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Abstract 

Background: Accurate assessment of health disparities requires unbiased knowledge of 

genetic risks in different populations.  Unfortunately, most genome-wide association 

studies use genotyping arrays and European samples.  Here, we integrate whole genome 

sequence data from global populations, results from thousands of GWAS, and extensive 

computer simulations to identify how genetic disease risks can be misestimated.   
 

Results: In contrast to null expectations, we find that risk allele frequencies at known 

disease loci are significantly different for African populations compared to other continents.  

Strikingly, ancestral risk alleles are found at 9.51% higher frequency in Africa and derived 

risk alleles are found at 5.40% lower frequency in Africa.  By simulating GWAS with 

different study populations, we find that non-African cohorts yield disease associations that 

have biased allele frequencies and that African cohorts yield disease associations that are 

relatively free of bias.  We also find empirical evidence that genotyping arrays and SNP 

ascertainment bias contribute to continental differences in risk allele frequencies.  Because 

of these causes, polygenic risk scores can be grossly misestimated for individuals of 

African descent.  Importantly, continental differences in risk allele frequencies are only 

moderately reduced if GWAS use whole genome sequences and hundreds of thousands 

of cases and controls.  Finally, comparisons between uncorrected and corrected genetic 

risk scores reveal the benefits of considering whether risk alleles are ancestral or derived.   
 

Conclusions: Our results imply that caution must be taken when extrapolating GWAS 

results from one population to predict disease risks in another population.  
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Background  

In the past decade, over 3,500 genome-wide association studies (GWAS) have 

successfully identified more than 68,000 genetic associations with common diseases and 

other traits [1, 2].  However, the vast majority of published GWAS have used samples of 

European ancestry [3, 4], and a looming challenge is to be able to generalize GWAS 

results across populations [5-11].  An additional complication is that existing GWAS use 

genotyping arrays, as opposed to whole genome sequencing (WGS).  Each disease-

associated locus has risk and protective alleles, and results from GWAS can be combined 

to generate polygenic risk scores to predict individual risks of disease [12-14].  These 

polygenic risk scores quantify hereditary disease burdens by summing the number of risk 

alleles in each individual's genome and sometimes weighting SNPs by effect size [15].  

The “missing heritability” problem hampers genetic risk scores, as many causal variants 

remain undiscovered [16, 17].  Diseases can also have different genetic architectures in 

different populations [18].  Because of these issues, genetic predictions of disease risk are 

not always accurate, and it is important to be able to distinguish between situations where 

genetic risks actually differ between populations and when genetic predictions of 

differences in disease risks are spurious. 

Although health disparities are often due to access to healthcare and socio-

economic factors [19, 20], genetic differences in disease risks arise when allele 

frequencies at disease-associated loci differ across populations [15].  Populations that 

share recent ancestry have similar allele frequencies and hereditary disease risks, while 

populations that diverged in the deep past can have large allele frequency differences at 

disease-associated loci [21, 22].  These differences are magnified by population 

bottlenecks and founder effects, including elevated risks of cystic fibrosis among the 

Québécois [23] and cardiovascular disease among the descendants of the HMS Bounty 

mutineers [24].  However, many common diseases are polygenic [25, 26], and allele 

frequency differences at individual loci tend to average out.  Because of this, the overall 

burden of hereditary disease is expected to be similar across the globe [27], with the 
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possible exception of reduced genetic load in African populations [28].  For polygenic 

diseases, the null expectation is that individuals from different populations will have similar 

counts of risk alleles. 

 The genetic ancestry of study participants can cause hereditary disease risks to be 

misestimated.  Indeed, genetic risk scores generated from different study cohorts have 

been shown to vary across populations [5].  As of 2016, the ancestry of 81% of all GWAS 

samples was European and 14% was Asian [3], and this is likely to cause the set of known 

disease associations to be enriched for alleles that are polymorphic or intermediate 

frequency in Europe or Asia, but not Africa.  Inequities in genetic studies parallel what is 

observed in social science research: most samples are from Western, educated, 

industrialized, rich and democratic (WEIRD) societies [29, 30].  For disease associations to 

be detected, loci need to be polymorphic in the study population.  Because of this, 

disease loci with allele frequencies that are zero or one in European populations are likely 

to be missed (i.e. the "known unknowns" [31]), and some of these disease loci will have 

intermediate frequencies in other populations.  Disease associations found in one 

population can over- or underestimate genetic disease risks in other populations.  One 

partial solution to this problem is to perform multiethnic GWAS that include individuals from 

multiple populations [32].  

 Commonly used genotyping arrays can also cause predictions of hereditary 

disease risks to be misestimated.  One issue is that SNPs on genotyping arrays tend to 

have large minor allele frequencies [33-35].  These older SNPs often have large allele 

frequency differences between populations [36, 37].  Systematic biases can also arise 

because commercially available genotyping arrays tend to use SNPs that were originally 

ascertained in European populations.  This SNP ascertainment bias can be particularly 

problematic if it yields disease loci with risk allele frequencies that are high for one 

population and low for another population. 

 Demographic history also affects whether known disease associated loci have 

biased allele frequencies.  Consider disease-associated alleles that are initially found at 
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the same frequency in two populations, i.e. prior to divergence (Figure 1a).  Note that risk 

alleles can be ancestral (shared with other primates) or derived (due to new mutations) 

and that ancestral alleles tend to be high frequency while derived alleles tend to be low 

frequency [38, 39].  Over time, allele frequencies at each locus diverge between daughter 

populations.  Importantly, bottlenecked non-African populations have experienced greater 

amounts of genetic drift than African populations [40] (Figure 1b).  This asymmetry, 

coupled with statistical power being maximized at intermediate allele frequencies [41], can 

cause known disease-associated loci to have biased allele frequencies.  Specifically, we 

predict that non-African GWAS will catch disease loci that have higher ancestral risk allele 

frequencies (and lower derived allele frequencies) in Africa (Figure 1c).  By contrast, we 

predict that African GWAS will catch a relatively unbiased set of disease-associated loci 

(Figure 1d).  Although continental differences in ancestral and derived risk allele 

frequencies have been observed for prostate cancer loci [42], these biases have yet to be 

studied in a comprehensive way. 

