
 

  

 

 

Ascertainment bias can create the illusion of genetic health disparities 

  

 

Michelle S Kim1, Kane P Patel1, Andrew K Teng1, and Ali J Berens1,  

and Joseph Lachance1* 

 

 
1School of Biological Sciences, Georgia Institute of Technology 

*Corresponding author 

 

Contact information: 

Joseph Lachance 

950 Atlantic Dr.  

Atlanta, GA 30332 

joseph.lachance@biology.gatech.edu 

  

Short title: Ascertainment bias and genetic disease risks 

 

Keywords:  ascertainment bias, genetic risk scores, genetic epidemiology, genome-wide 

association studies, global health, health disparities, population genetics  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195768doi: bioRxiv preprint 

https://doi.org/10.1101/195768
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ascertainment bias and genetic disease risks 

 2 

Abstract 

Accurate assessment of health disparities requires unbiased knowledge of genetic risks in 

different populations.  Unfortunately, most genetic association studies use genotyping arrays 

and European samples.  Here, we integrate whole genome sequence data, GWAS results, and 

computer simulations to examine how ascertainment bias causes disease risks to be mis-

inferred in non-study populations.  We find that genetic disease risks are substantially 

overestimated for individuals with African ancestry – risk allele frequencies at known disease 

loci are 1.15% higher on average in Africa.  These patterns hold for multiple disease classes 

(e.g., cancer, gastrointestinal, morphological, and neurological diseases).  A contributing 

factor to this bias is that existing genotyping arrays are enriched for SNPs that have higher 

frequencies of ancestral alleles in Africa.  Computer simulations of GWAS that use samples 

from bottlenecked non-African populations recapitulate regional differences in allele 

frequencies at disease susceptibility loci.  These differences cause genetic disease risks to be 

overestimated for individuals with African ancestry and underestimated for individuals with 

non-African ancestry.  We find that the extent of ascertainment bias depends on the 

genotyping platform used, numbers of cases and controls, demographic history, the proportion 

of ancestral vs. derived risk alleles, and choice of study population (African GWAS are less 

biased).  Importantly, biases are only moderately reduced if GWAS use whole genome 

sequences and hundreds of thousands of cases and controls.  Our results indicate that caution 

must be taken when using GWAS results from one population to predict disease risks in 

another population.   
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Introduction  

In the past decade, over 3,000 genome-wide association studies (GWAS) have successfully 

identified more than 39,000 genetic variants that are associated with common diseases and 

other traits [1, 2].  Most GWAS use genotyping arrays to test whether specific risk alleles are 

more common in cases vs. controls.  However, the vast majority of published GWAS have used 

samples of European ancestry [3, 4], and a looming challenge is to be able to generalize 

GWAS results across populations [5-10].  Results from GWAS can be combined to generate 

polygenic risk scores to predict individual risks of disease [11-13].  These polygenic risk 

scores involve summing the number of risk alleles in each individual's genome to quantify 

hereditary disease burdens.  Further refinement of genetic risk scores involves weighting SNPs 

by effect size [14].  Additional complications for genetic risk scores include the “missing 

heritability” problem [15] , which implies that the bulk of causal variants remain undiscovered.  

Diseases can also have different genetic architectures in different populations [16].  Because 

of these issues, genetic predictions of disease risk are not always accurate, and it is important 

to be able to distinguish between situations where genetic risks actually differ between 

populations and when predictions of genetic health disparities are spurious.  

Genetic health disparities can arise when allele frequencies at disease-associated loci 

differ across populations [14].  These allele frequency differences are magnified for pairs of 

populations that do not share recent evolutionary history [17, 18].  Population bottlenecks and 

founder effects have influenced hereditary disease risks in a number of global populations.  

