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Abstract 
 
While anatomical pathways between forebrain cognitive and brainstem autonomic 
nervous centers are well defined, autonomic–central interactions during sleep and their 
contribution to waking performance are not understood. Here, we analyzed 
simultaneous central activity via electroencephalography (EEG) and autonomic heart 
beat-to-beat intervals (RR intervals) from electrocardiography (ECG) during wake and 
daytime sleep. We identified bursts of ECG activity that lasted 4-5 seconds and 
predominated in non-rapid-eye-movement sleep (NREM). Using event-based analysis 
of NREM sleep, we found an increase in delta (0.5-4Hz) and sigma (12-15Hz) power 
and an elevated density of slow oscillations (0.5-1Hz) about 5 secs prior to peak of the 
heart rate burst, as well as a surge in vagal activity, assessed by high-frequency (HF) 
component of RR intervals. Using regression framework, we show that these 
Autonomic/Central Events (ACE) positively predicted post-nap improvement in a 
declarative memory task after controlling for the effects of spindles and slow oscillations 
from sleep periods without ACE. No such relation was found between memory 
performance and a control nap. Additionally, NREM ACE negatively correlated with 
REM sleep and learning in a non-declarative memory task. These results provide the 
first evidence that coordinated autonomic and central events play a significant role in 
declarative memory consolidation. 
 

Introduction 
 
It is now well established that specific electrophysiological central events during sleep 
support the transformation of recent experiences into long-term memories, i.e., memory 
consolidation. Another direction of research has demonstrated evidence for a critical 
role of autonomic activity during waking in memory and learning. We have recently 
shown that autonomic activity during sleep may also be related to consolidation. What is 
not known is whether the coupling of central and autonomic systems during wake or 
sleep plays a role in memory consolidation. Here, we identify a novel coupling between 
the autonomic and central nervous systems during sleep, but not wake, that predicts the 
outcome of the memory consolidation.  

Research has consistently shown that a period of non-rapid eye movement (NREM) 
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sleep yields greater memory retention of declarative memories (e.g., explicit, episodic 
memories) than a comparable period of REM sleep or waking activity 1. Several EEG 
features of NREM sleep have been linked with memory consolidation, with most studies 
focusing on spectral power in the slow wave activity (SWA, 0.5–4Hz) and sigma (12–15 
Hz) bands, or specific events including hippocampal sharp wave-ripples (150–250 Hz) 2, 
cortical slow oscillations (SO, 0.5–1 Hz), and thalamic sleep spindles (12–15Hz) 3. In 
fact, co-occurring SOs and sigma/spindles may be a key mechanism of memory 
consolidation during sleep 4.  

In humans, increases in sigma power during the SO up-states has been shown 
following learning of a declarative memory task 5. Furthermore, pharmacologically 
increasing spindles with zolpidem resulted in greater coupling of spindles and SOs 6 
and declarative memory improvements 7. In rodents, the replay of neural activity from 
encoding during sleep has been proposed to occur through the temporal coupling of 
thalamic spindles, hippocampal sharp wave ripples, and cortical slow oscillations 8. 
Thus, although a full mechanistic understanding of sleep-dependent memory 
consolidation is far from realized, research suggests that the coordination of brain 
rhythms from several cortical and subcortical regions may be critical.  

A different line of research has demonstrated a significant contribution of the autonomic 
nervous system for memory consolidation during waking 9. These studies implicate the 
tenth cranial “vagus” nerve, which is the primary pathway of communication between 
the autonomic and central nervous systems. The vagus communicates information 
about peripheral excitation and arousal via projections to the brainstem, which then 
project to many memory-related brain areas including the amygdala complex, 
hippocampus and prefrontal cortex 10. Descending projections from the PFC to 
autonomic/visceral sites of the hypothalamus and brainstem create a feedback loop 
allowing for bi-directional communication between central memory areas and peripheral 
sites 11. In  male sprague-dawley rats, post-encoding vagotomy impairs memory 12. In 
humans, vagal nerve stimulation during verbal memory consolidation enhances 
recognition memory 13. Thus, the autonomic nervous system (ANS) appears to play a 
substantial role in waking memory consolidation.  

We have recently shown that ANS activity during sleep also associated with memory 
consolidation 14. In this study, subjects were given a memory test before and after a 
daytime nap. Along with measuring central activity during sleep, we also measured ANS 
activity using the traditional approach of heart rate variability (HRV), defined as the 
variance between consecutive heartbeats averaged within each sleep stage, as well as 
during a pre-nap wake period. We found that vagally-mediated ANS activity during 
sleep 1) is associated with the consolidation of implicit and explicit information, and 2) is 
sleep stage specific.  

Given the evidence of independent contributions of central and autonomic activity 
during sleep for memory consolidation, it is not known whether there is coupling 
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between these systems and whether this coupling may support long-term memory 
formation. Prior work hints at a possible coordination between central features and 
autonomic activity. For example, auditory-evoked K-complexes were associated with 
increased heart rate 15 and have been shown to appear frequently 250 and 650 msec 
after the onset of the P wave in ECG 16. Furthermore, the QRS complex of ECG has 
been shown to modulate sleep spindle phases 17. There is also evidence that the 
heartbeat-evoked potentials in EEG reflect cardiac function 18. In addition, the high 
frequency component of heart rate variability, which reflects parasympathetic activity, 
has been shown to correlate with slow wave activity in the brain 19. In addition, volitional 
effort during wake correlates both with increases in hippocampal activity and heart rate 

20; and phase-locking between central hippocampal theta and autonomic R-waves has 
been shown in guinea pigs during wake, SWS and REM sleep 21. Together, these 
findings suggest that cardiac autonomic activity may be coupled with hippocampo-
thalamocortical communication that has been shown to underlie memory consolidation 
during sleep. Despite these intriguing associations, very little is known about the 
coupling of central and autonomic activity and its functional consequences.  

Here, we use a high-temporal precision time-series approach to examine coupling 
between central and autonomic nervous activity during wake and sleep and its impact 
on memory consolidation. Using this approach, we have identified novel cardiovascular 
events during NREM sleep, heart rate bursts, that are temporally coincident with 
increases in electrophysiological central events that have previously been shown to be 
critical for sleep-dependent memory consolidation. In addition, these Autonomic/Central 
Coupled Events (ACE) are directly following by a surge in vagal activity, assessed by 
high-frequency component of RR intervals. Using a regression framework, we assessed 
the contribution of ACE events versus non-ACE central and autonomic activity to 
declarative memory improvement following a nap, and show that ACE events predict 
performance improvement to a greater extent than by either activity alone. No such 
relation was found between memory performance and a control nap. We, thus, 
demonstrate a heretofore-unrecognized important role of coordinated autonomic and 
central activity during sleep that supports declarative memory consolidation. 

 

Results 
 
We analyzed the RR (inter-beat interval) time-series from the ECG, and brain electrical 
activity from frontal and central EEG recording sites during a daytime nap in 45 young, 
healthy subjects (see Figure 1 for Study Timeline). First we assess HR using the 
traditional methods of analyzing HR in the frequency domain The total number of 3-
minute epochs analyzed across subjects in Wake, Stage 2, SWS, and REM were 223, 
415, 275, and 147, respectively. In the frequency domain, the low frequency (LF; 0.04–
0.15 Hz) component of RR is considered a reflection of sympathetic nervous activity 22; 
but this is not universally accepted 23, while the high frequency (HF; 0.15–0.4 Hz) 
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component reflects parasympathetic (vagal) activity 22. Heart rate variability (HRV) 
analysis has revealed a decrease in LF and an increase in HF components in NREM 
during nighttime sleep 24 and naps 25. In agreement with this literature, we found that 
different sleep stages showed distinct properties in EEG and RR time-series frequency-
domain. Peaks emerged in delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and 
sigma (12–15 Hz) bandwidth of EEG power spectrum (Figure 2b). In addition, the power 
spectrum of the RR time-series was modulated by sleep stages (Figure 2a).  
 