At present, it is unknown how much the set of known disease associations hinders 

precision medicine and personal genomics.  To bridge this knowledge gap, we integrated 

whole genome sequence data from global populations with results from thousands of 

GWAS and ran extensive computer simulations.  These analyses: 1) revealed novel 

empirical patterns at disease-associated loci, 2) identified multiple causes of how disease 

risks can be misestimated in global populations, and 3) examined different solutions to this 

problem (including alternative GWAS study designs and building genetic risk scores that 

correct for major sources of bias). 

 

 

Results  

African risk allele frequencies differ from other continents 

We tested whether there are any systematic biases in genetic estimates of disease risk by 

analyzing allele frequencies at 3036 GWAS loci for each continental population in the 1000 
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Genomes Project.  Contrary to null expectations, mean risk allele frequencies are not the 

same for each population (Figure 2a).  Overall, African populations have significantly 

higher risk allele frequencies compared to non-African populations (mean difference: 

+1.15%, p-value = 0.0213, paired Wilcoxon signed-rank test).  Population-level differences 

in risk allele frequencies persist when disease associations are binned into seven different 

categories.  Compared to other populations, African populations have the highest risk 

allele frequency for metabolic (p-value = 0.0055), morphological (p-value = 0.0949), 

cancer (p-value = 0.1169), neurological (p-value = 0.0995), and miscellaneous diseases 

(p-value = 0.3865, paired Wilcoxon signed-rank tests).  African populations have 

intermediate frequencies of risk alleles at loci that are associated with GI or liver diseases 

(p-value = 0.6965), and lower frequencies of risk alleles at loci that are associated with 

cardiovascular disease (p-value = 0.0140, paired Wilcoxon signed-rank tests).  These 

statistical comparisons reflect allele frequency differences at individual SNPs.  Among non-

African populations there is no underlying trend.  Some of the continental patterns 

described here are at odds with clinical data (e.g. health disparities involving 

cardiovascular disease in African-Americans [43]).  This discrepancy between clinical data 

and allele frequencies suggests that genetic disease risks may be misestimated for 

individuals with African ancestry. 

Disease categories that have a larger proportion of ancestral alleles tend to have 

elevated risk allele frequencies in Africa (Figure 2b).  After binning GWAS loci by disease 

category, we find that the differences in the mean frequency of risk alleles between African 

and non-African populations are highly correlated with the proportion of risk alleles that are 

ancestral (r2 = 0.842).  Accurate estimation of genetic disease risks across global 

populations may hinge upon knowledge of whether risk-increasing alleles are ancestral or 

derived. 

 

Ancestral and derived alleles yield different patterns of genetic disease risk 
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For loci that are not associated with any disease, the null expectation is that ancestral and 

derived allele frequencies will be broadly similar across global populations.  Just because 

Homo sapiens emerged in Africa does not mean that African genomes have an excess of 

ancestral alleles – all human populations share the same evolutionary distance to 

chimpanzees.  Due to the out-of-Africa bottleneck, African genomes are more likely to be 

heterozygous for derived alleles and non-African genomes are more likely to be 

homozygous for derived alleles.  Examining WGS data from the 1000 Genomes Project, we 

find that derived allele frequencies (DAF) are similar for each population (Figure 3a).  

However, disease-associated loci need not exhibit the same pattern.  

The joint site frequency spectrum (SFS) enables the frequencies of individual risk 

alleles to be compared between African and non-African populations.  Similar numbers of 

disease associations are found above and below the diagonal in Figure 3b.  However, 

conditioning on whether risk alleles are ancestral or derived reveals a striking pattern: 

69.2% of ancestral risk alleles are found at higher frequency in African populations (red 

dots below the diagonal), and 64.5% of derived risk alleles are found at higher frequency 

in non-African populations (blue dots above the diagonal).  The magnitudes of allele 

frequency differences between populations also vary for ancestral and derived risk alleles.  

We find that ancestral risk alleles are found at much higher frequencies in Africa and 

derived risk alleles are found at moderately lower frequencies in Africa (Figure 3c).  

Specifically, the mean difference in ancestral risk allele frequencies between African and 

pooled non-African populations is +9.51%, and the mean difference in derived risk allele 

frequencies between African and pooled non-African populations is -5.40% (p-value < 

2.2x10-16 for both comparisons, Wilcoxon signed-rank tests).  The overall continental 

difference in risk allele frequencies of +1.15% arises because 44% of presently known 

disease-associated loci have ancestral risk alleles. 

Derived allele frequencies serve as proxies for SNP age [44], and we find that older 

disease-associated loci are more likely to have large differences in continental allele 

frequencies. For each 20% DAF bin (pooled data), we calculated the difference in risk 
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allele frequencies between African and non-African populations.   In sharp contrast to 

other DAF bins, published disease loci with DAF ≤ 0.2 exhibit only a small amount of bias 

(Figure 3d).   This pattern occurs regardless of whether risk alleles are ancestral or 

derived.  Note that SNPs with DAF ≤ 0.2 tend to younger than 125,000 years old, 

assuming an effective population size of 10,000 individuals and generation times of 25 

years [44]. 

 

Choice of study population contributes to misestimates of genetic disease risk 

Most disease associations have been discovered in study cohorts with European ancestry, 

and this can bias the estimation of genetic disease risks in diverse global populations.  