Many of these effects are disease-specific, such as elevated risks of cystic fibrosis among the 

Québécois [19] and cardiovascular disease among the descendants of the HMS Bounty 

mutineers [20].  Evolutionary history also affects whether there are genetic differences in 

disease risks across populations, including recent natural selection near disease susceptibility 

loci [21] and whether risk alleles are ancestral (shared with other primates) or derived (due to 

new mutations) [22, 23].  Although risks of individual diseases can differ across populations, 

the overall burden of hereditary diseases is expected to be similar across the globe [24].  

Systematic departures from this null expectation may arise because many disease alleles are 

presently unknown. 
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Even if real differences exist between populations, SNP ascertainment bias can cause 

genetic disease risks to be misestimated.  There are multiple sources of bias in GWAS, 

including choice of genotyping technology, the ancestry of study participants, and whether 

sample sizes are large or small [25-28].  Most commercially available genotyping arrays use 

SNPs that were originally ascertained in European populations, and arrays are enriched for 

intermediate frequency alleles (i.e., alleles with frequencies that are closer to 50%) [25].  

Because of this, allele frequencies at presently known disease loci are not independent of the 

genotyping technology used to detect genetic associations.  As of 2016, the ancestry of 81% 

of all GWAS samples was European and 14% was Asian [3], and this is likely to cause the set 

of known disease associations to be enriched for alleles that are polymorphic or intermediate 

frequency in Europe or Asia, but not Africa.  There is also evidence that disease-associated 

alleles have elevated minor allele frequencies in study populations [5].  Biases in genetic 

studies parallel what is observed in social science research: most samples are from Western, 

educated, industrialized, rich and democratic (WEIRD) societies [29, 30].  An additional 

consideration is that large sample sizes are required to detect associations between SNPs and 

genetic diseases when risk alleles have small effect sizes or are rare [31].  Because of this, 

ascertainment bias is more problematic for GWAS that have small numbers of cases and 

controls. 

 At present, the extent to which ascertainment bias hinders precision medicine and 

personal genomics is unknown.  To bridge this knowledge gap, we tested empirical data for 

systematic bias in risk allele frequencies across populations.  Extensive computer simulations 

of GWAS were then used to provide insight into multiple causes of what appears to be a 

genetic health disparity (including the effects of different genotyping arrays, study designs, 

mode of inheritance, and evolutionary histories).  Here, we focus on the problem of using 

disease associations discovered in one population to predict disease risks in another 

population, as opposed to whether GWAS findings can be successfully replicated across 

multiple populations. 
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Results  

Empirical patterns of genetic risk 

Allele frequencies at 3036 disease-associated loci were analyzed for each continental super-

population in the 1000 Genomes Project dataset.  Contrary to null expectations, the mean 

frequencies of risk alleles at disease susceptibility loci vary across populations (Fig. 1A).    

Specifically, the overall risk allele frequencies are significantly higher in African populations 

compared to non-African populations (mean difference: +1.15%, p-value = 0.02129, paired 

Wilcoxon signed-rank test).  However, what appear to be genetic health disparities (elevated 

risk allele frequencies in Africa) are due to SNP ascertainment bias. 

We explored differences in risk allele frequencies by binning each disease-associated 

locus into one of seven different categories: gastrointestinal (GI) or liver, metabolic, 

morphological, cancer, neurological, miscellaneous, and cardiovascular disease.  As 

illustrated in Fig. 1A, population-level differences in risk allele frequencies persist when GWAS 

results were binned by disease type.  Compared to other populations, African populations 

have the highest risk allele frequency in five out of seven disease types: metabolic (p-value = 

0.005502), morphological (p-value = 0.09494), cancer (p-value = 0.1169), neurological (p-

value = 0.0995), and miscellaneous disease (p-value = 0.3865, paired Wilcoxon signed-rank 

tests).  African populations have intermediate frequencies of risk alleles at loci that are 

associated with GI or liver diseases (p-value = 0.6965), and lower frequencies of risk alleles at 

loci that are associated with cardiovascular disease (p-value = 0.01404, paired Wilcoxon 

signed-rank tests).  Among non-African populations there was no underlying trend. 