 
Figure 1 Study timeline for experimental nap. Subjects completed a declarative and non-declarative memory task. The 
order of tasks was counterbalanced across subjects. Before and after the daytime nap, declarative and procedural 
memory performances were tested. 

We also employed a high-temporal precision time-series approach to the HR signal. In 
addition, after confirming the detected ECG R peaks by visual inspection, we 
intentionally analyzed all artifact-free RR intervals thereby retaining a larger amount of 
RR intervals than typical for HR analysis. Using this approach, we observed large bursts 
of HR (i.e., decreased RR intervals) over periods of 4-5 seconds (Figure 2c). Further, 
these HR bursts were visually noted to co-occur with events in the EEG (see boxes in 
Figure 2d–g). In the next section we provide a detailed analysis of these HR bursts and 
their coincidence with events in the EEG.  

 
Figure 2. Characteristic properties of the EEG and RR time-series signals across wake and sleep stages (for one 
participant). a) RR time-series power spectrum during wake and sleep stages. b) EEG power spectrum (0–35 Hz) 
during wake and sleep stages. C) Detected HR bursts within a 150-sec bin during Stage 2. d-g) Simultaneous 
presentation of ECG, RR time-series, and raw EEG within 60-sec windows during wake, Stage 2, SWS, and REM, 
respectively. The boxes show the coincidence of HR bursts and EEG events during Stage 2 and SWS 
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Temporal analysis of RR intervals reveals distinct, intermittent 
reductions in RR intervals  
 
The HR bursts sporadically emerged in the time series of RR intervals (Figure 2c). The 
signature of these HR bursts was an increase in HR from baseline to the peak of the HR 
bursts (Wake: 21.62% (s.d.=11.05); Stage 2: 20.69% (s.d.=7.53); SWS: 14.49% 
(s.d.=6.02); REM: 21.40% (s.d.=8.85). The densities of the HR bursts for Wake, Stage 
2, SWS, and REM were 0.71/min (s.d.=0.52), 1.04/min (s.d.=0.32), 1.11/min (s.d.=0.34), 
and 1.00/min (s.d.=0.38), respectively. Shapiro-Wilk and Chi-square tests on inter-
event-intervals revealed that these events are generally aperiodic (Figure S1). 
 
Following the visual observation of the co-occurrence of HR bursts and EEG events we 
assessed the degree to which the HR bursts correlated with changes in EEG activity 
(Figure 2c-d). We found that EEG delta amplitude during HR bursts was significantly 
higher than during non-bursting periods of the RR signal in both Stage 2 (t(84)=2.14, 
p=.035)) and SWS (t(70)=1.70, p=.046), but not Wake and REM. Traditional measures 
of HR in the frequency domain examine LF and HF power by collapsing across time. 
However, given our interest in moment-to-moment changes in ANS/CNS signals, we 
filtered the RR time-series by LF and HF frequency bands (RRLF and RRHF, 
respectively), thereby maintaining the integrity of the time-series data. Similarly, we 
filtered the EEG time-series within the delta frequency to analyze the dynamics of the 
ANS/CNS interaction. We noted that during Stage 2 and SWS, bursts in delta amplitude 
co-occurred with large troughs in RRLF (corresponding to HR bursts), which were 
followed by increases in RRHF (see an example in Figure 3a). We further investigated 
this coincidence by examining the the phase/amplitude coupling (PAC) between delta 
and RRLF, where the slow frequency RRLF provides the phase and the faster frequency 
delta provides the amplitude. During Stage 2 and SWS, the distribution of delta 
amplitude in the LF phase was non–uniform and peaked at a preferred phase (Figure 
3b). Across participants, the average preferred phase was -70.1°(s.d.=26.7°) for Stage 
2 and -79.4° (s.d.=67.6°) for SWS. This also indicates that the elevation in EEG delta 
activity preceded the peak of the HR bursts (which occurred at LF phase of 0º). 
Interestingly, when we compared the density of the HR bursts to the traditional FFT 
analysis of LF power (i.e., likely sympathetic activity) within Stage 2 and SWS, total LF 
power was not significantly associated with HR burst density in Stage 2 (r= -.04, p= .81; 
Figure 3c) or SWS (r= -.08, p= .64). We next set out to investigate the PAC between 
EEG and RR across a broader frequency range.  

EEG power is modulated by RR phase 
We used the comodulogram method, utilizing normalized modulation index (nMI) as the 
PAC measure, to examine how the fast EEG signal was nested within the slower RR 
time-series signal across Wake, Stage 2, SWS and REM sleep. Conceptually, for each 
frequency pair in the comodulograms the modulation of EEG amplitude by RR phase 
was compared to amplitude-shuffled surrogate data. Figure 3e shows the phase of the 
RR time-series in frequencies below 0.2 Hz strongly modulated the amplitude in EEG in 
frequencies below 4 Hz, slow wave activity (SWA), during Stage 2. The same relation 
was apparent for SWS, but to a lesser extent (unpaired t-test between LF–SWA nMI of 
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Stage 2 and SWS: (t(77)=3.21, p=.002) (Figure 3f). The LF–SWA modulation during 
Stage 2 and SWS was significantly higher than that of other RR/EEG frequency pairs 
(i.e., LF–theta, LF–alpha, LF–sigma, HF–SWA, HF–theta, HF–alpha, and HF–sigma; 
Stage 2: F7,336=5.83, p=.000002; SWS: F7,280=2.97, p=.005). Taken together, the time 
series analysis indicates that EEG SWA amplitude in Stage 2 and SWS was modulated 
by the LF component of the RR time-series (RRLF). 

 
Figure 3. Temporal analysis of the RR intervals. a) A simultaneous presentation of delta amplitude and filtered 
components of RR time-series (i.e., LF and HF) showing the coincidence of large troughs in the LF component and 
elevated delta amplitude. b) The distribution of delta amplitude in LF phase is non-uniform and peaks at a preferred 
phase (LF troughs are assigned phase 0). c) The density of HR bursts does not significantly affect the LF power. d-g) 
The average EEG/ECG comodulograms, constructed from RR phase and EEG amplitude, across participants during 
wake, Stage 2, SWS, and REM, respectively. Error bars show standard error of the mean. 

Though LF–SWA modulation was the strongest effect observed, the comodulogram 
also revealed other bands of EEG (<16 Hz) that were modulated by LF phase in Stage 
2 compared with Wake and other sleep stages (LF-SWA: F3,145=10.44, p=.00001; LF-
theta: F3,145=13.20, p=.004; LF-alpha: F3,145=17.58, p=.0005; LF-sigma: F3,145=13.93, 
p=.003). For REM sleep (Figure 3g), HF-modulated EEG theta activity was significantly 
higher than that of Wake (t(69)=4.85, p=.000007) and SWS (t(66)=2.06, p=.043) 
(F2,103=7.34, p=.002) but not Stage 2 (t(73)=0.45, p=.65). The other clusters visualized 
by the SWS comodulograms were not significantly different from Wake and sleep 
stages. In the following section, we will test the hypothesis that the above-mentioned 
modulation results from temporal coupling of autonomic and central events (ACE). 