Empirical data reveal the effects of GWAS study populations: many disease-associated 

alleles segregate at intermediate frequencies in non-African populations but are found at 

extremely low or high frequencies in Africa (compare the vertical and horizontal borders of 

Figure 3b).  This occurs because statistical power is maximized at intermediate 

frequencies, and most disease-associated loci have been discovered in non-African 

populations.  Existing GWAS have discovered relatively few disease alleles that segregate 

only in African populations. 

 To further isolate the effects of different study populations we simulated a large 

number of GWAS results, varying the continental ancestry of each study cohort.  

Importantly, our GWAS simulations did not assume that there are any underlying 

differences in hereditary disease risks across populations.  We find that computer 

simulations recapitulate empirical patterns at known disease loci, and that GWAS of 

bottlenecked non-African populations yield different results than GWAS of African 

populations (Figure 4).  Simulated GWAS that use an African (AFR) cohort yield similar risk 

allele frequencies across each of the five continental populations.  However, simulated 

GWAS that use American (AMR), East Asian (EAS), European (EUR), or South Asian (SAS) 

cohorts produce a set of disease-associated loci with elevated frequencies of ancestral 

risk alleles in Africa (Figure 4a) and reduced frequencies of derived risk alleles in Africa 
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(Figure 4b).  These simulation results indicate that systematic allele frequency differences 

between populations need not be due to any underlying difference in risk.  The effects of 

European study cohorts are still seen when GWAS simulations use data from WGS, as 

opposed to genotyping arrays (Table 1).  We also find that continental differences in risk 

allele frequencies occur if GWAS simulations use a more stringent p-value filter or 

simulations assume different modes of inheritance, including dominant or recessive 

disease alleles (Table S1 and Table S2).  Additionally, GWAS simulations of study cohorts 

that contain a mixture of individuals from different populations still yield disease-associated 

loci with continental biases in risk allele frequencies (MIX in Figure 4).  These results 

suggest that pooling samples with different ancestries is unlikely to completely alleviate the 

problem of misestimating genetic disease risks.  Regardless of the choice of study cohort, 

allele frequencies are similar for each non-African population, reflecting the relatively 

recent divergence times between these populations. 

We also examined the effects of genotype-by-environment (GxE) interactions by 

allowing effect sizes to vary by population in our GWAS simulations.  In general, results 

from these simulations mirror results other simulations: ancestral risk allele frequencies are 

higher in African populations than non-African populations, and derived risk allele 

frequencies are lower in African populations than non-African populations (Figure S2).  

Compared to African study cohorts, European study cohorts magnify these allele 

frequency differences between populations.  Choice of study cohort imposes a filter on 

effect sizes, as SNPs with very small effect sizes do not yield detectable associations 

(compare gray pre-GWAS effects sizes to red and blue post-GWAS effect sizes in Figures 

S2-S4).   Large effect sizes enable high frequency ancestral alleles and low frequency 

derived alleles to be detected in a GWAS.  The results described above are also robust to 

systematic biases in effect sizes, i.e. scenarios where pre-GWAS European effect sizes 

tend to be larger than African effect-sizes or vice versa (Figures S3 and S4).   

  

Genotyping arrays and SNP ascertainment bias cause disease risks to be misestimated 
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Many commonly used genotyping arrays contain SNPs that were ascertained in a relatively 

small number of European individuals.  This ascertainment bias results in allele frequency 

distributions that vary by genotyping platform.  Compared to WGS data, derived allele 

frequencies are higher for SNPs on the Affymetrix Genome-Wide Human SNP Array 6.0 

and the Illumina Omni 5M microarray.  SNPs on genotyping arrays also exhibit continental 

biases (Figure 3a).  Specifically, we find that derived allele frequencies in African 

populations are markedly lower than derived allele frequencies in non-African populations 

(p-value < 2.2x10-16 for both arrays, Wilcoxon signed-rank tests).   

 The joint SFS of non-African and African populations further reveals the effects of 

SNP ascertainment bias.  Examining WGS data, we find that similar numbers of SNPs have 

elevated derived allele frequencies in non-African and African populations (Figure S1a).  

By contrast, the Affymetrix Genome-Wide Human SNP Array 6.0 and the Illumina Omni 5M 

microarray are enriched SNPs with higher derived allele frequencies outside of Africa (i.e. 

SNPs above the diagonal in Figure S1b and Figure S1c).  Importantly, this pattern mirrors 

what is seen for empirical GWAS data (Figure S1d), which suggests that genotyping arrays 

contribute to continental differences in risk allele frequencies at known disease-associated 

loci. 

 Because many disease-associations involve imputed SNPs, we also tested whether 

continental differences in risk allele frequencies persist for disease-associated loci that are 

not on the Affymetrix Genome-Wide Human SNP 6.0 Array.  For this empirical set of 

disease-associated loci, we find that sites with ancestral risk alleles have higher allele 

frequencies in Africa (+8.63% on average) and that SNPs with derived risk alleles have 

lower allele frequencies in Africa (-4.83% on average).  This suggests that biases persist 

even for imputed SNPs. 

 

Continental differences in allele frequencies persist even if whole genome sequencing and 

large sample sizes are used 
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Simulations of GWAS results were used to infer the extent that misestimates of disease 

risks depend upon genotyping technology (Table 1).  Here, simulations assume European 

ancestry for each study cohort and sample sizes of 3500 cases and 3500 controls.  We 

find that different genotyping arrays yield similar results: the Affymetrix Genome-Wide 

Human SNP Array 6.0 and the Illumina Omni 5M microarray yield ancestral risk allele 

frequencies that are 10.7% and 11.0% higher in Africa and derived risk alleles that are 

8.0% and 8.2% higher in Europe, respectively.  Somewhat surprisingly, continental 

differences in allele frequencies also occur for GWAS simulations that use WGS data.  

Focusing on WGS GWAS simulations, ancestral risk allele frequencies are 9.7% higher in 

Africa and derived risk alleles are 7.2% higher in Europe.  These patterns arise because of 

our choice of study cohort and because sample sizes of 3500 cases and 3500 controls 

have relatively little power to catch rare disease alleles. 

