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Abstract 
A major challenge to studying the neural circuits underlying perceptual decision making has 
been the limited availability of tools for manipulation of neural activity. In recent years, rodents 
have emerged as a desirable model for overcoming the technical hurdle. However, mice, which 
offer abundant genetic tools for circuit manipulation, are underrepresented in perceptual 
evidence accumulation studies. Here we describe the behavior of mice performing a visual 
evidence accumulation task similar to one previously used in rats and humans. We found that 
although mice were capable of achieving similar accuracy levels as rats, differences in 
accumulation strategy were apparent. To test the engagement of cortex in the visual evidence 
accumulation task, we optogenetically inhibited activity in the anteromedial (AM) visual area 
using JAWS. Importantly, light activation biased choices in both injected and uninjected animals. 
Fortunately, by varying the stimulus-response contingency while holding constant the stimulated 
hemisphere, we surmounted this obstacle and demonstrated a role for AM in contralateral 
choices. Taken together, our results argue that mice accumulate visual evidence to guide 
decisions, an ability that is supported in part by area AM. 

Introduction 
In recent years, rodents have emerged as a powerful model organism for probing the neural 
circuit mechanism of perceptual decision making (Carandini and Churchland 2013). In 
particular, mice have become an ideal model for studying neural circuits because of the 
abundant tools for accessing and probing genetically defined cell types (Taniguchi et al. 2011; 
Madisen et al. 2010, 2012, 2015). Despite the advantages available to the mouse model, rats 
are more commonly used in perceptual decision making studies that involve accumulation of 
stochastic sensory evidence over time, perhaps due to the assumption that such tasks are too 
difficult for mice. Mice, however, have been trained on a variety of complex sensory perception 
tasks (Andermann et al. 2010; Busse et al. 2011; Glickfeld et al. 2013; Guo et al. 2014a; 
Burgess et al. 2016; Goard et al. 2016; Jeong et al. 2017). Further, recent studies have shown 
that mice can be trained to achieve similar psychophysical performance levels as rats (Douglas 
et al. 2006; Jaramillo and Zador 2014). Finally, a growing number of studies have successfully 
trained mice on temporal evidence accumulation paradigms (Douglas et al. 2006; Sanders and 
Kepecs 2012; Stirman et al. 2016; Morcos and Harvey 2016; Marbach and Zador 2016) 
reflecting the growing interest in leveraging the benefits of the mouse model for studying the 
underlying neural circuits of evidence accumulation. However, it is not established whether mice 
that perform an evidence accumulation paradigm equally well as rats and are utilizing the same 
behavioral strategy or neural machinery.  

To understand the neural mechanisms that enable evidence accumulation for visual decision 
making, we tested the causal involvement of secondary visual area AM for behavior. Area AM is 
a prominent candidate to perform evidence accumulation as it overlaps with previously defined 
location of mouse parietal cortex (Funamizu et al. 2016; Krumin et al. 2017) and has prominent 
projections to frontal and motor areas. Similar projection patterns have been observed in 
primate sensorimotor area LIP (Cavada and Goldman-Rakic 1989a, 1989b), an area routinely 
implicated in perceptual decision making studies (Gold and Shadlen 2007; Hanks and 
Summerfield 2017). Thus, AM is in a position to play a key role in translating visual information 
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into motor output. Moreover, the role of AM (and many mouse secondary visual areas) in 
behavior is unknown. AM could mediate a spatial (motor) bias as it is reciprocally connected 
with cortical (Wang et al. 2012) and subcortical motor areas (Allen Brain Atlas 2015), which are 
capable of biasing behavioral response. Alternatively, AM could mediate a sensory bias, for 
instance, if AM selectively preferred low- or high-rate stimuli. This is an attractive viewpoint 
given that mouse secondary visual areas have distinct preferences for temporal frequency 
(Andermann et al. 2011; Marshel et al. 2011; Tohmi et al. 2014). 

Results 
We trained mice to categorize a stochastic pulsatile sequence of visual flashes, similar to earlier 
studies with rats (Raposo et al. 2012; Brunton et al. 2013; Scott et al. 2015). Briefly, mice 
performed a three-port choice task (Uchida and Mainen 2003), in which they judged whether the 
total number of full-field flashes presented during a 1s period exceeded an experimenter-
defined category boundary (Figure 1A). Each flash in the sequence was 20 ms long and 
followed by an inter-flash interval drawn from a discrete exponential distribution (Supplementary 
Figure 1A). 

Mice learned to categorize stochastic sequences of visual flashes 
Mice performed several hundreds of trials per session (Supplementary Figure 1B; median 767 
trials) and reached high performance accuracy at the easiest level of the task in less than 20 
sessions or 10,000 trials (Supplementary Figure 1C-F). Behavioral training typically lasted 
approximately 2 months, with one daily session 5 days per week and lasting up to 2 hours per 
session.  
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Figure 1 – Task and Performance (A) Task schematic and trial structure of the three-port choice task. 
The mouse initiated trials and stimulus delivery by poking the center port. The mouse responded to 
whether the stimulus was low-rate (left port) or high-rate (right port). The mouse had to wait at the center 
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port for at least 1100 ms, with the stimulus delivered after a variable delay (10-100ms). At the end of the 
1000ms stimulus period, an auditory "Go" tone was played to inform the subject to make a choice. 
Correct choices to the left or right were rewarded with a small drop of water (2 µL), incorrect choices were 
followed by a 2-3 s timeout. (B) Psychometric function fit for individual mouse from single session, and 
(C) Multiple mice averaged across multiple sessions. Individual mouse (gray traces) and total average 
(black) n = 27 mice.  