Coordination	between	HR	bursts	and	EEG	
We investigated ACE coupling during wake and sleep stages by tracking fluctuations in 
the EEG in a 20-sec window from 10 second before to 10 second after the peak of the 
HR burst (Figure 4a–b). In addition to the rapid acceleration in HR, we also noted a 
slowing of HR after the burst or peak of the HR. We chose to use the peak of the HR 
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burst as reference points because we found a larger number of HR bursts compared to 
HR troughs. The percentage of HR bursts which were followed by HR declines was 
12.61±2.71 % during Wake, 20.30±2.14% during Stage 2, 13.30±2.65 % during SWS, 
and 27.02±4.00% during REM. 2). Therefore, the detection of the peaks was a more 
reliable metric of the HR bursts compared to detection of slower and smaller changes in 
HR. Furthermore, the magnitude of the HR slowing after the peak of HR was highly 
variable across HR bursts (see Figure S2). 
As we were specifically interested in EEG activity related to memory consolidation, we 
narrowed our frequencies of interest to SWA (and SOs) and sigma activity (and 
spindles). EEG data were binned into 5-sec intervals within the 20-sec windows around 
the HR burst. Repeated measures ANOVAs indicated significant differences in SWA 
(Figure 4e) across the 5-sec bins and periods with no HR burst (baseline) during Stage 
2 (F4,168=94.37, p<.00001) as well as during SWS (F4,140=21.59, p< .00001). Post hoc 
comparisons revealed the highest SWA occurred during the 5-sec bin prior the HR burst 
during Stage 2 (t(84)=8.94, p<.00001) as well as during SWS (t(70)=2.05, p=.044). 
Interestingly, the change in SWA in the 5-sec bin prior to the HR bursts was significantly 
correlated with the increase in HF power in the 5-sec bin after the HR burst (Figure 4c) 
during Stage 2 (r=.54, p=.002), likely reflecting a compensatory increase in vagal 
activity. This elevated increase in HF power after the HR burst was also present during 
other sleep stages (Figure 4c; Wake: t(44)=1.78, p=.082; SWS: t(70)=1.94, p=.056; 
REM: t(36)=2.12, p=.041, nonsignificant after FDR correction). Similar to SWA, density 
in SOs in the 5-sec bin prior to the HR burst was significantly increased in Stage 2 
(Figure 4d, t(84)=8.83, p<.00001) as well as during SWS (t(70)=3.10, p=.007). Note that 
SWA without SO events (1-4Hz, 33.25±2.88 % of incidences) was also increased prior 
to the HR burst (t(82)=2.77, p=.003) during Stage 2. No significant correlation between 
HR bursts and SWA was found during Wake (F3,112=1.41, p=.24) or REM (F3,116=0.24, 
p=.87). To summarize, we found that ACE in Stage 2 and SWS, but not wake and REM 
sleep, were characterized by an increase in EEG SWA that occurred 5-sec before the 
peak of the HR burst and ended simultaneously with the HR bursts.  
 
Repeated measures ANOVAs also indicated significant differences in sigma activity 
(Figure 4f) across the 5-sec bins and periods with no HR burst during Stage 2 
(F4,168=56.87, p<.00001). The highest sigma power occurred during the 5-sec bin prior 
the HR burst (t(84)=4.71, p=.00001). The early change in sigma power (10 secs prior 
the peak of the HR bursts) was not significant after FDR correction (t(84)=1.90, p=.061; 
Figure 4f). Similarly, repeated measure ANOVA indicated significant differences in 
spindle density across the 5-sec bins and periods with no HR burst (F4,168=2.93, p=.022, 
Figure S3). Post hoc paired-samples t-tests between baseline spindle density and the 
spindle density during the 5-sec bins revealed a significant density difference during the 
5-sec bin prior the HR burst peak (t(84)=3.679, p=.0004) and a nonsignificant significant 
difference during the 5-sec bin started 10 sec before the HR burst peak (t(84)=1.871, 
p=.065). No significant modulation in sigma power was found during SWS (t(70)=0.17, 
p=.86).  
In addition to SWA and sigma activity, the coupling of SO and spindles as a function of 
the HR was investigated. For each subject, the average SO/spindle modulation index 26  
was calculated for two groups of SOs: 1) SOs occurred during the 20-sec windows 
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around HR bursts and 2) SOs during periods with no HR burst. Paired t-test showed no 
difference in MI for the two SO groups (t(87)=0.177, p=.860). That is, ACE-related sleep 
activity did not have any measurable impact on the temporal coupling of SO and 
spindles. 
In summary, Sigma and SWA power in Stage 2 and SWA in SWS increased from 
baseline (periods with no HR burst) to a maximum level prior to the peak of the HR 
bursts, and returned to baseline post-burst. Although we focused on slow wave and 
sigma frequencies here, we conducted exploratory analyses on theta and beta activity, 
which are presented in the Supplementary Materials. These data are consistent with the 
hypothesis that cortical EEG activity precedes and perhaps catalyzes these sudden and 
short-lived surges in HR in NREM sleep. We next investigated the functional impact of 
ACE events on memory consolidation during sleep. 
 

 
Figure 4. The event-related analysis of changes in ACE events. a) The HR burst events within a 20 s window for wake 
and different sleep stages. b) Grand average of the HR bursts. c) Average amplitude of HF component of the HR 
bursts in 5 s bins show a significant increase in the 5 s bin after the peak of the HR bursts. d) Event-locked EEG trials 
(Sorted based on the time difference between the HR burst at t=0 and the largest minimum of the EEG trials) show 
concentration of SOs prior the peak of HR bursts in NREM stages. e-f) average delta and sigma amplitude in 5 s bins 
(with the grand average of Delta amplitude on top of them) around the HR bursts, respectively. Asterisks in (c), (e), 
and (f) show the significant differences after FDR correction (*p<.05 and **p<.001) between an amplitude in a bin and 
the average amplitude in periods with no HR burst (baseline). Error bars show standard error of the mean. 
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Correlations with cognitive tasks 
In this section, we investigated the contribution of ACE coupling to post-nap memory 
consolidation. For this purpose, we computed the change scores for both performance 
and EEG characteristics, which were calculated as average values 5-secs prior to the 
peak of the HR bursts subtracted from baseline (ACE difference scores). We focused 
on Stage 2 and SWS, as ACE was not significantly modulated during wake or REM. 
The following characteristics were analyzed: density of SOs and magnitude of SWA and 
sigma power in Stage 2 and SWS, and a linear composite of SWA and sigma power 
changes (i.e., a simple sum of z-scores of SWA and sigma power changes) in Stage 2 
(Figure 5). We conducted exploratory analyses on the application of modulation index 
between HR bursts and EEG activities, which are presented in the Supplementary 
Materials. (see Figure S5). Two memory tasks were considered for this study: 
declarative memory for face-name associations and non-declarative perceptual learning 
on a texture discrimination task. We calculated difference scores between pre-nap and 
post-nap memory performance for total (first and last name) recall and perceptual 
learning thresholds.  
 
Declarative Memory 
Recall difference scores were positively correlated with ACE difference scores in 
density of SOs in Stage 2 (r= .47, p= .002, significant after FDR correction; Figure 5a) 
and SWS (r= .47, p= .004, significant after FDR correction; Figure 5d), as well as SWA 
(r= .32, p= .039, marginally significant after FDR correction; Figure 5b), sigma power (r= 
.3, p=.05; Figure 5c), and the linear composite of SWA and sigma power in Stage 2 (r= 
.38, p=.012, significant after FDR correction; Figure 5f). The correlation between 
changes in performance and SWA in SWS was not significant (r= .11, p= .54; Figure 
5e). Additionally, the ACE difference score for HF power in Stage 2 sleep (5-sec bin 
after the peak of the HR burst) was significantly correlated with recall improvement 
(r=.32, p=.03, marginally significant after FDR correction).  
 