 Continental biases in risk allele frequencies occur even if GWAS use large sample 

sizes.  Simulated GWAS with less than 10,000 European cases and controls yield large 

differences in African and non-African allele frequencies (Figure 5).  This occurs 

regardless of whether simulations use SNPs from the genotyping arrays or WGS.  

Increasing GWAS sample sizes increases the statistical power to detect associations with 

rare alleles.  However, our simulations reveal that there are diminishing returns for 

increasing sample sizes, especially if GWAS use genotyping arrays.  Well-powered studies 

with hundreds and thousands of cases and controls still yield notable differences in 

continental allele frequencies – even if WGS are used (Figure 5).  These results indicate 

that WGS is unable to completely mitigate the effects different study populations. 

 

Correcting for ancestral and derived risk alleles leads to improved genetic risk scores 

Standardized genetic risk scores (GRS) were generated for 2504 individuals and seven 

different disease categories.  This involved integrating a curated list of disease-associated 

loci from the NHGRI-EBI GWAS Catalog with individual-level genotype data from the 1000 

Genomes Project.  Positive GRS values indicate genomes that contain more risk alleles 
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than the global mean, and negative GRS values indicate genomes that contain less risk 

alleles than the global mean.  Standardized GRS are scaled in terms of standard 

deviations from the mean, i.e. they are Z-scores.  In general, different populations have 

GRS distributions that mirror what is seen for allele frequency data (compare Figure 6 to 

Figure 2a).  We find that African individuals have uncorrected GRS that differ from other 

populations (p-value = 0.0037 for GI or liver diseases and p-value < 2.2x10-16 for all other 

disease categories, Mann-Whitney U tests).  These differences are larger for metabolic, 

cancer, and cardiovascular disease risks. There is a substantial amount of overlap 

between the GRS distributions of each non-African population, and this pattern occurs for 

all disease categories.  Within each population there is also a large range of GRS values.  

Also note that admixed genomes from the Americas (AMR in Figure 6) have GRS that are 

broadly similar to other non-African genomes.  Although GRS reflect an individual’s genetic 

propensity for different disease categories, we caution against over-interpreting these 

results.  This is because GRS have been built from a biased set of disease-associated loci. 

 GRS corrections reduce some, but not all, of the population-level differences in 

predicted disease risks.  Here, we compensate for continental differences in ancestral and 

derived risk allele frequencies by generating corrected GRS for African genomes.  We find 

that African individuals have corrected GRS that are similar to other populations for 

metabolic (p-value = 0.8080), morphological (p-value = 0.0671), and neurological disease 

risks (p-value = 0.7116, Mann-Whitney U tests).  By contrast, African individuals have 

corrected GRS that are different than other populations for GI or liver, cancer, 

miscellaneous, and cardiovascular disease risks (p-value < 2.2x10-16 for each disease 

category, Mann-Whitney U tests).  Corrections involve in a leftward shift in the GRS of 

African genomes, the magnitude of which depends on the proportion of ancestral risk 

alleles for each disease category (compare the size of arrows in Figure 6).  We observe 

three different outcomes: minimal effects, over-correction, and reduction of bias.  

Cardiovascular risk predictions for African genomes were largely unchanged (i.e. GRS still 

appear to underestimate the risks of cardiovascular disease in individuals of African 
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descent).  Two disease categories (GI or liver and miscellaneous diseases) have corrected 

GRS distributions that differ more between African and non-African populations than 

uncorrected GRS distributions.  The remaining four disease categories (metabolic, 

morphological, cancer, and neurological diseases) have corrected GRS distributions that 

overlap heavily with other populations.  Although the correction method used here 

alleviates some forms of bias, our results suggest that GRS can be further improved by 

considering additional parameters. 

 

 

Discussion 

The biased set of disease associations that are presently known causes hereditary disease  

risks to be misestimated.  Specifically, African populations tend to have higher frequencies 

of ancestral risk alleles and lower frequencies of derived risk alleles at existing GWAS loci.  

Considering the magnitude of these differences and the proportion of disease-associated 

alleles that are ancestral, as opposed to derived, yields risk allele frequencies that are 

1.15% higher in Africa.  Elevated risk allele frequencies in African populations are the 

opposite of what one expects to see given human demographic history.  Due to population 

bottlenecks, non-African populations are expected to have greater amounts of genetic 

load [28].  This discrepancy arises because GWAS rely on European study cohorts and 

data from genotyping arrays.  Continental differences in allele frequencies also have 

important ramifications for precision medicine and personal genomics: disease risks are 

likely to be misestimated if GWAS results are naively used to calculate genetic risk scores 

(Figure 6).  This can obscure existing health disparities that are due to socio-cultural 

factors including access to medical care [45, 46].  High risk individuals may have genetic 

profiles that lull them into a false sense of security, and low risk individuals may have 

genetic risk profiles that lead to an undue amount of worry. 
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 Here, we are concerned with the limitations of using disease associations 

discovered in one population to predict disease risks in another population, as opposed to 

whether GWAS findings can be successfully replicated across multiple populations.  The 

effects of different study cohorts are asymmetric.  Non-African GWAS results can be used 

to predict disease risks in other non-African populations, but these disease associations 

generalize poorly to African populations (Figure 4).  By contrast, African GWAS results can 

be used to predict disease risks in a relatively unbiased way across all global populations.  