In the first stage of training, mice were trained to self-initiate trials by poking into the center port 
and remaining in the center port for up to 1100 ms, while the visual stimulus was presented 
(Figure 1). Training was considered complete when mice waited at least 1100ms at the center 
port and performed above 80% percent correct on the easiest flash rates (Supplementary 
Figure 1C, E), and experienced at least 8 or more flash rates. Behavioral performance was 
quantified by fitting a psychometric function (Figure 1B,C). We evaluated the percentage of trials 
in which the mouse categorized the given stimulus sequence as “high-rate” (i.e. the number of 
flashes exceeded the category boundary of 12 flashes/s). Individual mice on single sessions 
(Figure 1B) and across multiple sessions (Figure 1C) accurately reported more high-rate 
choices when presented with increasing flash rates, achieving psychometric performance 
comparable to rats trained on the same task.  

Mice decisions were influenced most by flashes early in the sequence  
To maximize accuracy, animals should count all the flashes presented during the fixed stimulus 
presentation period. Because all flashes in the sequence are equally informative about the 
overall count, subjects should apply an equal weight to all flashes. However, mice might instead 
pay attention only to the first (or second) half of the stimulus. Attention to flashes early in the 
sequence would reflect an impulsive strategy of making up one’s mind too early, whereas 
attention to flashes later in the sequence would reflect a forgetful strategy (Kiani et al. 2008). 
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Figure 2 – Psychophysical kernels. (A) Kernels of mice and (B) rats. Gray traces, individual subjects; 
black trace, average subject. 

We used the well-established logistic regression approach to estimate the psychophysical 
kernel (Huk and Shadlen 2005; Katz et al. 2016; Yates et al. 2017). The logistic regression-
based reverse correlation approach reveals how each incoming flash, on average, influences 
the subject’s choice. Across mice (Figure 2A), the entire sequence of flashes was informative, 
as indicated by non-zero regression weights after the first time bin. The first time bin is zero 
because a flash is always presented at the start of each flash sequence. Interestingly, flashes 
presented earlier in the sequence generally informed the choice more strongly than flashes 
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presented later in the sequence. This implies that mice tended to over-weight stimuli presented 
early in the trial, consistent with an impulsive integration strategy. For comparison, the 
psychophysical kernels of rats (Figure 2B) trained on the same task were generally flat, 
reflecting an integration strategy in which evidence is integrated equally over time. 

Mice were influenced by performance on previous trial.  
Next we evaluated whether mice trained on the evidence accumulation paradigm were 
influenced by performance on previous trials. Several studies have found that both human and 
animal subjects performing perceptual tasks are influenced by previous choices (Busse et al. 
2011; Fründ et al. 2014; Scott et al. 2015; Abrahamyan et al. 2016; Urai et al. 2017), even when 
the trials are independent. We used two quantitative models to assess whether mice trained to 
make categorical decisions about visual pulsatile stimuli were susceptible to choices made on 
previous trials.  

The first approach assessed whether success or failure on the most recent trial influenced the 
performance on the current trial (Methods; Busse et al. 2011). Figure 3A shows a scatter plot of 
the coefficients for previous success (βS) and previous failures (βF). All the mice (n = 27) had 
positive βS coefficients, indicating that mice tended to repeat the same choice on the current trial 
if they were rewarded on the previous trial. Approximately half the mice had positive βF 
coefficients, meaning that they mice tended to repeat their choice following a failure (Figure 3A, 
Stay quadrant), while the other half had negative βF coefficients, indicating a tendency to switch 
choices following a failure (Figure 3A, Win-Stay, Lose Switch quadrant). The overall observed 
trial history patterns were similar to those of human subjects performing a perceptual decision 
making task (Abrahamyan et al. 2016). The second approach evaluated the influence of the 
history of previous choices on the current choice. The probabilistic model is equivalent to the 
model described by (Fründ et al. 2014). This model revealed that the most recent choice had 
the greatest influence on the current choice (Figure 3B).  
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Figure 3 – Effect of previous choices – (A) Previous choice history: Influence of successes and failures 
on the current choice for each mouse (n = 27 mice). Coefficients were estimated for each session 
individually and mean coefficients across sessions are plotted. Error bars represent standard error of the 
mean. (B) Effect of previous choices (n = 7 trials in the past). Gray traces, individual subjects (n = 27 
mice); black trace, average across subjects. 

Mice decisions are influenced by cumulative brightness  
An alternate strategy to solve the visual pulses task is to accumulate photons or brightness over 
time, such that the decision is based on the overall brightness. This is a feasible strategy given 
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that the flash event rate is directly proportional to the total LED on-time and therefore the total 
photons emitted in a sequence (Figure 4A, Supplementary Figure 2).  

To test whether rodent subjects performing the visual pulses task were sensitive to changes in 
brightness, we performed two brightness manipulation experiments. First, the intensity of all 
flashes in a given sequence was randomly increased on decreased on 5% of all trials (Figure 
4B). If subjects are influenced by brightness, they will tend to report more high-rate choices on 
trials with brighter pulse sequences, and on dimmer trials report low-rate choices (Figure 4D). 
For comparison, we also tested rats on the same manipulation. Brightness influenced the 
decisions of both mice and rats (Figure 4E). For mice, changes in brightness had a modest 
effect on the psychometric performance whereas rats were more sensitive to the brightness 
perturbation. 

