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Abstract 
	
The ability to manipulate neural activity with precision is an asset in uncovering neural circuits for 
decision-making. Diverse tools for manipulating neurons are available for mice, but the feasibility 
of mice for decision-making studies remains unclear, especially when decisions require 
accumulating visual evidence. For example, whether mice’ decisions reflect leaky accumulation 
is not established, and the relevant and irrelevant factors that influence decisions are unknown. 
Further, causal circuits for visual evidence accumulation have not been established. To address 
these issues, we measured >500,000 decisions in 27 mice trained to judge the fluctuating rate of 
a sequence of flashes. Information throughout the 1000ms trial influenced choice, but early 
information was most influential. This suggests that information persists in neural circuits for 
~1000ms with minimal accumulation leak. Further, while animals primarily based decisions on 
current stimulus rate, they were unable to entirely suppress additional factors: total stimulus 
brightness and the previous trial’s outcome. Next, we optogenetically inhibited anteromedial (AM) 
visual area using JAWS. Importantly, light activation biased choices in both injected and 
uninjected animals, demonstrating that light alone influences behavior. By varying stimulus-
response contingency while holding stimulated hemisphere constant, we surmounted this 
obstacle to demonstrate that AM suppression biases decisions. By leveraging a large dataset to 
quantitatively characterize decision-making behavior, we establish mice as suitable for neural 
circuit manipulation studies, including the one here. Further, by demonstrating that mice 
accumulate visual evidence, we demonstrate that this strategy for reducing uncertainty in 
decision-making is employed by animals with diverse visual systems.   
 

Significance statement 
To connect behaviors to their underlying neural mechanism, a deep understanding of the 
behavioral strategy is needed. This understanding is incomplete in mouse studies, in part 
because existing datasets have been too small to quantitatively characterize decision-making 
behavior. To surmount this, we measured the outcome of over 500,000 decisions made by 27 
mice trained to judge visual stimuli. Our analyses offer new insights into mice’ decision-making 
strategies and compares them with those of other species. We then disrupted neural activity in a 
candidate neural structure and examined the effect on decisions. Our findings establish mice as 
a suitable organism for visual accumulation of evidence decisions. Further, the results highlight 
similarities in decision-making strategies across very different species.  

Introduction 
Rodents have emerged as a powerful model organism for probing the neural circuits underlying 
decision-making (Carandini and Churchland 2013). Mice are an ideal model for studying neural 
circuits because of the tools for accessing and probing genetically defined cell types (Taniguchi 
et al. 2011; Madisen et al. 2010, 2012, 2015). Despite these advantages, other species are more 
commonly used in perceptual decision-making studies that involve temporal accumulation of 
sensory evidence, perhaps due to the assumption that such tasks are too difficult for mice. 
However, mice have been trained on numerous sensory perception tasks (Andermann et al. 2010; 
Busse et al. 2011; Sanders and Kepecs 2012; Glickfeld et al. 2013; Guo et al. 2014a; Burgess et 
al. 2017; Goard et al. 2016; Marbach and Zador 2016; Funamizu et al. 2016; Jeong et al. 2017). 
This suggests that they might be suitable for visual evidence accumulation tasks, and several 
studies report promising performance in mice on such tasks (Douglas et al. 2006; Stirman et al. 
2016; Morcos and Harvey 2016).  
Two major gaps in our understanding of accumulation of evidence decisions are apparent: a 
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precise characterization of the timecourse of accumulation, and an understanding of how relevant 
and irrelevant factors jointly shape decisions. Recent work suggested that a sequence of visual 
cues collectively influence an eventual decision (Morcos and Harvey 2016). This data constitutes 
an essential first step in establishing mice as a suitable decision-making model, but outstanding 
questions remain. First, a large-scale study with many subjects and large trial counts is needed. 
This benefits a number of analyses, including those that evaluate the influence on the final 
decision of stimuli arriving at different times. Such analyses require many trials to achieve the 
level of precision that is required to fully characterize the evidence accumulation timecourse. 
Further, many animals are required to distinguish idiosyncratic strategies from the overall 
tendency of the species. For instance, in existing work (Morcos & Harvey 2016), the use of 5 mice 
hinted that the most common strategy is to weight early evidence over late evidence, but the small 
animal number and the variability in strategy made a firm conclusion difficult. Closing these gaps 
in our understanding of accumulation decisions is essential, especially for interpreting causal 
manipulations (Krakauer et al. 2017). 
Indeed, the causal circuits for visual evidence accumulation are not established in mice although 
inactivations have demonstrated a role for cortical and subcortical structures in other kinds of 
mouse decisions. For instance, suppressing the posterior parietal cortex (PPC) in mice impairs 
memory-guided decisions (Harvey et al. 2012; Funamizu et al. 2016; Goard et al. 2016). These 
studies suggest a role for cortical circuits in decision-making and visually guided behavior. 
However, the role of these structures in visual evidence accumulation is unknown. The 
importance of establishing a causal role for a putative neural structure is underscored by recent 
results that even areas strongly modulated during behavior might not be part of the causal circuit 
(Katz et al. 2016; Erlich et al. 2015).  
Overall, mice have potential as an animal model for decision-making, but have been held back 
because of lack of detailed knowledge about behavior and little insight into the contribution of 
cortical circuitry. Here, we begin to close those gaps. First we report that mice accumulate 
evidence for visual decisions. Our large dataset and use of stochastic stimuli allow precise 
characterize how information presented at different times influences decisions. Next, we report 
that mice’ decisions are jointly shaped by stimulus rate, brightness and the outcome of previous 
trials. Two independent experiments demonstrated that the influence of brightness was larger in 
rats compared to mice. Finally, we report that suppressing activity in the Anteromedial visual 
area (AM) biases decisions, highlighting the role of cortex in evidence accumulation. Taken 
together, these findings establish mice as a suitable organism for visual accumulation of 
evidence decisions. Further, the results highlight similarities in decision-making strategies 
across very different species.  