This asymmetry arises as a by-product of demographic history and the out-of-Africa 

migration (Figure 1) and because GWAS use arrays that suffer from SNP ascertainment 

bias (Figure 3a).  Our results suggest that there may be additional benefits to including a 

large number of African individuals in multiethnic GWAS.  We note that difficulties can still 

arise when transferring GWAS results from one non-African population to another non-

African population.  This is due to both the existence of private risk alleles and divergence 

times that can exceed 30,000 years.  Regardless of the study cohort used to generate 

genetic risk scores, it is impossible to fully correct for missing risk alleles from 

understudied populations.  Problems generalizing GWAS results cannot be solved by only 

using WGS and large sample sizes (Figure 5).  Furthermore, many variants discovered by 

WGS are rare and population-specific.  That said, genetic risk scores generated from WGS 

data are expected to be less biased than genetic risk scores generated from array data, 

especially when sample sizes are large. 

 Although this paper focuses on risk allele frequency differences across populations, 

we note that many disease loci remain undetected, and this also contributes to 

misestimates of disease risks.  These missing disease loci are particularly important when 

risk alleles are population-specific.  This underscores the need for genetic epidemiology 

studies to include samples from a diverse set of populations.  

 Our study demonstrates the benefits of adopting an evolutionary perspective 

towards health and disease [47, 48].  Important empirical patterns would not have been 

noticed without considering ancestral vs. derived states of alleles.  Continental differences 
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in allele frequencies also depend upon SNP age.  An evolutionary perspective is also 

valuable for understanding how genetic disease risks can be misestimated across 

populations.  Specifically, we find that it matters whether populations have experienced a 

history of bottlenecks and founder effects.  Knowing whether individual disease loci have 

experienced a history of natural section can lead to additional insights [42, 49, 50].  That 

said, systematic allele frequency biases can be mistaken for directional selection, 

hindering tests of polygenic selection acting on GWAS traits [51].   

 Recently, Martin et al. found that polygenic risk scores yield inaccurate predictions 

of height and schizophrenia, and that GRS for Type II Diabetes depend upon on choice of 

study cohort [5].  Using coalescent simulations, they also found that the proportion of 

heritability that can be explained decreases with distance to the GWAS study population.  

Using complementary approaches, our study resulted in novel discoveries.  We find that 

ancestral and derived states of risk alleles play a central role in the estimation of genetic 

disease risks across multiple populations, something missed by prior studies that examine 

the generalizability of GWAS results.  We also find that important asymmetries exist when 

extrapolating results between African and non-African populations, and that population 

bottlenecks play a key role (i.e. generalizability of results depends on more than the 

evolutionary distance between populations).  By explicitly testing the effects of different 

genotyping technologies and sample sizes, we were able to discover that WGS of 

hundreds of thousands of cases and controls still yields biased GWAS results.  Martin et al. 

also advocate mean-centering GRS for each population [5], but this solution can be 

problematic if hereditary disease risks actually differ between populations. 

 Our GRS calculations illustrate how misestimation of genetic risks can obscure 

whether there are any real differences in disease risks across populations (Figure 6).  Two 

types of error are possible: 1) The underlying risk of a particular disease may actually be 

the same for different populations, yet GRS distributions show little overlap.  2) The 

underlying risk of a particular disease may actually differ for populations, yet GRS 

distributions show extensive overlap.  Accurate GRS corrections are needed to exclude 
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either of these two possibilities.  Environmental effects and genotype-by-environment 

interactions also contribute to disease phenotypes [52].  Studies of immigrants, admixed 

families, and adopted individuals may prove to be particularly informative with respect to 

genetics and health inequities [53-56].  Corrected GRS for admixed genomes may also 

benefit from the use of local ancestry painting tools like RFMix [57] or ELAI [58]. 

 

 

Conclusions 

Going forward, multiple approaches can be used to extend the benefits of precision 

medicine and personal genomics to a wide range of global populations.  One option is to 

assume that disease associations can be generalized across populations without any 

complications.  However, this approach is flawed because only a biased set of disease 

loci are known at present.  A second option is to require that genetic risk scores only use 

disease associations discovered in the same population (i.e. avoid generalizing results 

across populations).  However, this is unfeasible from a logistical standpoint – as it would 

require repeating every GWAS in every global population.  A third option is to use whole 

genome sequencing and large African study cohorts to generate sets of disease 

associated-loci that can be generalized relatively free of bias.  On a more practical side, 

genetic risk scores can be generated that correct for existing biases.  This requires 

understanding how risk allele frequencies differ between populations (as shown here) and 

leveraging linkage disequilibrium information to infer the effect sizes of risk alleles in non-

study populations [59, 60].  Finally, we note that the gold-standard for evaluating the 

genetic risk scores involves testing how well they predict disease phenotypes in diverse 

populations – something that requires individual-level phenotype data.  Only by 

understanding population genetics and the effects of SNP ascertainment bias can 

accurate predictive models of genetic disease risks be built. 
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Methods 

Population genetic data 

Allele frequencies were obtained for each of the five continental populations of the 1000 

Genomes Project: Africa (AFR), Americas (AMR), East Asia (EAS), Europe (EUR), and 

South Asia (SAS) [21].  These frequencies were used to generate risk allele frequencies 

and derived allele frequencies at disease-associated loci from the NHGRI-EBI GWAS 

Catalog and simulated datasets.  Ancestral and derived states in phase 3 1000 Genomes 

Project VCF files were used (these ancestral states were inferred via the EPO pipeline from 

Ensembl).  We found that derived allele frequencies in all populations were elevated for 

large chunks of chromosome 8, which is indicative of misidentified ancestral states.  To 

compensate for this, we masked SNPs found in the chr8: 89,000,000-146,364,022 region 

(hg19).  Individuals in phase 3 of 1000 Genomes Project were genotyped using WGS.  

Allele frequencies of SNPs on the Affymetrix Genome-Wide Human SNP Array 6.0 and the 

Illumina Omni 5M microarray were found by merging data from the 1000 Genomes Project 

with lists of SNP IDs obtained from the Affymetrix and Illumina websites. 