Further stratification according to ancestral vs. derived status reveals a clear pattern: 

disease types that have a larger proportion of ancestral alleles tend to have elevated risk allele 

frequencies in Africa (Fig. 1B).  After binning GWAS SNPs by disease category, we find that 

the differences in the mean frequency of risk alleles between African and non-African 

populations are highly correlated with the proportion of risk alleles that are ancestral (r2 = 

0.842).  This suggests that continental patterns of disease risk may vary for risk alleles that are 

ancestral vs. derived. 
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The joint site frequency spectrum (SFS) of risk alleles in African and non-African 

populations provides empirical evidence of SNP ascertainment bias (Fig. 2).  In this study, we 

focused on unfolded allele frequencies, rather than minor allele frequencies.  In general, 

ancestral risk alleles tend to be the major allele and derived risk alleles tend to be the minor 

allele.  This is expected given that derived alleles are, by definition, evolutionarily younger than 

ancestral alleles.  69.2% of the ancestral risk alleles are found at higher frequency in African 

populations (below the diagonal), and 64.5% of the derived risk alleles are found at higher 

frequency in non-African populations (above the diagonal).  The null expectation is that equal 

numbers of alleles would be found on each side of the diagonal.  Examining the borders of the 

joint frequency spectrum between African and non-African populations emphasizes the effects 

of study populations in GWAS.  Many disease-associated alleles are found at extreme allele 

frequencies in Africa (close to 0 or 1) and at intermediate allele frequencies outside of Africa.  

This occurs because most GWAS have used non-African samples and statistical power is 

maximized at intermediate frequencies.   

The difference in risk allele frequencies between African and non-African populations is 

expected to be zero when bias is absent.  Conditioning on whether risk alleles are ancestral or 

derived reveals a striking pattern: ancestral risk alleles are found at much higher frequencies in 

Africa and derived risk alleles are found at much lower frequencies in Africa (Fig. 2B).  The 

mean difference in ancestral risk allele frequencies between African and non-African 

populations is +9.51%, and the mean difference in derived risk allele frequencies between 

African and non-African populations is -5.40% (p-value < 2.2x10-16 for both comparisons, 

Wilcoxon signed-rank tests).  The overall continental difference in risk allele frequencies of 

+1.15% arises because 44% of presently known disease-associated SNPs have ancestral risk 

alleles and 56% of disease-associated SNPs have derived risk alleles. 

 Because many disease-associations involve imputed SNPs, we tested whether 

continental differences in risk allele frequencies persist for SNPs that are not on the Affymetrix 

Genome-Wide Human SNP 6.0 Array.  For this set of disease-associated loci, we find that 

SNPs with ancestral risk alleles have higher allele frequencies in Africa (+8.63% on average) 
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and that SNPs with derived risk alleles have lower allele frequencies in Africa (-4.83% on 

average).  This suggests that biases persist even for imputed SNPs. 

 

Genotyping arrays are biased 

One potential source of bias is genotyping platform: GWAS use microarrays with pre-

ascertained SNPs.  Whole genome sequencing (WGS) data from the 1000 Genomes Project 

reveals that each population has a similar mean derived allele frequency (Fig. 3A).  This is 

expected since all human populations share the same evolutionary distance to chimpanzees.  

Compared to WGS data, derived allele frequencies are elevated for SNPs on the Affymetrix 

Genome-Wide Human SNP Array 6.0 and the Illumina Omni 5M microarray.  However, 

commonly used genotyping arrays also exhibit continental patterns of bias: derived allele 

frequencies in African populations are markedly lower than derived allele frequencies in non-

African populations (p-value < 2.2x10-16 for both arrays, Wilcoxon signed-rank tests).  This bias 

is due to the fact that genotyping arrays contain SNPs that were ascertained in non-African 

populations.  WGS data have an unbiased SFS with similar numbers of SNPs above and below 

the diagonal (Fig. 3B).  By contrast, the Affymetrix Genome-Wide Human SNP Array 6.0 and 

the Illumina Omni 5M microarray are enriched for SNPs that are above the diagonal, i.e. SNPs 

with higher derived allele frequencies outside of Africa (Fig. 3C and Fig. 3D).  This pattern 

mirrors what is seen for empirical GWAS data (Fig. 2A), which suggests that genotyping arrays 

contribute to continental differences in risk allele frequencies. 