4 6 8 10 12 14 16 18 20
Flashes/s

n = 2 rats

4 6 8 10 12 14 16 18 20
0

25

50

75

100

�
�$

IP
PT

F�
)
JH
I¦

3B
UF

Flashes/s

n = 8 mice

D

4 6 8 10 12 14 16 18 20
Flashes/s

0

25

50

75

100

�
�$

IP
PT

F�
)
JH
I�
3B

UF n = 2 mice

4 6 8 10 12 14 16 18 20
Flashes/s

n = 2 rats

G

)JHI�3BUF

-PX�3BUF

Time

Dimmer 

Normal 

Brighter 

Time

F

A

Dimmer
Normal
Brighter

0 5 10 15 20
0

0.2
0.4
0.6
0.8

1

Flashes/s

M
ax

. B
rig

ht
ne

ss

B

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Time (s)

Br
ig

ht
ne

ss

4
5
6
8
12
16
18
19
20

Flashes/s

Uniform Brightness 

Uncorrelated Brightness 

Uniform Brightness Uncorrelated Brightness 

0 5 10 15 20
Flashes/s

Normal
Scaled

0
0.2
0.4
0.6
0.8

1

M
ax

. B
rig

ht
ne

ss

E

C

Dimmer
Normal
Brighter

Normal
Scaled

 
Figure 4 – Brightness Manipulations – (A) Schematic of simulated cumulative brightness across time 
for individual flash rates. Simulated brightness curves computed as the cumulative sum of the flash 
sequence for a given flash rate. Each curve represents an average (of n=250 trials) of a given flash rate.  
(B) Schematic of uniform brightness manipulation experiment. The intensity of individual flashes was 
varied such that all flashes appeared dimmer or brighter than normal. (C) Schematic of uncorrelated 
brightness manipulation experiment. The intensity of individual flashes was scaled inversely with the flash 
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rate. (D) Schematic of cumulative brightness for each sequence (arrow in panel A), plotted against flash 
rate in uniform brightness manipulation experiment. (E) Psychometric performance on uniform brightness 
manipulation experiment: mice (n = 8) and rats (n=2). Subjects were presented with brighter (magenta) or 
dimmer (cyan) pulse sequences randomly on 5% of all trials. (F) Schematic of cumulative brightness for 
each sequence (arrow in panel A) plotted against flash rate for uncorrelated brightness manipulation 
experiment. In contrast to normal sequences (black), the scaled sequences have the same cumulative 
brightness, independent of their flash-rate (blue). (G) Psychometric performance from uncorrelated 
brightness perturbation experiment: mice (n = 2) and rats (n = 2). Subjects were presented with 
brightness scaled pulse sequences randomly on 5% of all trials. Circles represent subjects’ behavioral 
responses. Solid line represents 4-parameter cumulative Normal psychometric function fit to the data. 
Error bars represent Wilson binomial 95% confidence intervals.  

Second, we remove the correlation between brightness and flash rate by adjusting the flash 
intensity in each sequence to the flash rate. As a result, the total brightness over time was the 
same across all flash rates (Figure 4C,F). If subjects were invariant to the total brightness of a 
sequence, and instead relied on flash count, this manipulation should not interfere with their 
performance. However, performance on the scaled brightness trials (5% of all trials) was 
dramatically changed (Figure 4G): both mice and rats chose the low-rate port on almost all 
trials. Because the overall brightness for each flash rate was made equal to that of a typical 
extreme low-rate stimulus (i.e. 4 flashes/s), low rate choices may reflect that animals based 
choices only on brightness. An alternative interpretation is that the reduced brightness 
increased uncertainty of the animals (Sheppard et al. 2013), leading to an overall loss of 
sensitivity and thus a flat psychometric function. In keeping with this possibility, note that mice 
chose the high rate option more frequently at the very lowest rates on the scaled trials 
compared to the normal trials (Figure 4G, left). Had they used solely a brightness strategy, they 
would have chosen the high rate option less frequently for those trials. Although more 
experiments are needed to fully understand how brightness and count are weighted during 
decision-making, these results make clear that the decisions here were not based solely on 
count. This suggests that future experiments should train animals to marginalize over 
brightness, perhaps by using stimuli with variable brightness from the onset of training.  

Inactivation of secondary visual area AM biases perceptual decisions 
To test whether the evidence accumulation paradigm engaged cortical circuitry, we sought to 
reversibly silence secondary visual AM in mice performing the task. We performed widefield 
retinotopic mapping in each mouse to identify AM for targeted inactivation (Figure 5). Briefly, we 
imaged visually evoked activity in awake transgenic mice expressing GCaMP6 in excitatory 
neurons (Ai93; CamkIIα-tTA; Emx-cre) in response to a vertical or horizontal bar that 
periodically drifted across the screen in the four cardinal direction (Kalatsky and Stryker 2003; 
Garret et al. 2014; Zhuang et al. 2017). This procedure enabled generation of phase maps for 
altitude and azimuth visual space (Figure 5A, B) and subsequently visual field sign maps 
(Figure 5C), which were used to estimate the borders between cortical visual areas and reliably 
identify visual AM (Figure 5D). To reversibly silence AM, we used cruxhalorhodopsin JAWS 
(Halo57), a red light-driven chloride ion pump capable of powerful optogenetic inhibition 
(Chuong et al. 2014; Acker et al. 2016). Optogenetic stimulation was randomly interleaved in 
25% of all trials within a session. The optogenetic stimulus pattern consisted of a 1 s long 
square wave followed by a 0.25 s long linear downward ramp to reduce the effect of rebound 
excitation that may occur after strong inhibition (Figure 6A) (Chuong et al. 2014; Guo et al. 
2014a).  