 

Identification of disease-associated variants 

Using the NHGRI-EBI GWAS Catalog [1], Berens et al. generated a curated set of 3180 

disease-associated loci [61].  This involved filtering out SNPs that were not associated with 

a disease, eliminating SNPs lacking risk allele or odds ratio information, and LD-pruning.  

Here, we further constrained the set of disease-associated loci from [61] by requiring 

knowledge of whether risk alleles are ancestral or derived.  After excluding 144 SNPs with 

unknown ancestral states, we were left with a focal set of 3036 disease-associated loci 

(Table S3).  We classified these 3036 disease-associated loci into seven non-overlapping 

categories: gastrointestinal/liver, metabolic, morphological, cancer, neurological, 

miscellaneous, and cardiovascular.  Wilcoxon signed-rank tests were used to compare 

disease allele frequencies between African and non-African populations.  Disease-

associated loci were binned by DAF, averaging across all 1000 Genomes Populations.  
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Allele ages were estimated as per Eq. 4 in [44] (assuming N=10,000 and a generation time 

of 25 years). 

 

GWAS simulations 

Computer simulations were used to test whether SNP ascertainment bias alone can 

produce what appears to be genetic differences in disease risks across populations.  The 

goal here was to generate simulated datasets comparable to the set of 3036 disease-

associated loci from the NHGRI-EBI GWAS Catalog.  These simulations assume that the 

underlying risks of disease are the same across the globe.  Two general types of 

simulations were run: simulations with ancestral risk alleles and simulations with derived 

risk alleles.  Simulations involved randomly drawing a test SNP from a list of known genetic 

variants ascertained via WGS or found on commercial genotyping arrays.  Conditioning on 

whether risk alleles are ancestral or derived, the risk allele frequency of the test SNP was 

found in the study population.  We then used a Perl script based on the GAS/CaTS power 

calculator [41] to determine the probability of detecting a successful genetic association at 

the test SNP.  The GAS power calculator leverages information about the number of cases 

and controls, p-value threshold, disease model, prevalence, disease allele frequency, and 

genotype relevant risk (http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/).  

For each test SNP, we generated a uniformly distributed random number between 0 and 1.  

The test SNP was retained if the random number was less than the power to successfully 

detect a genetic association, and the test SNP was rejected if the random number was 

greater than the probability of detection.  This process was repeated until a set of 3036 

successful disease associations were detected.  At each of these 3036 SNPs, we obtained 

simulated risk allele frequencies for five populations in the 1000 Genomes Project dataset 

(AFR, AMR, EAS, EUR, SAS).  Our default parameters were as follows: genotyping 

technology = Affymetrix Genome-Wide Human SNP Array 6.0, study population = Europe 

(EUR), sample size = 3500 cases and 3500 controls, genetic model = additive, p-value 

threshold = 10-5, prevalence = 0.1, and genotype relative risk = 1.211.  These parameter 
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values were chosen to be representative of the empirical data found in the NHGRI-EBI 

GWAS Catalog. 

Our default model was modified to test which aspects of SNP ascertainment bias 

contribute the most to continental differences in risk allele frequencies.  This involved 

varying the following simulation parameters: genotyping technology, sample size, mode of 

inheritance, and the p-value threshold required for association detection.  To examine the 

effects of different study populations, simulated risk allele frequencies were chosen from 

one of five different populations (AFR, AMR, EAS, EUR, or SAS) or from an equal mixture of 

all five populations (MIX).  The effects of different sample sizes were simulated by varying 

the number of cases and controls from 3 to 6 on a log10 scale at intervals of 0.1 (i.e. 

between 1,000 and 1,000,000 cases and controls).  The effects of different genotyping 

technologies were simulated by drawing random SNPs from either the Affymetrix Genome-

Wide Human SNP Array 6.0, the Illumina Omni 5M microarray, or WGS data from the 1000 

Genomes Project.  Three genetic modes of inheritance were simulated: dominant, additive, 

and recessive.  Two different p-value thresholds were simulated: 1x10-5 and 5x10-8. 

 We also simulated the results of GWAS where effect sizes vary between 

populations.  Simulations examined three different effect size distributions (symmetric, 

larger effect sizes in Europe, and larger effect sizes in Africa), two different types of risk 

alleles (ancestral and derived), and two different study cohorts (European and African).  In 

each simulation run, 3036 disease-associated loci were obtained using the power 

calculator described above.  Simulations were repeated 1000 times per combination of 

parameters.  Symmetric effect sizes were generated by drawing locus-specific genotype 

relative risks for each test SNP from a gamma distribution (shape= 1.24, scale = 0.85).  

These parameter values were chosen to give a distribution of effect sizes that is 

comparable to loci in the NHGRI-EBI GWAS Catalog.  We allowed genotype relative risks 

for each test SNP to vary by population by adding random noise (normally distributed, 

mean = 0, standard deviation = 0.5).  Simulated genotype relative risks <1 were set equal 

to 1.  Larger European effect sizes were generated by drawing locus-specific genotype 
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relative risks from a gamma distribution that was shifted 0.5 upwards (Figure S3).  Larger 

African effect sizes were generated by drawing locus-specific genotype relative risks from 

a gamma distribution shifted 0.5 to the right (Figure S4).  A representative dataset from 

GWAS simulations is included in Table S4 

 

GRS corrections 

Genetic risk scores (GRS) for 2504 individuals were built using genotypes at a curated set 

of 3036 disease-associated loci from the NHGRI-EBI GWAS Catalog.  Note that genetic 

risk scores are sometimes called polygenic risk scores (PRS).  For each disease locus we 

counted whether an individual has 0, 1, or 2 copies of the risk allele.  Because each 

disease category includes a heterogeneous set of diseases and phenotypes we did not 

incorporate odds ratio and/or effect size information into our GRS calculations.  Counts of 

risk alleles were then summed across all loci that belong to a particular disease category, 

yielding a raw GRS for each individual.  Standardized GRS values were calculated for 

each combination of individual and disease category by finding the mean and standard 

deviation of raw GRS values across all 2504 individuals in the 1000 Genomes Project 

dataset.  Given our empirical results (Figure 3c), diploid African genomes tend to have 

0.1902 (2 x 9.51%) additional copies each ancestral risk allele and 0.1082 (2 x 5.41%) 

fewer copies of each derived risk allele compared to non-African genomes.  Because of 

this, our correction method considered the state of the risk alleles (ancestral or derived).  