 

Simulated GWAS capture the effects of bias 

Using computer simulations, we set out to test whether ascertainment bias is sufficient to 

explain observed patterns at disease-associated loci.  Simulations use allele frequency data 

from the 1000 Genomes Project, knowledge of which SNPs are on genotyping arrays, and 

GWAS power calculations [31].  Importantly, these simulations do not assume that there were 

any underlying differences in hereditary disease risks across populations (i.e. simulated 

differences in risk allele frequencies are due to ascertainment bias).  Results from computer 
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simulations are similar to what is observed in empirical data: compared to non-African 

populations, African populations have elevated frequencies of ancestral risk alleles and 

reduced frequencies of derived risk alleles (Fig. 4).  Note that that empirical risk alleles have 

been discovered in a heterogeneous set of studies.  By varying the parameters of GWAS 

simulations we are able to quantify individual effects of each potential source of ascertainment 

bias (study population, genotyping technology, sample size, and the dominance of disease 

alleles). 

 Choice of study population has a profound effect on the relative frequencies of risk 

alleles in different populations.  Simulated GWAS that use African (AFR) samples yield similar 

risk allele frequencies across each of the five continental super-populations.  However, 

simulated GWAS that use American (AMR), East Asian (EAS), European (EUR), or South Asian 

(SAS) samples produce a set of disease-associated loci with elevated frequencies of ancestral 

risk alleles and reduced frequencies of derived risk alleles in Africa (Fig. 4A).  The magnitudes 

of these differences in allele frequencies are comparable to what is observed in empirical 

GWAS data.  Regardless of study population, risk allele frequencies are similar for each non-

African population, and this may be due in part to the relatively recent divergence times 

between these populations.  Because statistical power is maximized at intermediate allele 

frequencies, mean risk allele frequencies in study populations are shifted closer towards 50%.  

We note that simulated GWAS that use a mixture of samples from different continents (MIX) still 

produce a set of disease-associated loci with elevated frequencies of ancestral risk alleles and 

reduced frequencies of derived risk alleles in Africa.  Similarly, simulated GWAS that use 

admixed American (AMR) samples yield biased allele frequencies.  Taken together, these 

results suggest that pooling samples with different ancestries is unlikely to alleviate the 

problem of SNP ascertainment bias. 

 Although genotyping arrays contribute to ascertainment bias, GWAS simulations reveal 

that biases in risk allele frequencies persist even if whole genome sequences are used.  Recall 

that empirical GWAS data come from heterogeneous set of studies, while simulated results 

assume a single study design and effect size.  Despite this, allele frequency differences 

between Africa and Europe are similar for real and simulated data (Table 1).  Disease 
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associations from simulations of European GWAS yield similar results for the Affymetrix 

Genome-Wide Human SNP Array 6.0 and the Illumina Omni 5M microarray (ancestral risk allele 

frequencies were 10.7% and 11.0% higher in Africa and derived risk alleles were 8.0% and 

8.2% higher in Europe, respectively).  Somewhat surprisingly, disparities in allele frequencies 

also occur for European GWAS simulations that use whole genome sequences (Fig. 4B).  

However, continental differences in allele frequencies were reduced for simulations that used 

whole genome sequences (ancestral risk allele frequencies were 9.7% higher in Africa and 

derived risk alleles were 7.2% higher in Europe).  The fact that allele frequency differences 

arise from WGS simulations lends additional support to the claim that biases will persist for 

imputed SNPs. 