To assess the relative importance for memory performance of independent autonomic 
and central events as well as their coupling, we utilized a hierarchical, linear regression 
framework. For Stage 2 and SWS, two linear regression models were calculated to 
predict recall difference. In Model 1, SO density, spindle density, burst density, and 
baseline HF power in each sleep stage were the independent variables. In Model 2, we 
added the ACE difference scores for SO density and spindle density before and HF 
power after the HR bursts. The regression results for Stage 2 and SWS variables are 
tabulated in Table 1 and Table 2, respectively. Stage 2 results showed that Model 1 was 
not significant (F4,37=0.08, p= .99; adj R2 = -.10), whereas Model 2 significantly predicted 
performance (F7,34=2.77, p= .022; adj R2 = .23) with both ACE SO density change and 
HF amplitude change as significant predictors. Comparing Model 1 and 2, we found that 
Model 2 explained significantly more of the variance in recall than Model 1 (change in 
adj R2=.33, F3,34=6.30, p=.002). For SWS, Model 1 was not significant (F4,30=.36, p=.84; 
adj R2 = -.08), but adding the ACE measures in Model 2 elevated the model to a 
marginal significance level (F7,27=1.53, p=.20; adj R2 = .10), with SO density change the 
only significant predictor. Again, Model 2 accounted for significantly more of the 
variance in recall improvement than Model 1 (change in adj R2=.21, F3,27=3.01, p= 
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.048). In summary, while the baseline HF power, SO, spindle, and HR burst densities 
did not independently predict recall difference, ACE events predicted up to 23% of the 
variance in performance improvement on this declarative memory task.   

 
Figure 5. Impact of ACE on memory consolidation. a-f) Scatter plots for relationships between the recall improvement 
in the declarative memory (face-name task) and ACE difference scores of SO density, delta power, and sigma power 
during Stage 2 (n=42) and SWS (n=36). Note, that performance was positively correlated with increase in ACE 
difference scores. g-l) Scatter plots for relationships between improvement in the perceptual learning (texture 
discrimination task) and ACE difference scores of SO, delta power and sigma power during Stage 2 and SWS. Note, 
negative correlation in all cases. m-n) Scatter plots for relationships between minutes in REM sleep and texture 
discrimination task learning and ACE difference scores of delta power in SWS, respectively. 

Perceptual Learning 
We found perceptual learning was negatively related to the ACE SWA increase in Stage 
2 (r=- .30, p= .048; Figure 5h) and SWS (r= -.35, p= .035; Figure 5k), as well as with the 
linear composite of SWA and sigma power changes in Stage 2 (r= -.34, p=.025; Figure 
5l). In addition, non-significant negative correlations were apparent between perceptual 
learning and ACE SOs increases in Stage 2 (r= - .07, p= .67; Figure 5g) and SWS (r= - 
.27, p= .11; Figure 5j) and Stage 2 sigma power (r= -.25, p=.11; Figure 5i). Thus, in 
contrast with the positive association between ACE-mediated increases in NREM sleep 
events and declarative memory, perceptual learning was negatively associated with 
these ACE events. Given that prior studies have demonstrated the critical importance of 
both NREM and REM sleep for perceptual learning 27, the trade-off between ACE-
NREM features supporting declarative memory and REM features supporting 
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perceptual learning may not be surprising. Indeed, Figure 5m shows a similar significant 
positive correlation between REM sleep and perceptual learning (r=.37, p=.013, 
marginally significant after FDR correction). We also showed a reciprocally negative 
correlation between ACE SWA difference score and minutes in REM (r= -.36, p=.029; 
Figure 5n). These negative associations with REM and REM-dependent learning may 
be related to the experimental conditions of the nap, in which subjects have a two-hour 
nap opportunity. Such restrictions on sleep provide boundaries on the total sleep time 
and may thus create a trade-off between NREM and REM sleep.  

In summary, we find that sleep features associated with consolidation of hippocampal-
dependent memories (SO events, SWA, and sigma power) are specifically boosted 
during HR bursts and that these ACE increases may be an important contributor in 
hippocampal-dependent memory consolidation. However, these benefits to declarative 
memory during a nap may come at the expense of REM sleep and REM-dependent 
perceptual learning. 

Control group 
A subset of subjects (n=22) were given a control nap one week after the experimental 
nap. On both experimental and control days, subjects were tested on cognitive tasks in 
the morning and evening and had a nap between test sessions, however, different 
cognitive tasks were tested on these days. This is an appropriate within-subjects control 
because the subjects had the same magnitude of cognitive burden, but with different 
information to encode, which allows us to test the specificity of the relationship between 
changes in the autonomic/central events during sleep and the specific memories 
learned. Underscoring this point, we found similar levels of HR burst density (0.97/min) 
and changes in HF power (control: 20.07%, experimental: 18.61%), delta power 
(control: 17.65%, experimental: 21.37%), and sigma power (control: 7.64%, 
experimental: 8.63%) in the experimental and control naps during Stage 2 and SWS.  
 
Next, we confirmed that these subjects had the same magnitude of effect size for the 
association between nap ACEs and memory on the experimental day as the entire 
sample. We re-ran the regression models from Table 1, in which Model 1 compared 
non-ACE predictors to declarative memory, and Model 2 added the ACE predictors. 
Indeed, a model with baseline variables did not significantly predict the declarative 
learning (adj R2 = -.23, p=0.95), whilst adding ACE difference scores in Model 2 
significantly improved the prediction (adj R2 = .47, p=0.04). 
 
Finally, in order to confirm the specificity of the encoded material on the experimental 
day, correlations between control nap ACE difference scores and memory changes on 
the experimental day were tested. Here, evidence of no relation between the control 
nap ACE features and experimental memory performance would indicate a high degree 
of specificity to the encoded material on the experimental day. For the declarative 
memory task, no significant correlation was found with ACE SO density difference score 
in control nap Stage 2 (r=-0.04, p=0.85) and SWS (r=-0.14, p=0.61), as well as with the 
SWA changes in Stage 2 (r=0.26, p=0.24) and SWS (r=-0.35, p=0.16), and sigma 
power changes in Stage 2 (r=0.11, p=0.63) and SWS (r=0.14, p=0.60). Unlike 
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experimental day, there was no correlation between declarative learning and HF power 
change in Stage 2 (r=0.15, p=0.49). Similarly, no significant correlation was found 
between perceptual learning and ACE SO density increase in Stage 2 (r=0.05, p=0.82) 
and SWS (r=-0.18, p=0.49), as well as with the SWA changes in Stage 2 (r=0.02, 
p=0.93) and SWS (r=0.07, p=0.78), and sigma power changes in Stage 2 (r=0.12, 
p=0.59) and SWS (r=0.08, p=0.75). In summary, ACE changes in the control nap were 
not associated with memory consolidation of information encoded on the experimental 
day. 
 
 

Discussion 
Here, we have identified for the first time an autonomic cardiac event during NREM 
sleep that is temporally-coupled with a significant boost in central oscillations associated 
with systems consolidation. Specifically, we show 1) increases in the EEG amplitude in 
SWA and sigma bands directly preceded these large-amplitude HR bursts, 2) a surge in 
vagal activity (measured in the HF component of heart rate) directly following the HR 
burst, 3) that the uptick in autonomic/central events (ACE) (SO, delta, sigma) and vagal 
activity were positively associated with declarative memory improvement and negatively 
associated with non-declarative memory, and 4) ACE changes in the experimental nap 
were only associated with memory consolidation of information encoded on the 
experimental day, and not merely correlational. Together these results present 
compelling evidence of a coupling between signals from the brain and heart that have a 
critical and specific impact on memory consolidation during sleep. 
  