Uncorrected African GRS use counts of 0,1, or 2 risk alleles at each disease locus.  

Corrected African GRS use counts of -0.1902, 0.8098, and 1.8098 “effective risk alleles” for 

ancestral alleles and 0.1082, 1.1082, and 2.1082 “effective risk alleles” for derived alleles.  

The same mapping of raw GRS to standardized GRS was used for uncorrected and 

corrected African GRS.  

 

 

Additional files 
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Table S1.  Effects of different p-value thresholds for GWAS simulations. 

Table S2.  GWAS simulations of dominant, additive, and recessive disease alleles. 

Table S3.  Curated set of 3036 disease-associated loci from the NHGRI-EBI GWAS 

Catalog. 

Table S4.  Representative set of loci from GWAS simulations  

Figure S1.  Joint site frequency spectra for multiple genotyping technologies. 

Figure S2.  GWAS simulations that allow effect sizes to vary by population. 

Figure S3.  GWAS simulations with larger effect sizes in Europe. 

Figure S4.  GWAS simulations with larger effect sizes in Africa. 
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Tables 
 

Table 1. Differences in allele frequencies between African and European populations for 
different genotyping technologies 
 

Data type 

Allele frequency difference 
between Africa and Europe 
Ancestral 
risk allele 

Derived 
risk allele 

NHGRI-EBI GWAS Catalog (empirical) +11.7% -6.7% 

Affymetrix Genome-Wide Human SNP Array 6.0 (simulated*) +10.7% -8.0% 

Illumina Omni 5M microarray (simulated*) +11.0% -8.2% 

Whole genome sequences (simulated*) +9.7% -7.2% 
 
*GWAS simulation parameters: sample size = 3500 cases and 3500 controls, study 
population = EUR, p-value threshold = 1x10-5, mode of inheritance = additive, prevalence 
= 0.1, genotype relative risk = 1.211.  
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Figures 

 
 
Figure 1.  GWAS in bottlenecked European populations catch different types of disease 
loci than GWAS in non-bottlenecked African populations.  Ancestral risk alleles are labelled 
red and derived risk alleles are labelled blue.  Statistical power to detect associations is 
maximized at intermediate allele frequencies in the study population (gray shading).   
Filled circles indicate disease loci that are able to be caught by a GWAS, and open circles 
indicate disease loci that are unable to be caught by a GWAS.  (a) Prior to divergence, 
allele frequencies are the same in both populations.  (b) Non-African populations 
experience greater amounts of genetic drift.  Diffusion of allele frequencies following 
divergence is indicated by red and blue shading.  (c) European GWAS are predicted to 
catch derived risk alleles that have higher frequencies in Europe and ancestral risk alleles 
that have higher frequencies in Africa.  (d) African GWAS are predicted to catch a 
relatively unbiased set of risk alleles. 
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Figure 2.  Known disease associations lead to misestimates of genetic disease risks.  (a) 
Risk allele frequencies at published disease-associated loci from the NHGRI-EBI GWAS 
Catalog vary by population.  * indicates a statistically significant allele frequency difference 
between African and non-African populations (p-values < 0.05, paired Wilcoxon rank sum 
tests).  n = number of disease-associated loci per disease category.  (b) Proportion of 
disease-associated loci where the risk allele is ancestral, as opposed to derived. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2018. ; https://doi.org/10.1101/195768doi: bioRxiv preprint 

https://doi.org/10.1101/195768
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Bias in genetic disease risks  Page 33 

 
 
Figure 3.  Empirical patterns depend on whether disease-associated alleles are ancestral 
or derived.  (a) Mean derived allele frequencies of non-disease SNPs from whole genome 
sequencing and genotyping arrays.  1000 Genomes Project data are shown.  (b) Joint SFS 
of published GWAS loci.  Ancestral risk alleles are labelled red and derived risk alleles are 
labelled blue.  (c) The frequencies of ancestral risk alleles are higher in Africa (+9.51% on 
average) and the frequencies of derived risk alleles are lower in Africa (-5.40% on 
average).  Dashed lines indicate mean values.  (d) Continental differences in risk allele 
frequencies are minimal for young SNPs.  Disease-associated loci are binned by DAF and 
whether risk alleles are ancestral or derived. 
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Figure 4.  GWAS simulations reveal the effects of different study cohorts.  Mean risk allele 
frequencies in different continental populations are shown for each study cohort (3036 
disease associations per simulation).  Despite the absence of any underlying differences in 
risk, disease-associated loci that that are detected in non-African study cohorts have 
biased frequencies.  (a) GWAS simulations where the ancestral allele increases risk.  (b) 
GWAS simulations where the derived allele increases risk. 
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Figure 5.  GWAS simulations reveal that continental differences in allele frequencies persist 
even if whole genome sequencing and large sample sizes are used.  Bean plots show the 
results of 1000 simulations per set of parameter values (3036 disease associations per 
simulation).  Simulations using SNPs on genotyping arrays are represented by light 
shading and simulations using WGS data are represented by dark shading.  Colors 
indicate whether risk alleles are ancestral (red) or derived (blue).  Sample sizes shown are 
the number of cases and the number of controls. 
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Figure 6.  Genetic risk scores (GRS) before and after correcting for ancestral and derived 
risk alleles.  GRS probability densities for each continental population are shown (solid 
lines: uncorrected GRS, dashed lines: corrected GRS for African genomes).  n = number 
of disease-associated loci per disease category.  Arrows indicate the shift in African GRS 
after correcting for whether risk alleles are ancestral or derived.  * indicates uncorrected 
African GRS that are significantly different than non-African GRS, and © indicates 
corrected African GRS that are significantly different than non-African GRS (p-values < 
0.05, Mann Whitney U tests).
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Supplementary tables 
 
Table S1. Effects of different p-value thresholds for GWAS simulations. 
 