 

Table 1 
 
Data type 
 

Risk allele frequency difference  

Ancestral Derived 

NHGRI-EBI GWAS Catalog (empirical) +11.7% -6.7% 

Affymetrix Genome-Wide Human SNP Array 6.0 (simulated) +10.7% -8.0% 

Illumina Omni 5M microarray (simulated) +11.0% -8.2% 

Whole genome sequences (simulated) +9.7% -7.2% 
 
Table 1. Differences in allele frequencies between African and European populations for 
different genotyping technologies.  Simulation parameters: sample size = 3500 cases and 
3500 controls, study population = EUR, p-value threshold = 1x10-5, mode of inheritance = 
additive, prevalence = 0.1, genotype relative risk = 1.211. 
 

 Continental biases in risk allele frequencies occur even if GWAS use large sample 

sizes.  Simulated GWAS with less than 10,000 European cases and controls yield large 

differences in African and non-African allele frequencies (Fig. 4B).  This occurs regardless of 

whether simulations use SNPs from the Affymetrix Genome-Wide Human SNP Array 6.0 or 

WGS.  We find that well-powered studies with hundreds and thousands of cases and controls 

still results in notable differences in continental allele frequencies.  There are diminishing 
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returns for increasing sample sizes if simulated GWAS use genotyping arrays.  By contrast, 

whole genome sequencing of one million cases and controls minimizes the amount of bias.  

Statistical power is also a function of the p-value threshold used in a GWAS.  Holding the 

default parameter values constant, we find that using a more stringent p-value threshold 

amplifies risk allele frequency differences; ancestral risk allele frequencies are 12.2% higher in 

Africa and derived risk allele frequencies that are 8.8% higher in Europe if a p-value threshold 

of 5x10-8 is used. 

 Although we focused on additive effects, continental biases in risk allele frequencies 

vary for other modes of inheritance.  It is easier to detect associations for low frequency 

dominant alleles, intermediate frequency additive alleles, and high frequency recessive alleles.  

However, the power to detect a genetic association does not solely depend on minor allele 

frequency (e.g. disease-causing alleles at 10% and 90% have a different chance of being 

successfully detected) [31].  Using simulations of European GWAS, we find that African risk 

allele frequencies are expected to be higher than European risk allele frequencies for dominant 

models of disease and lower than European risk allele frequencies for recessive models of 

disease (Table 2).  These trends occur whether risk alleles are ancestral (dominant: +19.7%, 

recessive: +2.9%) or derived (recessive: -2.2%, recessive: -17.9%).   

 

Table 2 
 
Mode of inheritance 
 

Risk allele frequency difference 

Ancestral Derived 

Dominant +19.7% -2.2% 

Additive +10.7% -8.0% 

Recessive +2.9% -17.9% 
 

Table 2. GWAS simulations reveal that risk allele frequency differences between African and 
European populations depend upon whether disease alleles are dominant or recessive.  
Simulation parameters: technology = Affymetrix Genome-Wide Human SNP Array 6.0, study 
population = EUR, sample size = 3500 cases and 3500 controls, study population = EUR, p-
value threshold = 1x10-5, prevalence = 0.1, genotype relative risk = 1.211. 
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Discussion 

SNP ascertainment bias confounds GWAS results and creates the illusion of genetic health 

disparities.  Specifically, African populations tend to have higher frequencies of ancestral risk 

alleles and lower frequencies of derived risk alleles at existing GWAS loci.  Taking into account 

the magnitude of these differences and the proportion of ancestral alleles in GWAS results 

yields risk allele frequencies that are 1.15% higher in Africa.  This has important implications 

with respect to precision medicine and personal genomics: disease risks are likely to be 

misestimated if GWAS results are naively used to calculate genetic risk scores.  Biased 

predictions of genetic risks are expected to be magnified for individuals of African descent, 

potentially complicating existing health disparities that are due to socio-cultural factors 

including access to medical care [32, 33]. 