A potential confound when using JAWS for optogenetic inhibition is a behavioral artifact due to 
the presence of visible red light. While it was long assumed that rodents are unable to perceive 
red light, a recent study showed that red-light delivery in the brain can activate the retina and 
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influence behavior (Danskin et al. 2015). If mice are influenced by brightness in their decisions 
(Figure 4), red-light stimulation could induce a behavioral bias towards high-rate decisions 
during photoinhibition trials. In addition, decisions could be biased towards the location of the 
optical fiber. To test whether mouse behavior would be affected by the presence of red light in 
the absence of JAWS we implanted and trained mice injected with a sham virus (AAV-GFP) in 
AM.  

In vivo red light stimulation of the control group resulted in a bias towards the high-rate side 
(Figure 6) confirming the hypothesis that the red light alone introduces an artifact in the 
behavior, most likely due to red light directly exciting the retina and increasing the perceived 
cumulative sequence brightness. To eliminate this behavioral artifact, we installed additional red 
lights in the behavior booth to adapt long-wave sensitive photoreceptors in the retina (Danskin 
et al. 2015). The external house red lights strongly reduced the animals’ red-light sensitivity 
during photoinhibition trials (Figure 6C-E).  

Az
im

ut
h 

D
eg

re
es

V1

AL

LM

RL AM MMA

PM

L

A

 A
lti

tu
de

 (D
eg

re
es

)

V1

AM

PM

MMA

P

MMP
RL

AL

LM

A

C D

B

 
Figure 5 – Retinotopic Map of Mouse Visual Areas. – (A) Altitude and (B) azimuth phase maps (C) 
Visual field sign map with labeled visual areas (D) Visual area borders overlaid on photograph of skull.  

Having established that the red light alone will influence behavior, we developed an 
experimental design in which the stimulus-response contingency was varied while the 
stimulated hemisphere was held constant. This allowed us to distinguish between a potential 
spatial/motor and a sensory bias due to unilateral inhibition of AM. We trained two groups of 
mice on opposing behavioral contingencies: the first group (A) trained on the contingency: High-
Rate, go LEFT and the second group (B) trained on the reverse contingency: High-Rate, go 
RIGHT (Figure 7A). Comparing these two groups allowed us to disentangle whether an 
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observed bias is due to unilateral inhibition of AM and if the bias is sensory or spatial-motor in 
nature. If AM inhibition causes a sensory bias (e.g. towards the high-rate stimulus) both groups 
should exhibit a leftward shift in the psychometric function (Figure 7B). However, if AM inhibition 
causes a spatial-motor bias towards the ipsilateral hemifield, then the psychometric function for 
the two groups would shift in the opposing directions (Figure 7C) such that Group A exhibits a 
leftward shift and Group B a rightward in the psychometric function. This difference can be 
further quantified by the choice bias measure as a function of laser power strength. A positive 
choice bias indicates a bias towards the high-rate choice port and therefore a leftward shift in 
the psychometric function, whereas a negative choice bias value indicates a bias towards the 
low-rate port and a rightward shift in the psychometric function.  
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Figure 6 – Optogenetic Control Stimulation – (A) Experimental configuration of control group. Mice 
were injected with AAV-GFP and implanted with a fiber in right hemisphere area AM. (B) Psychometric 
function of control group mice (n = 2) without masking red light. Irradiance at 32 mW/mm2. Psychometric 
performance of control group mice (n = 2) with masking red light (C) with easiest flash rate conditions and 
(D) multiple flash rates. Irradiance at 64 mW/mm2. Psychophysical effects of in vivo red light stimulation 
on the (E) the estimated choice bias and (F) the slope of the psychometric function (βevidence:opto) in the 
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presence or absence of masking red light. Irradiance for masking light ‘Absent’ condition is 32 mW/mm2 
and 64 mW/mm2 ‘Present’ condition. 
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Figure 7 – JAWS Photoinhibition of Visual Area AM – (A) Schematic of experimental configuration of 
AM photoinhibition experiment. Group A (n =4) mice trained on the contingency: High-Rate, go LEFT and 
Group B mice trained on the reverse contingency: High-Rate, go RIGHT. Both groups of mice were 
injected with JAWS virus and implanted with an optical fiber implanted on the left hemisphere. 
Photoinhibition occurred on 25% of trials during the stimulus period. (B, C) Predicted behavioral 
outcomes of AM photoinhibition: AM inhibition could cause (B) sensory bias towards high rate stimulus or 
(C) motor (side) bias towards the ipsilateral hemifield. (D) Psychometric performance fits of group A and B 
mice. Mice performed the task with masking red light installed in the behavior booth and laser power 
irradiance of 64mW/mm2. Circles represent the subject’s behavioral response during laser OFF (black) 
and laser ON (red) trials. Solid line represents the psychometric function fit to cumulative Normal. Error 
bars represent Wilson binomial (95%) confidence intervals. (E) Estimated choice bias as a function of 
irradiance. (F) Psychophysical kernels pooled separately across mice in groups A and B.  