Traditional calculations of EEG/ECG signals in the frequency domain using 3–5 min 
bins of uninterrupted nocturnal sleep have found results that differ from the present 
outcomes. One such study reported no association between delta power and 
normalized HF power at peak of SWA 28. Also different from the present result, cardiac 
changes have been found to precede EEG changes by several minutes 29. Here, unlike 
typical HRV analyses that discard large changes in HR, we intentionally analyzed all 
artifact-free RR intervals, which allowed for the discovery of these HR bursts. In 
addition, we used a time-domain analysis within short 20 sec windows around the HR 
bursts to examine fluctuations in the EEG/ECG signals, which allowed for more fine-
grained assessment of event-related changes in both signals. Similarly, using an event-
related analysis in near-infrared spectroscopy, Mensen and colleagues 30 reported an 
oscillating blood flow signal at HR frequency that was time-locked to the onset of slow 
waves. This study posited that the arterial pulsation evokes a down-state, or that a third 
generator regulating HR and slow waves may be involved. More in line with our 
findings, another event-based analysis revealed an increase in HR followed by a 
deceleration after spontaneous and tone-induced K-complexes 15.  
 
By focusing on fine resolution of HR events for our event-based analysis, we found 
distinct bursts in HR during wake and sleep. HR bursts of similar duration have been 
identified in REM sleep in cats, with the average incidence rate of 1 burst per 6.1 min of 
REM sleep. These HR bursts were accompanied by ponto-geniculo-occipital waves and 
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theta activity 31, which have been associated with memory consolidation in rats 32. Our 
event-based analyses showed SWA modulation in both Stage 2 and SWS, and sigma 
modulation in Stage 2 by the LF component of the RR time-series. Our results suggest 
that the mechanism of SWA modulation was an increase in density of SOs, and power 
in SWA, and sigma activity ~5 sec prior to the peak of the HR bursts that returned to 
baseline directly after the HR bursts. In addition, there was no significant SWA 
modulation in wake and REM, which is not surprising due to low SWA activity in these 
stages. The characteristics of the SWA and sigma modulation in NREM sleep resemble 
the cyclic alternating pattern (CAP) 33 in NREM sleep which is characterized by repeated 
sequences of transient events and which clearly break away from the ongoing 
background rhythm recurring at intervals up to 1 min long. However, the average 
duration of SWA reactivation in CAP was reported as 12.66 s which is longer than our 
ACE observations. Lecci et al 34 found periodic sigma activity (but not SWA) that was 
more prevalent in Stage 2 sleep than SWS and associated with memory consolidation 
in a declarative task (human) as well as hippocampal ripple activity (in mice). The 
present results, on the other hand, identified a heretofore undescribed burst in HR 
activity, that correlated with prominent, aperiodic, ACE-related increases in SWA and 
sigma, as well as parasympathetic activity, that predicted gains in declarative memory 
during Stage 2 and SWS. Differences between findings may be due to the focus of the 
Lecci paper on periodic changes in EEG activity, as opposed to using ECG as the 
reference point for analysis. Notwithstanding these differences in approach and 
outcomes, both studies point to an important link between memory consolidation and 
autonomic/central events during sleep. 
 
The present data also showed no significant correlation between HR bursts and 
traditional frequency based analysis of total LF power. This lack of relation may suggest 
a dissociation between mechanisms underlying LF-related sympathetic activity and HR 
bursts. In contrast, the increase in HF power directly following the HR bursts may 
instead implicate vagal inhibition 35. Although specific mechanisms of ACE events are 
not known, we speculate that overlapping neural pathways between brain and heart 
centers may be an appropriate place to begin, and further investigation is needed to 
tease apart these mechanisms 
 
Several candidate brainstem and cortical regions may be involved in the interaction 
between HR and sleep oscillations. One possibility, is that the nucleus of the solitary 
tract (NTS) and the rostral ventrolateral medulla (RVLM) mediate this interaction, since 
they act as one of the main bridges between CNS and cardiovascular systems 36. NTS 
is one of the critical components of the central autonomic network with afferent and 
efferent connections to the cardiovascular system 37 and it receives projections from 
many cortical regions 38. Further, NTS, through its projections to RVLMs, influences 
activity in the locus coeruleus 39 and indirectly influences the basal forebrain. Indeed, 
increased NTS activity is associated with reduced HR, and NTS stimulation has been 
shown to augment EEG theta and beta power during wake in cats 40 potentially through 
the input to RVLM. The HR burst may be a consequence of increases in spindle and 
slow oscillations through wide spread cortical projection to NTS 38. On the other hand, 
one potential mechanism for SO reduction post-HR burst may be via NTS projections to 
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basal forebrain and locus coeruleus. Stimulation of these areas by the NTS increases 
acetylcholine and norepinephrine release in cortex, which is known to reduce slow 
oscillations 41. Taken together, this suggests that the increase of SO prior to HR burst 
could mediate an increase of HR through combination of sympathetic and 
parasympathetic pathways and that the reduction of SO following HR burst may arise 
from increased activity of NTS through parasympathetic output via the vagal nerve. 
However, several other pathways are known to be involved in the interaction between 
neocortex and heart and have be examined to make definite conclusions. 
 
A large prior literature suggests a critical role of the ANS during wake for memory 
consolidation 9. Studies have found that direct modification of peripheral hormonal 
activity following acquisition can enhance or impair the memory storage of new 
information 42 via vagal afferent nerve fibers, which communicate information about ANS 
excitation via projections to the brainstem, which then project to memory-related areas 
including the hippocampus, amygdala complex, and prefrontal cortex 10. Bidirectional 
projections from the prefrontal cortex to the hypothalamus and brainstem create a 
feedback loop for communication between peripheral sites and central memory areas 11. 
Lesions of the vagus nerve impair memory 12, whereas pairing vagal nerve stimulation 
with auditory stimuli reorganizes neural circuits 43, strengthens neural response to 
speech sounds in the auditory cortex 44, and enhances extinction learning of fear 
memories in rodents 45. In humans, vagal nerve stimulation enhances consolidation of 
verbal memory 13 and working memory 46. Recently, Whitehurst and colleagues used 
traditional methods to detect total sympathetic and parasympathetic power of the HRV 
signal during sleep and showed a correlation between parasympathetic activity during 
REM sleep (but not SWS) and implicit learning 14. In contrast the current study used a 
fine-grained temporal analysis of EEG/ECG signals to reveal how the coupling of 
ANS/CNS Events (ACE) significantly improved the prediction of declarative memory, but 
not non-declarative memory, over and above total power of HR components and sleep 
events alone. Importantly, these effects are specific to the encoded memories directly 
preceding the nap. Follow-up experiments require interventions to better understand the 
mechanism promoting these effects, as well as probing different clinical populations that 
may have dampened autonomic tone during sleep, including older adults and sleep 
apnea. Taken together, these findings implicate a significant role of ANS modulation of 
plasticity and memory consolidation during sleep that is likely mediated by vagal 
afferents to the cortex via NTS brainstem. 
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Table 1: Regression models from Stage 2 variables to predict FNA total recall 
difference 

Variables 

 Model 1   Model 2  

B SE t β  B SE t β  

HR burst density 0.39 1.84 0.21 0.04  -1.69 1.66 -1.02 -0.15  

SO density -0.13 0.40 -0.31 -0.06  -0.12 0.35 -0.35 -0.05  

Spindle density -0.16 0.90 -0.22   0.61 0.81 0.76 0.11  

Baseline HF amplitude -5.79 26.32 -0.22 -0.04  19.98 23.53 0.85 0.13  

SO density change score      6.27 2.26 2.77 0.44**  

Spindle density change score      2.17 0.81 1.09 0.17  

HF amplitude change score      8.56 3.46 2.47 0.38*  

(Constant) -2.83 3.32 -0.85   -8.94 3.22 -2.77   

F  0.08   2.77*  

R2  0.01   0.36  

Adjusted R2  -0.10   0.23  

Change in Adjusted R2     0.33***  

*p < .05, **p<.01, ***p<.001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/195586doi: bioRxiv preprint 

https://doi.org/10.1101/195586


 16 

Table 2: Regression models from SWS variables to predict FNA total recall 
difference 