 Importantly, elevated risk allele frequencies in African populations are the opposite of 

what one expects to see given what is known about human demographic history.  Natural 

selection is more efficient at purging deleterious variants when population sizes are large[34], 

and an important difference between African and non-African populations is that the latter have 

been subjected to multiple bottlenecks and founder effects following the out-of-Africa 

migration.  Because of this, non-African genomes carry an excess load of homozygous 

deleterious alleles (as identified via GERP scores) [35].  By contrast, geographic patterns at 

known disease-associated loci differ by continent (Fig. 1), and this is due in part to SNP 

ascertainment bias. 

 The effects of different study populations are asymmetric.  For example, if a GWAS 

uses European samples, allele frequencies at disease-associated loci will be similar across 

non-African populations and different for Africa (Fig. 4).  By contrast, risk allele frequencies 

from African GWAS are relatively similar across all global populations.  Because successful 

detection of a SNP-disease association requires that a causal locus is polymorphic in the study 

population [31, 36], bottlenecks and founder effects can contribute to the illusion of genetic 

health disparities.  Consider a disease-causing allele that is initially found at the same 

frequency in two populations (i.e. prior to the divergence of these populations).  Over time, 

genetic drift causes allele frequencies at this locus to change in each daughter population 
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(Fig. 5A).  Importantly, non-African populations have experienced a history of population 

bottlenecks, including a drastic reduction in population size during the out-of-Africa migration 

[37], and there is a greater chance that non-African populations will have allele frequencies 

that are either 0 or 1.  Note that derived alleles tend to be low frequency and ancestral alleles 

tend to be high frequency [22].  African GWAS result in minimal bias and non-African GWAS 

result in an excess of ancestral risk alleles with elevated allele frequencies in Africa and an 

excess of derived risk alleles with elevated allele frequencies outside of Africa (compare Fig. 

5B and Fig. 5C).  Biases in genetic predictions of disease risk depend upon historical 

population sizes and divergence times.  

Although whole genome sequencing can identify many genetic variants that are 

missing from genotyping arrays, many of these variants are rare and population-specific (Fig. 

3B).  Because of this, disease-associations that use WGS data need not generalize well to 

other populations.  We find that continental biases in risk allele frequencies persist even if 

GWAS use whole genome sequences and hundreds of thousands of cases and controls (Fig, 

4B).  This has important implications for genetic risk score calculations: estimates of disease 

risk depend upon the population(s) in which disease-associations were originally discovered, 

regardless of whether WGS data were used.   

 Going forward, there are multiple ways to extend the benefits of precision medicine and 

personal genomics to a wide range of global populations.  One option is to replicate every 

existing GWAS in as many populations as possible.  However, this option has limited feasibility: 

even if sufficient funds and epidemiological resources are available, it is not always possible to 

obtain large sample sizes for each population.  Instead, genetic risk scores can correct for 

SNP ascertainment bias.  This requires understanding how risk allele frequencies differ 

between populations (as shown here), and leveraging linkage disequilibrium information to 

infer the effect sizes of risk alleles in non-study populations [38, 39].  Only by understanding 

the effects of SNP ascertainment bias can accurate predictive models of genetic disease risks 

be built. 
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Methods 

Population genetic data 

Allele frequencies were obtained for each of the five continental super-populations of the 1000 

Genomes Project: Africa (AFR), Americas (AMR), East Asia (EAS), Europe (EUR), and South 

Asia (SAS) [17].  Phase 3 data were used.  These frequencies were used to generate risk allele 

frequencies and derived allele frequencies at disease-associated loci from the NHGRI-EBI 

GWAS Catalog and simulated datasets.  Ancestral and derived states in phase 3 1000 

Genomes Project VCF files were used (these ancestral states were inferred via the EPO 

pipeline from Ensembl).  We found that derived allele frequencies were elevated for large 

chunks of chromosome 8, which is indicative of misidentified ancestral states.  To compensate 

for this, we masked SNPs found in the chr8: 89,00,000-146,364,022 region (hg19).  Individuals 

in phase 3 of 1000 Genomes Project were genotyped using WGS.  Allele frequencies of SNPs 

on the Affymetrix Genome-Wide Human SNP Array 6.0 and the Illumina Omni 5M microarray 

were found by merging data from the 1000 Genomes Project with lists of SNP ids obtained 

from the Affymetrix and Illumina websites. 