Mice from group A (High-Rate, go LEFT) exhibited pronounced impairment in psychophysical 
performance across multiple tested laser power (irradiance) levels (Supplementary Figure 4). 
Inhibition of AM caused a consistent leftward shift in the psychometric function of group A mice 
with increasing laser strength (Figure 7D, E and Supplementary Figure 4) and significantly 
reduced the slope of the psychometric functions at irradiance levels of 32 mW/mm2 (p = 7.2e-
05, GLMM Test) and 64 mW/mm2 (p = 3.4e-06, GLMM Test) (Supplementary Figure 5). In mice 
from group B, the psychometric function exhibited a leftward shift at 32 mW/mm2 (Figure 7D and 
Supplementary Figure 4), but not at 64 mW/mm2 (Figure 7E). If both groups of animals 
experienced a sensory high-rate bias, then their choice biases should increase with 
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photoinhibition strength (Figure 7B). However, this relationship was only observed in the group 
A, but not group B mice (Figure 7E). 

A potential explanation for these differences is that photoinhibition of AM causes a bias towards 
the ipsilateral hemisphere. Our hypothesis is that the ipsilateral bias effect is combined with the 
residual high-rate artifact caused by in vivo red light stimulation that we demonstrated using 
uninjected controls (Figure 6). In group A, the photoinhibition site (left hemisphere) and high-
rate (left hemifield) choice port are congruent, a choice bias due to AM inhibition and a red light 
artifact would therefore sum to produce the observed strong high-rate bias. In group B, the 
photoinhibition site (left hemisphere) and high-rate choice port (right hemifield) are in opposition: 
a choice bias due to AM inhibition and a red light induced, high-rate artifact would therefore 
compete, and partially cancel each other out. Consistent with this hypothesis, at 64 mW/mm2 
irradiance, group B mice exhibited no change in choice bias or the sensitivity. However at 32 
mW/mm2 the choice bias tends toward positive, and may be a result of the residual red light 
artifact, which outweighs the ipsilateral choice bias caused by AM inhibition.  

Discussion 
We report a quantitative behavioral paradigm for studying visual evidence accumulation 
behavior of freely behaving mice. Mice trained on our paradigm performed several hundreds of 
trials per session and maintained stable performance across sessions. Similar to previous 
perceptual decision making studies in humans (Abrahamyan et al., 2016; Urai et al., 2017) and 
rats (Scott et al., 2015), mice trained on our task were influenced by previous reward and choice 
history. In addition, we demonstrated that area AM plays a causal role in visual decisions. Our 
strategic experimental design was key in allowing this conclusion because control experiments 
demonstrated that the red stimulation light biases mice even in the absence of JAWS.  

Mice trained on this task deviated from an ideal integration strategy, and instead assigned more 
weight on average to flashes presented earlier in the sequence. This observation is consistent 
with results from the evidence accumulation paradigm from Morcos and Harvey (2016) in head-
fixed mice. Further, the shapes of the psychophysical kernels we observed in the mice are 
qualitatively similar to those observed in nonhuman primates (Katz et al. 2016; Yates et al. 
2017). Interestingly, the shape of the kernel differed from those observed in rats trained on the 
same task (Figure 2B) and previously reported by other evidence accumulation paradigms (see 
Raposo et al. 2012; Brunton et al. 2013; Scott et al. 2015). The difference in psychophysical 
weighing of evidence across species is intriguing because it suggests that although different 
species achieve comparable levels of performance on the same task, their internal behavioral 
strategies may differ. This underscores the importance of using stochastic stimuli, which make it 
possible to uncover the animal’s strategy (Churchland and Kiani 2016). 

The brightness manipulations revealed that perceptual decisions on our task were affected by 
the brightness of individual flashes. While the results do not rule out that rodents are incapable 
of using a counting strategy, our experiments demonstrate that for both mice and rats, the 
cumulative brightness of the flash sequence influenced their decision. The susceptibility of the 
rats to the brightness perturbations is in contrast to findings from a recent study, which reported 
that rats performing a visual evidence accumulation task counted individual flashes rather than 
cumulative brightness (Scott et al., 2015). Though the authors manipulated brightness by 
randomly varying the duration of flashes, their manipulation preserved the correlation between 
cumulative brightness and flash count similar to our uniform brightness manipulation (Figure 
4B). We found the strongest effect of cumulative brightness perturbation when we removed the 
correlation between the cumulative brightness of a sequence and the flash count. Further 
experiments are needed to explore whether rodents can be trained on such a stimulus. 
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To understand the neural mechanisms that enable perceptual decision making, we tested the 
causal involvement of secondary visual AM for behavior. Our results suggest that AM is 
involved in guiding contralateral choice behavior. More work is needed to resolve the role of AM, 
as the results are potentially confounded by the presence of red light during photoinhibition. 
Nevertheless, we demonstrated for the first time that a secondary visual area in the mouse 
contributes to decision making behavior that requires evidence accumulation. These 
experiments lay the groundwork for further investigations of the neural circuits that underlie 
evidence accumulation of visual evidence across time in the mouse. Future experiments should 
focus on using the tools available in mouse to characterize the nature of the neural signals 
underlying evidence accumulation as well as how this signal influences downstream processes 
to direct behavior.  

Implications of AM photoinhibition  
The red light artifact makes it difficult to precisely disentangle the true nature of the effect of AM 
photoinhibition. The artifact was greatly reduced, although not eliminated, by training the mice 
with house red lights (Figure 6). The artifact is most likely caused by red light propagating from 
the stimulation site through the brain and directly activating the retina (Danskin et al. 2015). The 
additional red light produces an apparent increase in overall brightness, which is positively 
correlated with the high-rate flashes (Figure 4A). Danskin et al. (2015) measured retinal 
activation during in vivo red light stimulation and found the largest activation ipsilateral to the 
implanted stimulation fiber. This could imply that mice would have an increased tendency to go 
towards the hemifield ipsilateral to the implanted fiber. Since the visual flashes stimulus is non-
spatial, it is unlikely that mice are directly biased towards the implant site. Instead, the 
behavioral artifact of red light stimulation appears to arise from a cumulative brightness strategy 
that mice use to solve the task. 