Variables 

 Model 1   Model 2  

B SE t β  B SE t β  

HR burst density -0.43 0.55 -0.78 -0.15  -0.83 1.69 -0.49 -0.08  

SO density -0.01 0.02 -0.53 -0.10  0.03 0.08 0.42 0.07  

Spindle density -0.13 0.21 -0.62 -0.11  -0.04 0.64 -0.06 -0.01  

Baseline HF amplitude 2.02 8.49 0.24 0.04  21.97 27.09 0.81 0.14  

SO density change score      11.85 4.27 2.77 0.48**  

Spindle density change score      0.09 1.37 0.07 0.01  

HF amplitude change score      -9.11 7.38 -1.23 -0.21  

(Constant) -2.83 3.32 -0.85   -8.94 3.22 -2.77   

F  0.36   1.53  

R2  0.05   0.28  

Adjusted R2  -0.08   0.10  

Change in Adjusted R2     0.18***  

*p < .05, **p<.01, ***p<.001 
 
 

Methods 
A. Participants 
 
Data reported here come from the first visit of a larger, mini-longitudinal study that 
included up to 7 visits per participant. Data from this study have been reported 
elsewhere 14, 25 47. Fifty-five (30 females) healthy, non-smoking adults between the ages 
of 18 and 35 with no personal history of sleep disorders, neurological, psychological, or 
other chronic illness gave informed consent to participate in the experimental nap 
protocol explained below. Twenty-two subjects also participated in a one-day control 
nap study. All experimental procedures were approved by the Human Research Review 
Board at the University of California, Riverside and were in accordance with federal 
(NIH) guidelines and regulations. Participants were thoroughly screened prior to 
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participation in the study. The Epworth Sleepiness Scale (ESS 48) and the reduced 
Morningness-Eveningness questionnaire (rMEQ 49) were used to exclude potential 
participants with excessive daytime sleepiness (ESS scores >10) or extreme 
chronotypes (rMEQ <8 or >21). Additionally, potential participants were interviewed 
about their medical history and quality and quantity of their sleep, including questions 
from the DSM-IV used to diagnose sleep-wake disorders. Participants included in the 
study had a regular sleep-wake schedule (reporting a habitual time in bed of about 7–9 
h per night), and no presence or history of sleep, psychiatric, neurological, or 
cardiovascular disorders determined during screening. Participants received monetary 
compensation and/or course credit for participating in the study.  

B. Data acquisition and pre-processing 
- Study Procedure 
Participants wore actigraphs to monitor sleep-wake activity for one week prior to the 
experiment to ensure participants were not sleep-deprived and spent at least 6.5 hours 
in bed the night prior to their visit. On both the experimental and control nap days, 
subjects arrived at the UC Riverside Sleep and Cognition lab at 9AM for Test Session 1. 
On the experimental day, cognitive tasks included a declarative and non-declarative 
memory task (see below), as well as a creativity measure (reported elsewhere). On the 
control day, subjects were tested in a spatial navigation task and verbal memory task. 
The order of tasks was counterbalanced across subjects. In total, the declarative 
memory task took about 40 minutes to complete, and the non-declarative task took 
about 20 minutes to complete (the creativity measure took about 50 minutes, and all 
testing was done by approximately 11AM). Between completing the tasks and starting 
the nap, participants were allowed to leave the lab and go about their normal activities, 
except avoiding caffeine and napping. At 12:30PM, electrodes were attached for 
polysomnography (PSG) recording. At 1:30PM, subjects took a PSG-recorded nap. 
They were given up to 2 hours time-in-bed to obtain up to 90 min total sleep time. Sleep 
was monitored online by a trained sleep technician. Nap sessions were ended if the 
participant spent more than 30 consecutive min awake. Naps were completed at 
approximately 3-3:30PM, electrodes were removed, and participants were given a break 
where they could leave the lab. At 5PM, subjects returned to the lab for Test Session 2. 
  
- Sleep recording 
Polysomnography (PSG) data including electroencephalogram (EEG), 
electrocardiogram (ECG), chin electromyogram (EMG), and electrooculogram (EOG) 
were collected using Astro-Med Grass Heritage Model 15 amplifiers with Grass GAMMA 
software. Scalp EEG and EOG electrodes were referenced to unlinked contralateral 
mastoids (F3/A2, F4/A1, C3/A2, C4/A1, P3/A2, P4/A1, O1/A2, O2/A1, LOC/A2, 
ROC/A1) and two submental EMG electrodes were attached under the chin and 
referenced to each other. ECG was recorded by using a modified Lead II Einthoven 
configuration. All data were digitized at 256 Hz. 
- Sleep scoring 
Raw data were visually scored in 30-sec epochs according to Rechtshaffen and Kales 

50. Five sleep stages (i.e., wake, Stage 1, Stage 2, SWS, and REM) were reclassified in 
continuative and undisturbed 3-min bins and the bins were used for further analysis.  
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- Data reduction 
Ten subjects were excluded from further analyses for the following reasons: 1) Four 
subjects did not have ECG recordings, 2) three subjects had disconnected/loose ECG 
reference electrodes and we were not able to detect heart beats from those subjects, 3) 
Three subjects had no 3-min Stage 2 and SWS epochs.  Nine subjects out of the 45 
subjects did not have any 3-min continuous epochs of SWS. This led to lower number of 
samples for SWS group. Two subjects from Stage 2 group were also considered as 
outliers, due to artifacts. The average number of 3-min bins for Wake, Stage 2, SWS, 
and REM were 4.95, 9.34, 6.11, and 3.27, respectively. 
- Heart-beat detection and time-series extraction 
The ECG signals were filtered with a passband of 0.5-100 Hz by Butterworth filter. R 
waves were identified in the ECG using the Pan-Tompkins method 51, and confirmed 
with visual inspection. In order to extract continuous RR tachograms, the RR intervals 
were resampled (at 4 Hz for power spectrum estimation; at 256 Hz for co-modulogram 
analysis) and interpolated by piecewise cubic spline. Zero-phase Butterworth filters 
were applied to the interpolated RR time-series to extract RRLF and RRHF.  
- HR burst detection 
Within 3-min bins during wake and sleep stages, the HR burst events were detected as 
the minima in RR time-series with amplitude greater than two standard deviations below 
the mean of the RR time-series. 
- Power spectra 
The EEG power spectrum was computed using the Welch method (4 sec Hanning 
windows with 50 % overlap) 52. For RR time-series, the power spectral estimation was 
performed by the autoregressive model and the model order was set at 16 53.  

C. Phase-amplitude analysis 
For a given frequency pair in each stage, the RR time-series (slow or phase-providing 
signal) and the EEG signal (fast signal or amplitude-providing frequency) were filtered 
(zero-phase infinite-impulse-response bandpass filters). Phase-providing frequencies 
ranged from 0.04-.4 Hz (0.01 Hz increments, 0.02 Hz filter bandwidth) and amplitude-
providing frequencies ranged from 0.25-16 Hz (0.5 Hz increments, 1 Hz filter 
bandwidth). The Hilbert transform was applied to the 3-min binned data. EEG amplitude 
and RR phase were then extracted and concatenated across the bins to construct the 
amplitude and phase time series, respectively. The phase time-series were binned into 
36 10º bins (nbins=36) and the mean of the EEG amplitude over each bin was 
calculated and then normalized by dividing it by the sum over the bins. Given the 
normalized amplitude distribution, P, the modulation index (MI) was calculated by 
dividing the Kullback–Leibler distance 26 of distribution P from the uniform distribution 
(U) by log (nbins). We then computed for each frequency pair the normalized 
modulation index (nMI) by generating surrogate MIs based on the method provided in 
supplement of 54.  

