CEVR).	The	order	of	

contingency	blocks	was	randomly	permuted	across	subjects.	Response	time	data	were	smoothed	using	a	

LOESS	smoother	(span	=	10)	and	averaged	across	subjects	to	emphasize	general	patterns	in	response	

times.	Parameters	in	the	baseline	configuration	(top	left)	were	identical	to	Frank	2009	(Supplementary	

Material;	[2]):	K	=	1500,	=	=	0.2,	>	=	0.2,	:; 	=	0.3,	:<	=	0.3,	9	=	1000,	2	=	3000.	As	in	Frank	2009,	-1000ms	

–	1000ms	of	random	uniform	noise	was	added	to	each	response	time.	Panel	a	displays	simulations	for	50-

trial	runs;	panel	b	contains	simulations	for	500	trial	runs.	In	the	top	right	subpanels,	9	=	10000,	but	other	

parameters	are	unchanged.	In	the	lower	left	subpanels,	:<	=	1.0,	but	other	parameters	are	at	baseline.	In	

the	lower	right	subpanels,	=	=	0.5,	but	other	parameters	are	at	baseline.	
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