The proposed ipsilateral bias caused by AM photoinhibition is consistent with spatial 
hemineglect observed in visual parietal lesions. Spatial hemineglect, also referred to as 
contralateral neglect, is a phenomenon that occurs when subjects ignore the contralateral 
hemifield as a result of lesion to the parietal cortex. Although hemineglect has been reported in 
humans (Stone et al. 1991; Kerkho 2001) and rats (Crowne et al. 1986; Reep and Corwin 
2009), we could not find a report on mice. The presence of hemispatial neglect would suggest 
that the mice are neglecting the tendency to go towards the affected (contralateral) visual 
hemifield. A related interpretation of the ipsilateral bias due to suppression of AM activity is that 
neurons in AM represent the intent to make contralateral choices. Intention, in the neuroscience 
literature, is defined as an early plan for movement, which specifies the goal and type of 
movement (Andersen and Buneo 2002). Under the intention scenario, the two hemispheres of 
AM would represent competing movement intentions, such that inactivation of one hemisphere 
leads to movement in the opposing direction.  

In summary, our results support a role for AM in visually guided evidence accumulation 
behavior. We propose that AM drives contralateral choices in the visual flashes task, such that 
AM inhibition leads to an ipsilateral side bias. This is consistent with anatomical projections of 
AM to motor areas (Supplementary Figure 3) and the recently proposed role for mouse parietal 
cortex in navigation (Krumin et al. 2017). Applied to our task, AM, which belongs to the mouse 
parietal cortex, likely encodes the navigational (or spatial) signals of where the mouse should go 
given the flash rate. Further efforts are required to firmly establish these findings and its 
generalization to other visually guided tasks in the mouse.  
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Materials and Methods 

Animal Subjects 
The Cold Spring Harbor Laboratory Animal Care and Use Committee approved all animal 
procedures and experiments. Experiments were conducted with female or male mice between 
the ages of 6-25 weeks. All mouse strains were of C57BL/6J background and purchased from 
Jackson Laboratory. Ten GCaMP6f transgenic mice (Ai93 /Emx1-cre /CamKIIα-tTA) of both 
sexes were used for retinotopic mapping and area AM photoinhibition experiments. Four male 
Long Evan rats (6 weeks, Taconic) were also used for behavior experiments. 

Behavioral Training 
Before behavioral training, mice were gradually water restricted over the course of a week. Mice 
were weighed daily and checked for signs of dehydration throughout training period (Guo et al. 
2014b). Mice that weighed less than 80% of their original pre-training weight were 
supplemented with additional water. Behavioral training sessions typically lasted 1-2 hours, 
daily, in which mice typically harvested at least 1 mL of water. Mice rested on the weekends. If a 
mouse failed to harvest at least 0.4 mL on two consecutive days, the mouse was supplemented 
with additional water.  

Animal training took place in sound isolation chamber, which contained a three-choice port box. 
The mouse would poke into the center port to initiate trials and deliver the stimulus. Given the 
stimulus, the animal reported its choice on either the left- or right-side port. In the first training 
stage, mice learned to wait for at least 1100 ms at the center port before reporting their 
decision. We shaped the behavior by rewarding the mice at the center port (0.5 µL) and 
gradually increasing the minimum wait duration from 25 ms to 1100 ms over the course of 1-2 
behavioral sessions. Without center reward, this stage typically took 10-12 sessions to learn.  

During the first stage, mice were not rewarded for making the correct association between the 
stimulus and response port; rather on each trial, a random port (left or right) was chosen as the 
reward port and a liquid reward (2 to 4µL) was delivered to the port. Trials in which the mouse 
waited the minimum required duration at the center port are referred to as completed trials. In 
our initial training procedure, it took mice 10 to 12 session to learn to wait at least 1000 ms 
(Supplementary Figure 1G). However, delivering a small liquid reward at the center port (0.5 µL) 
significantly reduced the time it took mice to learn to wait at the center and increased their trial 
completion rates (Supplementary Figure 1H,J).  Mice rewarded at the center port achieved a 
completion rate above 90% compared to mice not rewarded at the center port.  

In the second stage of training mice were trained to associate high-rate flashes sequences (>12 
flashes/s) with the right-hand port and low-rate flashes (< 12 flashes/s) with the left-hand port. 
Trials with flash rates of 12 flashes/s were randomly rewarded on the left or right side port. For 
some mice, the contingency was reversed, such that high-rate flashes were rewarded at the left-
hand port and low-rate flashes were rewarded at the right-hand port. Mice were rewarded for 
correct and punished for incorrect responses or withdrawing with a time-out period (2 to 4 s), 
during which the mouse was not allowed to initiate a trial. Trials with flash rates equal to 12 
flashes/s were randomly rewarded on the left or right side port. 

We employed several anti-bias methods to correct the side bias, which often occurred when 
mice began stage two. A few examples of anti-bias strategies include physically obstructing 
access to the biased port, changing the reward size, or proportion of left vs. right trials. A mouse 
was considered trained once they are unbiased, performing above chance, and experiencing all 
stimulus strengths. Trial type, stimulus and reward delivery, control, and data collection was 
performed through a MATLAB interface and Arduino-powered device called BPod (SanWorks 
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LLC). 