For statistical analysis, the nMIs were recalculated in 8 frequency pairs: LF (0.04–0.15 
Hz)–delta (0.05–4 Hz), LF–theta (4–8 Hz), LF–alpha (8–13 Hz), LF–sigma (12–15 Hz), 
HF (0.15–0.4 Hz)–delta, HF–theta, HF–alpha, and HF–sigma. 
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The preferred phase for LF–delta modulation was calculated as angle of the average 
composite signal of ADelta(t) exp(i φLF(t)) 54.  

D. Event-based analysis 
- Slow oscillation 
The EEG signals of frontal and central channels were filtered (zero-phase bandpass, 
.1–4 Hz). Then, the SO were detected based on a set of criteria for peak-to-peak 
amplitude, up-state amplitude, and duration of down- and up-states 55.  

- Spindles 

Sleep spindles were detected by applying the wavelet transform, using an 8-parameter 
complex Morlet wavelet with center frequency 13.5 Hz and calculating the moving 
average in 100 ms sliding windows. A spindle event was identified whenever the 
rectified signal exceeded threshold 56. 

- SO-spindle coupling 

The SO-spindle coupling was measured by calculation of modulation index 26 between 
spindle activity (Morlet wavelet-filtered sigma activity 56) and filtered (0.1–4 Hz) SO 
phase (within 2.5-sec windows centered at the SO negative peak). 

- Time-locked analysis 
In order to calculate changes in delta and sigma power around the HR burst, the Hilbert 
transform was applied on filtered EEG signals in bands of interest (0.5–4 Hz for SWA 
and 12–15 Hz for sigma band). To assess the HF amplitude change around the HR 
burst, the Hilbert transform was applied on RRHF.  
 
- Event-locked averaging 
The analyses were subject-based. We first performed a within-subject average and then 
averaged those averages across subjects. 
 
-Change scores 
The density of SOs (number of SOs per minute; SO negative peak was considered for 
counting) and spindles (spindle maximum amplitude point was considered for counting), 
as well as average delta and sigma amplitudes were calculated in both the 5-sec 
window prior the HR bursts, as modulated values, and in periods with no HR burst, as 
reference (baseline) values. That is, the baseline activities were calculated by excluding 
the 20-sec periods (the segments around the HR bursts) from the entire stage data. For 
example, if we found 6 HR bursts during 9 minutes of Stage 2, the baseline Stage 2 
SWA would be calculated over 7 minute of non-bursting periods (9-6*20s/60s). For HF 
change score, the modulated values were calculated in the 5-sec window after the HR 
bursts. The subtraction between modulated and reference values divided by summation 
of those values were calculated as the changes scores. 
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E. Statistics summary 
Statistical analyses were conducted using MATLAB 2015b (MathWorks). p<.05 was 
considered significant.  
- Controlling the false discovery rate 
In order to control for multiple comparisons, we implemented the Benjamini-Hochberg 
procedure of false discovery rate (FDR) correction with q = 0.05 57. 
-Comodulogram analysis 
For wake and sleep stage, the nMI was calculated in 8 frequency pairs: LF–SWA, LF-
theta, LF–alpha, LF–sigma, HF–SWA, HF–theta, HF–alpha, and HF–sigma. Within 
each sleep stage, the nMI pairs were compared using one-way ANOVA. The Kruskal-
Wallis test was used to compare a specific nMI across sleep stages. Two-tailed 
unpaired-samples t-test was used to compare nMI of a specific frequency pair across 
two sleep stage.  
- Event-locked analysis 
For wake and sleep stages, repeated measures ANOVAs followed by post hoc paired-
samples t-tests were used to compare SWA as well as sigma activity across non-
bursting periods and four 5-sec bins around the HR bursts.  
- Test of periodicity of HR bursts 
We calculated the inter-HRB-intervals (IHBI). For a periodic system, the Poincaré map 
(i.e., return map) of IHBIn+1 versus IHBIn contains one point. In a corresponding 
biological system with noise, this single point becomes a normally distributed single-
point cluster. The Poincaré map data was considered to be a normally distributed 
single-point cluster if the data points along the Poincaré map axes passed a test for 
normality 57. 

F. Memory performance tests 
 
-Face-Name association (FNA) task 
Face stimuli were chosen from a UC Riverside IRB-approved database of photographs 
of highly diverse UC Riverside undergraduate students. All students whose photographs 
were included in the database provided informed consent for their picture to be used to 
create experimental stimuli. All faces were forward-facing, shown from the shoulders up 
against a plain gray background, and edited to be gray scale. First and last names were 
selected from the 2010 United States Census data. The five most frequent male names, 
female names, and last names (e.g., Smith) were eliminated. Unisex names that are 
commonly used for both men and women were also eliminated, as were last names that 
are commonly used as first names (e.g., Thomas) or contain a common first name base 
(e.g., Richardson). Individual face-name pairings were randomly generated for each 
participant so that no two participants saw the same face-name pairs. During session 1, 
44 faces (22 men and 22 women) were presented in the center of the screen with a first 
and last name shown below the face. The first two and last two face-name pairs were 
discarded after encoding (i.e., not tested) due to primacy and recency effects. Each 
face/name pair was presented four times for duration of 4000ms, with an inter-stimulus-
interval of 500ms. Subjects were instructed to view each face-name pair and to do their 
best to remember each person’s name for a later test. Immediately following encoding, 
as well as after an 8-hr retention interval, subjects completed a recall memory test. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/195586doi: bioRxiv preprint 

https://doi.org/10.1101/195586


 21 

During recall, 10 faces were presented and subjects were asked to recall the first and 
last names associated with each face. That is, they had the opportunity to recall 20 
names (first and last names) total in each session. The ten faces tested in session 2 
were different than those tested in session 1, the remaining 20 faces were not used. 
Total recall was calculated as the sum of first and last names recalled correctly. The 
difference in total recall between sessions (PM-AM) was calculated as a measure of 
declarative memory consolidation. 
 
-Texture discrimination task (TDT) 
Subjects performed a texture discrimination task similar to that developed by Karni & 
Sagi 59. Visual stimuli for the TDT were created using the Psychophysics Toolbox 60. 
Each stimulus contained two targets: a central letter (‘T’ or ‘L’), and a peripheral line 
array (vertical or horizontal orientation) in one of four quadrants (lower left, lower right, 
upper left, or upper right) at 2.5°–5.9° eccentricity from the center of the screen. The 
quadrant was counterbalanced across subjects. The peripheral array consisted of three 
diagonal bars that were either arranged in a horizontal or vertical array against a 
background of horizontally oriented background distracters, which created a texture 
difference between the target and the background.  
An experimental trial consisted of the following sequence of four screens: central 
fixation cross, target screen for 33 ms, blank screen for a duration between 17 and 600 
ms (the inter-stimulus-interval, or ISI), mask for 17 ms, followed by the response time 
interval (2000 ms) and feedback (250 ms, red fixation cross with auditory beep for 
incorrect trials and green fixation cross for correct trials) before the next trial. Subjects 
discriminated two targets per trial by reporting both the letter at central fixation (‘T’ or ‘L’) 
and the orientation of the peripheral array of three diagonal lines (horizontal or vertical) 
by making two key presses. The central task controlled for eye movements. 
 