 

Identification of disease-associated variants 

Using the NHGRI-EBI GWAS Catalog [1], Berens and colleagues generated a curated set of 

3180 disease-associated loci [40].  This involved filtering out SNPs that were not associated 

with a disease, eliminating SNPs lacking risk allele or odds ratio information, and LD-pruning.  

Here, we further constrained the set of disease-associated loci from [40] by requiring 

knowledge of whether risk alleles are ancestral or derived.  After excluding 144 SNPs with 

unknown ancestral states, we were left with a focal set of 3036 disease-associated loci.  We 

classified these 3036 disease-associated loci into seven non-overlapping categories: 

gastrointestinal/liver, metabolic, morphological, cancer, neurological, miscellaneous, and 

cardiovascular.  Wilcoxon signed-rank tests were used to compare disease allele frequencies 

between African and non-African populations. 
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GWAS simulations 

Computer simulations were used to test whether SNP ascertainment bias alone can produce 

what appears to be genetic health disparities.  The goal here was to generate simulated 

datasets comparable to the set of 3036 disease-associated loci from the NHGRI-EBI GWAS 

Catalog.  These simulations assume that the underlying risks of disease are the same across 

the globe.  Two general types of simulations were run: simulations with ancestral risk alleles 

and simulations with derived risk alleles.  Simulations involved randomly drawing a test SNP 

from a list of known genetic variants ascertained via WGS or found on commercial genotyping 

arrays.  Conditioning on whether risk alleles are ancestral or derived, the risk allele frequency 

of the test SNP was found in the study population.  We then used a Perl script based on the 

GAS/CaTS power calculator [31] to determine the probability of detecting a successful genetic 

association at the test SNP.  The GAS power calculator leverages information about the 

number of cases and controls, p-value threshold, disease model, prevalence, disease allele 

frequency, and genotype relevant risk 

(http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/).  For each test SNP, we 

generated a uniformly distributed random number between 0 and 1.  The test SNP was 

retained if the random number was less than the power to successfully detect a genetic 

association, and the test SNP was rejected if the random number was greater than the 

probability of detection.  This process was repeated until a set of 3036 successful disease 

associations were detected.  At each of these 3036 SNPs, we obtained simulated risk allele 

frequencies for five super-populations in the 1000 Genomes Project dataset (AFR, AMR, EAS, 

EUR, SAS).  Our default parameters were as follows: genotyping technology = Affymetrix 

Genome-Wide Human SNP Array 6.0, study population = Europe (EUR), sample size = 3500 

cases and 3500 controls, genetic model = additive, p-value threshold = 10-5, prevalence = 0.1, 

and genotype relative risk = 1.211.  These parameter values were chosen to be representative 

of the empirical data found in the NHGRI-EBI GWAS Catalog. 

Our default model was modified to test which aspects of SNP ascertainment bias 

contribute the most to continental differences in risk allele frequencies.  This involved varying 
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the following simulation parameters: genotyping technology, sample size, mode of inheritance, 

and the p-value threshold required for association detection.  The effects of different 

genotyping technologies were simulated by drawing random SNPs from either the Affymetrix 

Genome-Wide Human SNP Array 6.0, the Illumina Omni 5M microarray, or WGS data from the 

1000 Genomes Project.  To examine the effects of different study populations, simulated risk 

allele frequencies were chosen from one of five different populations (AFR, AMR, EAS, EUR, or 

SAS) or from an equal mixture of all five populations (MIX).  The effects of different sample 

sizes were simulated by varying the number of cases and controls from 3 to 6 on a log10 scale 

at intervals of 0.1 (i.e. between 1,000 and 1,000,000 cases and controls).  Three genetic 

modes of inheritance were simulated: dominant, additive, and recessive.  Two different p-value 

thresholds were simulated: 1x10-5 and 5x10-8. 