Stimulus Generation 
The stimulus consists of a sequence of 20 ms pulses of light from a LED panel (Ala Scientific). 
The inter-pulse intervals are randomized from a discrete exponential distribution. For the 
exponential interval stimulus, the minimum inter-pulse interval was 20 ms, and the number of 
flashes for a given stimulus determined the maximum interval. The number of flashes was 
between 4-20 flashes/s. The stimulus was created using 25 fixed time bins each 20ms in 
duration. A Poisson coin was flipped to determine whether an event (flash) would occur in each 
bin. An empty 20ms time bin followed each fixed time bin.  

Brightness Manipulation 
For the brightness manipulation experiments, we wanted to keep the flash duration of 20ms 
constant, so that the subjects could not use the flash duration as a cue for the correct stimulus 
category. Each 20ms flash pulse was generated by a half-wave rectified sinusoidal signal 
thresholded at the peaks and with a base frequency of 200Hz. This approach effectively 
controls the total LED ON time or the "density" of the 20ms pulses. It is similar to pulse-width 
modulation technique used to control LED brightness. During normal sessions, the base 
frequency is multiplied by a brightness factor, which is kept constant across sessions. In the 
uniform brightness manipulation experiment, the normal brightness factor was either halved or 
doubled on 5% of trials to produce the "dimmer" and "brighter" conditions. In the uncorrelated 
brightness manipulation experiment, we varied the LED on time within the flash duration such 
that the normal brightness factor was inversely scaled with the flash rate. Because the lowest 
number of flashes presented was 4 flashes/s and we chose not to change the flash duration, we 
normalized all flash sequences such that the total LED on time was equal to 4 flashes/s. All 
brightness manipulations were randomly introduced on 5% of all trials. 

Head bar implantation and skull preparation 
For retinotopic mapping experiments, mice were implanted with a custom titanium head bar. 
Mice were anesthetized with isoflurane (2%) mixed with oxygen and secured onto a stereotaxic 
apparatus. Body temperature was maintained at 37 °C with a rectal temperature probe. The 
eyes were lubricated with eye ointment before the start of the surgery, followed by 
subcutaneous injection of analgesia (Meloxicam, 2mg/kg) and antibiotic (Enrofloxacin, 2mg/kg). 
Fur on the scalp was removed with hair clippers and Nair (Sensitive Formula with Green Tea), 
followed by betadine (5%) swab. Lidocaine (100 µL) was injected underneath the scalp before 
removing the scalp. The skull was cleaned with saline and allowed to dry. A generous amount of 
Vetbond tissue glue (3M) was then applied to seal the skull. Once the Vetbond was dry, the 
head bar was secured with Metabond (Parkwell) and dental acrylic. Mice were allowed 3 days to 
recover before retinotopic mapping. 

Retinotopic Mapping 
Retinotopic mapping was performed in awake head-fixed animals adapted from (Garrett et al, 
2014; Juavinett et al. 2016). For periodic (Fourier) stimulation, a narrow bar (10°) was drifted 
across the four cardinal directions of the screen. Presented within the drifting bar was a 
flickering checkerboard pattern (12° checks, 5Hz). One trial consisted of 11 sweeps of the bar in 
22 seconds in one of the four cardinal directions, however the first cycle was discarded because 
it typically introduced stimulus onset transients. Each trial was repeated 15 times for each 
direction. The monitor was placed in contralateral visual hemifield to imaging hemisphere, 
positioned at an angle of 77° from the midline of the mouse and a distance of 15 cm. Imaging 
data was acquired at 20 frames per second.  
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Optogenetic Inactivation 
For JAWS inhibition experiments, mice were injected with AAV8-CamKII-JAWS-KGC-GFP-ER2 
into area AM identified by retinotopic mapping. Virus injections were performed using 
Drummond Nanoject III, which enables automated delivery of small volumes of virus. To 
minimize virus spread, the Nanoject was programmed to inject slowly: six 30 nL boluses, 60 s 
apart, and each bolus delivered at 10 nL/sec. Approximately 180nL of virus was injected at 
multiple depths (200 and 500 µm) below the brain surface. Following the virus injection, 200 µm 
fiber (metal ferrule, ThorLabs) was implanted above the injection site. The optical fiber was 
secured onto the skull with Vitrebond, Metabond, and dental acrylic. The animals were allowed 
at least 3 days to recover before behavioral training. A red 640nm fiber-coupled laser 
(OptoEngine) was used for inactivation. Experiments were conducted with multiple laser power 
levels: 0.5, 1, and 2 mW (16, 32, and 64 mW/mm2). One power level was used per session. On 
inactivation sessions, laser light was externally triggered using a PulsePal (Sanworks LLC) 
device. The laser stimulation pattern was a square pulse (1 second long) followed by a linear 
ramp (0.25s), which began at the onset of the stimulus. Stimulation occurred on 25% of trials. 

Psychometric function 
We fitted a four-parameter psychometric function to the responses of subjects that performed 
the visual flashes categorization task. The general form of the psychometric function defines the 
probability (pH) that the subject chooses the port associated with high flash rate as: 

pH = γ + 1−γ −λ( )F x;α,β( )  
γ and λ are the lower and upper asymptote of the psychometric function, which parameterize 
the guess rate and lapse rate, respectively; F is a sigmoidal function, in our case a cumulative 
Normal distribution; x is the event rate i.e. the number of flashes presented during the one 
second stimulus period; β parameterizes the horizontal shift or bias of the psychometric function 
and α describes the slope or inverse sensitivity. The psychometric function  for a 
cumulative Normal distribution is defined as: 

F(x;α,β) = β
2π

exp
β 2 x − a( )2

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟−∞

x
∫  

The parameters of the psychometric function were estimated with the Palamedes Toolbox 
(Prins and Kingdom 2009). 