Each block consisted of 25 trials, each with the same ISI. A threshold was determined 
from the performance across 13 blocks, with a progressively shorter ISI, starting with 
600ms and ending with 0 ms. The specific sequence of ISIs across an entire session 
was (600, 500, 400, 300, 250, 200, 167, 150, 133, 100, 67, 33, 17). A psychometric 
function of percent correct for each block was fit with a Weibull function to determine the 
ISI at which performance yielded 80% accuracy. TDT performance was calculated as 
the difference in threshold between Session 1 and Session 2, such that a positive score 
indicates performance improvement (i.e., decreased threshold in Session 2), whereas a 
negative score indicates deterioration 61. 

Subjects were given task instructions and practiced the task during an orientation 
appointment prior to starting the study. During this practice, the peripheral target was 
located in a quadrant that was not used during the study. This practice ensured that 
subjects understood the task and accomplished the general task learning that typically 
occurs the first time a subject performs a task. Additionally, on the study day, subjects 
were allowed to practice an easy version of the task (ISI of 1000-600ms) prior to starting 
the test session to make sure subjects were able to discriminate the peripheral target 
between 90% and 100% correct on an easy version of the task. 
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Supplementary Information  
 
i.) Test of periodicity of HR bursts 
We tested the periodicity of the HR bursts by calculating the inter-HRB-intervals (IHBI). 
For a periodic system, the Poincaré map (i.e., return map) of IHBIn+1 versus IHBIn 
contains one point. In a corresponding biological system with noise, this single point 
becomes a normally distributed single-point cluster. The form of our Poincare´ map was 
considered to be a normally distributed single-point cluster if the datapoints along the 
Poincaré map axes passed a test for normality. Shapiro-Wilk test showed 38 out of 45 
subjects did not have periodic HR bursts during Stage 2 (Figure S1a). The Chi-square 
test showed 43 out of 45 subjects did not have periodic HR bursts during Stage 2. In 
Summary, our conclusion is that the HR bursts are less likely to be periodic events. 
 
ii.) Exploratory analyses on theta and beta activity 
Repeated measures ANOVAs indicated significant differences in theta activity across 
the 5-sec bins and periods with no HR burst only during Stage 2 (F4,168=52.36, 
p<.00001, Supp Fig. 4; it was also shown in comodulogrms in Fig 3e). The highest theta 
power occurred during the 5-sec bin prior the HR burst (t(84)=5.40, p<.00001). 
Repeated measures ANOVAs also indicated significant differences in beta activity 
across the 5-sec bins and periods with no HR burst during Wake (F4,132=12.82, 
p<.00001, Supp Fig. 4) and Stage 2 (F4,168=70.48, p<.00001). Post-hoc comparisons 
revealed the highest beta power occurred in the 5-sec bin prior the HR burst during 
Wake (t(66)=3.58, p=.0006) as well as during Stage 2 (t(84)=5.35, p<.00001).  
 
In contrast with SWA and Sigma power, no significant correlation was found between 
the recall difference score and ACE-related increases in theta power (r=0.061, p=.697) 
and beta power (r=0.038, p=.812) during Stage 2.  In addition, no significant correlation 
was found between the recall difference score and ACE-related increases in beta power 
during Wake (r=-0.230, p=.190). 
 
iii.) Exploratory analyses on the application of modulation index between HR 
bursts and EEG activities rather than the EEG change scores 
We calculated the modulation index (MI; Tort et al 2008) between the phase of heart 
rate bursts and amplitude of slow wave activity and sigma power within 20-sec windows 
around the HRBs during Stage 2 and SWS. The recall difference score in the 
declarative memory task was positively correlated with HRB-SWA MI in Stage 2 (r= 
.339, p= .0246) and SWS (r= .334, p= .0468), but non-significant with HRB-Sigma 
power MI in Stage 2 (r=0.248, p=0.1050). The correlation between the recall difference 
score and HRB-Sigma power MI in SWS was not significant (r= -0.002, p=.990).   

For the procedural learning task, the discrimination improvement was negatively 
correlated with HRB-SWA MI in Stage 2 (r= -.3965, p= .0077) and, marginally, SWS (r=-
0.3064, p=0.0691). The correlations between the discrimination improvement score and 
HRB-Sigma power MI in Stage 2 (r= -.0294, p= .8514) and SWS (r=-.0588, p=0.7371) 
were not significant 
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Supplemental Figure 6. Test of periodicity of HR bursts during Stage 2. a) Shapiro-Wilk test shows only 7 subjects 
out of 45 subjects do not reject the null hypothesis of HRB periodicity. b) Poincaré map for aperiodic inter-HRB-
intervals in one subject. c) Poincaré map for periodic inter-HRB-intervals in one subject. 

 

 
Supplemental Figure 7. An example of three kinds of HR bursts in one subject. HR decelerations after HR bursts can 
be a) small to detect and b-c) change in duration. 

 

Supplemental Figure 8. The density of sleep spindles increases in the 5-sec bin prior to the peak of HR bursts during 
Stage 2. 
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Supplemental Figure 9. The event-related analysis of changes in a) theta and b) beta activities around HR bursts. 
Asterisks in show the significant differences after FDR correction (*p<.05 and **p<.001). 

 
 

 

Supplemental Figure 10. a-d) Scatter plots for relationships between the recall improvement in the declarative 
memory (face-name task) and HRB-SWA/sigma modulation index during Stage 2 and SWS. e-h) Scatter plots for 
relationships between improvement in the perceptual learning (texture discrimination task) and HRB-SWA/sigma 
modulation index during Stage 2 and SWS. 

 
 

Baseline Theta

Baseline Beta

**

**
**

*
*

a

b

0.005 0.01 0.015 0.02 0.025
HRB-SWA MI (SWS)

-15

-10

-5

0

5

To
ta

l r
ec

al
l d

iff
er

en
ce

r=0.334, P=0.0468

0 0.02 0.04 0.06 0.08
HRB-SWA MI (Stage 2)

-15

-10

-5

0

5

To
ta

l r
ec

al
l d

iff
er

en
ce

r=0.339, P=0.0264

0.005 0.01 0.015 0.02 0.025 0.03 0.035
HRB-Sigma power MI (Stage 2)

-15

-10

-5

0

5

To
ta

l r
ec

al
l d

iff
er

en
ce

r=0.248, P=0.105

0.006 0.008 0.01 0.012 0.014 0.016 0.018
HRB-Sigma power MI (SWS)

-15

-10

-5

0

5

To
ta

l r
ec

al
l d

iff
er

en
ce

r=-0.002, P=0.99

0 0.02 0.04 0.06 0.08
HRB-SWA MI (Stage 2)

-100

-50

0

50

100

150

D
is

cr
im

in
at

io
n 

tim
e 

im
pr

ov
em

en
t (

m
s)

r=-0.396, P=0.0077

0.005 0.01 0.015 0.02 0.025
HRB-SWA MI (Stage 2)

-100

-50

0

50

100

150 r=-0.306, P=0.069

0.01 0.015 0.02 0.025 0.03 0.035
HRB-Sigma power MI (Stage 2)

-100

-50

0

50

100

150 r=-0.029, P=0.851

0.006 0.008 0.01 0.012 0.014 0.016 0.018
HRB-Sigma power MI (SWS)

-100

-50

0

50

100

150 r=-0.059, P=0.737

D
is

cr
im

in
at

io
n 

tim
e 

im
p

ro
ve

m
en

t

(SWS)

a b c d

e f g h

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/195586doi: bioRxiv preprint 

https://doi.org/10.1101/195586