P-value threshold 

Allele frequency difference 
between Africa and Europe 
Ancestral 
risk allele 

Derived 
risk allele 

1x10-5 +10.7% -8.0% 

5x10-8 +12.2% -8.8% 
 
GWAS simulation parameters: technology = Affymetrix Genome-Wide Human SNP Array 
6.0, sample size = 3500 cases and 3500 controls, study population = EUR, mode of 
inheritance = additive, prevalence = 0.1, genotype relative risk = 1.211.  
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Table S2.  GWAS simulations of dominant, additive, and recessive disease alleles. 
 

Mode of inheritance 

Allele frequency difference 
between Africa and Europe 
Ancestral 
risk allele 

Derived 
risk allele 

Dominant +19.7% -2.2% 

Additive +10.7% -8.0% 

Recessive +2.9% -17.9% 
 
GWAS simulation parameters: technology = Affymetrix Genome-Wide Human SNP Array 
6.0, sample size = 3500 cases and 3500 controls, study population = EUR, p-value 
threshold = 1x10-5, prevalence = 0.1, genotype relative risk = 1.211. 
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Table S3.  Curated set of 3036 disease-associated loci from the NHGRI-EBI GWAS 
Catalog. 
 
[S3_curated_disease_loci.txt ]  
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Table S4.  Representative set of loci from GWAS simulations.  Simulation parameters: 
technology = Affymetrix Genome-Wide Human SNP Array 6.0, sample size = 3500 cases 
and 3500 controls, mode of inheritance = additive genetic effects, p-value cutoff = 10-5, 
prevalence = 10%, study cohort = EUR, genotype relative risks = vary symmetrically 
across populatios,    
 
[Table S4_representative_loci_from_simulations.txt ] 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2018. ; https://doi.org/10.1101/195768doi: bioRxiv preprint 

https://doi.org/10.1101/195768
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Bias in genetic disease risks  Page 41 

Supplementary figures 
 

 
 
Figure S1.  Empirical Joint site frequency spectra of for multiple genotyping technologies.  
DAF are shown in each panel.  (a) Joint SFS of whole genome sequence (WGS) data.  
Non-African and African data from the 1000 Genomes Project are shown.  Shading 
indicates counts of SNPs.  (b)  Joint SFS of ascertained SNPs on the Affymetrix Genome-
Wide Human SNP Array 6.0.  (c)  Joint SFS of ascertained SNPs on the Illumina Omni 5M 
microarray.  (d)  Joint SFS of published disease-associated loci from the NHGRI-EBI 
GWAS Catalog. 
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Figure S2.  GWAS simulations that allow effect sizes to vary by population.  Simulation 
parameters: technology = Affymetrix Genome-Wide Human SNP Array 6.0, sample size = 
3500 cases and 3500 controls, mode of inheritance = additive genetic effects, p-value 
cutoff = 10-5, prevalence = 10%.  Representative sets of 3036 SNPs are shown.  Panels (a), 
(b), and (c) show the results of GWAS simulations where the ancestral allele increases risk.  
Panels (d), (e), and (f) show the results of GWAS simulations where the derived allele 
increases risk.  Panels (a), (b), (d) and (e) show representative effect sizes in Europe and 
Africa, where GRR refers to genotype relative risk.  Pre-GWAS effect sizes are indicated by 
gray points.  Post-GWAS effect sizes are indicated by red points (ancestral risk alleles) 
and by blue points (derived risk alleles).  Prior to GWAS simulations, effect sizes are 
symmetric.  Mean risk allele frequencies in different continental populations are shown for 
each study cohort in panels (c) and (f). 
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Figure S3.  GWAS simulations with larger effect sizes in Europe.  Simulation parameters 
are the same as in Figure S2, with the exception of larger GRR values in Europe.  
Representative sets of 3036 SNPs are shown.  Panels (a), (b), and (c) show the results of 
GWAS simulations where the ancestral allele increases risk.  Panels (d), (e), and (f) show 
the results of GWAS simulations where the derived allele increases risk.  Panels (a), (b), (d) 
and (e) show representative effect sizes in Europe and Africa, where GRR refers to 
genotype relative risk.  Pre-GWAS effect sizes are indicated by gray points.  Post-GWAS 
effect sizes are indicated by red points (ancestral risk alleles) and by blue points (derived 
risk alleles).  Prior to GWAS simulations, effect sizes are shifted upwards (i.e. higher in 
Europe).  Mean risk allele frequencies in different continental populations are shown for 
each study cohort in panels (c) and (f). 
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Figure S4.  GWAS simulations with larger effect sizes in Africa.  Simulation parameters are 
the same as in Figure S2, with the exception of larger GRR values in Africa.  Panels (a), (b), 
and (c) show the results of GWAS simulations where the ancestral allele increases risk.  
Representative sets of 3036 SNPs are shown.  Panels (d), (e), and (f) show the results of 
GWAS simulations where the derived allele increases risk.  Panels (a), (b), (d) and (e) 
show representative effect sizes in Europe and Africa, where GRR refers to genotype 
relative risk.  Pre-GWAS effect sizes are indicated by gray points.  Post-GWAS effect sizes 
are indicated by red points (ancestral risk alleles) and by blue points (derived risk alleles).  
Prior to GWAS simulations, effect sizes are shifted to the right (i.e. larger in Africa).  Mean 
risk allele frequencies in different continental populations are shown for each study cohort 
in panels (c) and (f).  
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