Choice History 
We implemented two choice history models to evaluate the influence of prior choice(s) on the 
current choice of the subject. The first approach, assessed whether success or failure on the 
most recent trial influenced the performance on the current trial (Busse et al. 2011): 

ln pH
1− pH

⎛

⎝
⎜

⎞

⎠
⎟= β0 +βEE t( )+βSIsuccess t −1( )+βFI failure t −1( )  

t indicates the current trial and E is the signed stimulus evidence of the current trial. Evidence is 
computed as the difference between the flash rate of the trial and the category boundary (12 
flashes/s). Isuccess and Ifailure are indicator variables for success (reward) and failure on the 
previous trial, respectively. The coefficients (β0, βE, βS, βF) were estimated with MATLAB glmfit.  

The second approach used was a probabilistic model described by (Fründ et al 2014): 

ln pH
1− pH
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t indicates the current trial and E is the signed stimulus evidence of the current trial. The 
additional regressors Eτ and Cτ represent the evidence and choice on τ previous trials in the 
past, respectively. Coefficients (β0, βE, βE(τ),and βC(τ)) were estimated with MATLAB glmfit. 

Logistic Regression Reverse Correlation 
The logistic regression function for estimating the weights associated with each moment of the 
stimulus can be written as:  

ln pH
1− pH

⎛

⎝
⎜

⎞

⎠
⎟= β0 + βiI

i=1

N=25

∑  

pH is the probability of choosing the high-rate port, I is an indicator variable for whether or not a 
flash pulse occurred in time bin i, and N is the number of time bins. The coefficients β0... βN are 
estimated with the MATLAB function glmfit. 

Generalized Linear Mixed Model (GLMM) 
To statistically test whether there was a significant effect of photoinhibition of area AM on the 
population group level, we used a Generalized Linear Mixed-Model (GLMM). GLMMs are an 
extension of the Generalized Linear Model, which can be used to model both fixed and random 
effects in categorical data. In psychophysics, GLMMs can be used to generalize results across 
multiple subjects and experimental conditions (Knoblach and Maloney 2012; Moscatelli et al. 
2012; Erlich et al. 2015).  

The GLMM model written in the Wilkinson notation: 
r ~1+ evidence+opto+ evidence :opto+ (evidence | subject / opto)  

Each term of the equation has a coefficient, β. The model specifies that the subject’s response, 
r, is a function of the fixed effects: intercept, the evidence, which represents the slope of the 
psychometric function and is defined as the difference between the flash rate and the category 
boundary, the photoinhibition indicator variable opto, and the interaction between the evidence 
and opto. The interaction term evidence:opto evaluates whether photoinhibition alters the 
subject’s sensitivity or the slope of the psychometric function. The model allows the four fixed 
effects parameters to vary for each individual subject (random effects). The model uses a probit 
linking function and was fit using a Maximum Likelihood procedure. The GLMM analysis was 
performed using the R package ’lme4’ similar to Erlich et al (2015). 

The effect of photoinhibition on the horizontal location of the psychometric function was 
quantified by the choice bias. The choice bias was defined as: 

choice bias =
βopto

βevidence +βopto:evidence
 

βopto, βevidence, βevidence:opto are estimated coefficients from the GLMM equation above. The choice 
bias reflects the equivalent change in the stimulus that would recapitulate the observed effects 
of photoinhibition and is in units of flashes/s. Positive choice bias would indicate that on 
photoinhibition trials caused the subject to be biased towards high-rate responses. Since the 
choice bias is computed from estimated parameters of the GLMM model, we computed the 
errors (95% confidence intervals) via error propagation. 
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Supplementary Figure 1 – (A) Histogram of inter-flash intervals for each flash rate. (B) Number of Trials 
Per Session. Mice performed hundreds of trials per session (n = 27 mice). (C-F) Learning Rate of Multiple 
Mice. (C, E) Percent correct on easiest stimulus conditions (4 and 20 flashes/s) and (D, F) Percent correct 
on all stimulus conditions plotted across trials and sessions (n = 27 mice). (G-J)  Median Center Fixation 
and Trial Completion Rate. (G, I) Mice that were not rewarded at the center (n = 12 mice) (H, J) Mice 
rewarded at the center port (n = 6 mice). Gray traces are individual mice. Black trace is the average 
across mice.  
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Supplementary Figure 2 – Schematic of simulated cumulative brightness over time per flash rate, n=10 
trials for each flash rate.  
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Supplementary Figure 3 - Area AM Projection Target Data - Bar graph showing projection volume (sum 
of detected signal in mm3) at target structure for small (dark blue) and large (red) volume tracer injections. 
Data obtained from the Allen Institute Brain Connectivity Atlas (Allen Mouse Brain Atlas 2015); 
experiment id: 528510546 and 518742338. 
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Supplementary Figure 4 - Pooled psychometric function at different irradiance levels for Group A and B. 
Circles represent psychometric performance at each event rate and the solid line is the psychometric 
function fit with a cumulative Normal. Errors bars represent Wilson binomial confidence intervals on the 
psychometric data. 
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Supplementary Figure 5 - Effect of area AM photoinhibition on the slope of the psychometric function 
(βevidence:opto) as a function of irradiance. Error bars represent 95% confidence interval. Asterisks mark 
statistically significant (p<0.05) coefficients. 
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