 

 

Data access  

Global allele frequencies are publicly available from the 1000 Genomes Project website: 

http://www.internationalgenome.org/data.  Disease associations are publicly available from the 

NHGRI-EBI GWAS Catalog: https://www.ebi.ac.uk/gwas/.  R and Perl scripts used in GWAS 

simulations are available upon request. 
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Figures 

Figure 1 

 

Fig 1. Risk allele frequencies at published GWAS loci suggest the possibility of genetic 

health disparities. (A) Risk allele frequencies at published GWAS loci vary by population 

(1000 Genomes Project data shown).  For most disease classes, risk allele frequencies are 

elevated in African populations.  Significant allele frequency differences between African and 

non-African populations are indicated by * (p-values < 0.05, paired Wilcoxon rank sum tests).  

(B) Proportion of disease-associated SNPs where the risk allele is ancestral, as opposed to 

derived. 
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Figure 2 

 

Fig 2. Continental patterns of allele frequencies at disease susceptibility loci depend on 

whether risk alleles are ancestral or derived.  (A) Joint site frequency spectrum of published 

GWAS loci.  Disease susceptibility loci with ancestral risk alleles are labelled red and loci with 

derived risk alleles are labelled blue.  (B) Histogram of the difference in risk allele frequencies 

between African and non-African populations.  The mean allele frequency of ancestral risk 

alleles is higher in Africa (+9.51%) and the mean risk allele frequency of derived risks is lower 

in Africa (-5.40%).  Disease susceptibility loci with ancestral risk alleles are labelled red and 

loci with derived risk alleles are labelled blue.  Overlap in the histogram is labelled purple, and 

dashed lines indicate mean values.  
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Figure 3 

 

Fig 3. Genotyping arrays bias allele frequencies in African populations.  (A) Comparisons 

show the mean derived allele frequencies (DAF) of five populations from the 1000 Genomes 

Project.  Genotyping arrays are enriched for intermediate frequency derived alleles in non-

African populations.  (B) Joint site frequency spectrum of whole genome sequence (WGS) 

data.  Non-African and African data from the 1000 Genomes Project are shown.  Shading 

indicates counts of SNPs.  (C) Joint site frequency spectrum of ascertained SNPs on the 

Affymetrix Genome-Wide Human SNP Array 6.0.  (D) Joint site frequency spectrum of 

ascertained SNPs on the Illumina Omni 5M microarray. 
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Figure 4 

 

Fig 4.  GWAS simulations replicate empirical patterns.  (A) Simulations of non-African 

GWAS yield elevated frequencies of ancestral risk alleles and reduced frequencies of derived 

risk alleles in African populations.  (B) Larger sample sizes reduce bias for simulated GWAS.  

Beanplots show the results of 1000 simulations per set of parameter values.  Each simulation 

run involved generating a set of 3036 disease associations.  Sample sizes indicate the 

numbers of cases, and numbers of controls are set equal to the numbers of cases. 
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Figure 5 

 

Fig 5.  Synergistic effects between population bottlenecks and choice of study 

population.  Ancestral risk alleles are labelled red and derived risk alleles are labelled blue.  

Detectable associations in GWAS are indicated by filled circles and gray shading.  

Undetectable associations are indicated by open circles.  (A) Prior to divergence of allele 

frequencies are the same in different population (along the diagonal).  The out-of-Africa 

bottleneck causes allele frequencies to drift farther in non-African populations than African 

populations.  (B) African GWAS result in minimal bias.  (C) Non-African GWAS result in biased 

frequencies of risk alleles. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195768doi: bioRxiv preprint 

https://doi.org/10.1101/195768
http://creativecommons.org/licenses/by-nc-nd/4.0/