Materials and Methods 

Animal Subjects 
The Cold Spring Harbor Laboratory Animal Care and Use Committee approved all animal 
procedures and experiments and all experimental procedures were in accordance with the 
National Institutes of Health’s Guide for the Care and Use of Laboratory Animals. Experiments 
were conducted with female or male mice between the ages of 6-25 weeks. All mouse strains 
were of C57BL/6J background and purchased from Jackson Laboratory. Ten GCaMP6f 
transgenic mice (Ai93 /Emx1-cre /CamKIIα-tTA) of both sexes were used for retinotopic mapping 
and area AM photoinhibition experiments. Four male Long Evan rats (6 weeks, Taconic) were 
also used for behavior experiments. 
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Behavioral Training 
Before behavioral training, mice were gradually water restricted over the course of a week. Mice 
were weighed daily and checked for signs of dehydration throughout training period (Guo et al. 
2014b). Mice that weighed less than 80% of their original pre-training weight were supplemented 
with additional water. Behavioral training sessions lasted 1-2 hours during which mice typically 
harvested at least 1 mL of water. Mice rested on the weekends. Mice who failed to harvest at 
least 0.4 mL on two consecutive days were supplemented with additional water.  
Animal training took place in a sound isolation chamber containing a three port setup described 
elsewhere (Raposo et al. 2012). Mice poked their snouts into the center port to initiate trials and 
trigger sensory stimuli. Animals reported choices by moving to a left- or right-side port. In the first 
training stage, mice learned to wait for at least 1100 ms at the center port before reporting their 
decision. We shaped the behavior by rewarding the mice at the center port (0.5 μL) and gradually 
increasing the minimum wait duration from 25 ms to 1100 ms over the course of 1-2 behavioral 
sessions. Without center reward, this stage typically took 10-12 sessions to learn.  
During the first stage, mice were not rewarded for making the correct association between the 
stimulus and response port; rather, on each trial, a random port (left or right) was chosen as the 
reward port and a liquid reward (2 to 4μL) was delivered to the port. Trials in which the mouse 
waited the minimum required duration at the center port are referred to as completed trials.  
In the second stage of training, mice learned to associate high-rate flash sequences (13-20 
flashes/s) with the right port and low-rate flashes (1-11 flashes/s) with the left port. Trials with 12 
flashes/s were randomly rewarded. For some mice, the contingency was reversed, such that high-
rate flashes were rewarded at the left-hand port and low-rate flashes were rewarded at the right-
hand port. Mice received a liquid reward for correct responses. They were punished for incorrect 
responses or for withdrawing early with a time-out period (2 to 4 s), during which they could not 
initiate a trial.  
We employed several anti-bias methods to correct the side bias, which often occurred when mice 
began stage two. Anti-bias strategies included: physically obstructing access to the biased port, 
changing the reward size, and modifying the proportion of left vs. right trials.  
Training was considered complete when mice waited at least 1100ms at the center port, 
performed above 80% percent correct on the easiest flash rates (Figure 1B, C), and experienced 
at least 8 or more flash rates. This required approximately 2 months, with one daily session 5 
days per week.  
Stimulus presentation, reward delivery, and data collection were performed through a MATLAB 
interface and Arduino-powered device (BPod, SanWorks LLC). 

Visual stimuli 
Stimuli were sequences of 20 ms pulses of light from a LED panel (Ala Scientific). The inter-pulse 
intervals were randomly selected from a discrete exponential distribution (Brunton et al. 2013). 
For the exponential interval stimulus, the minimum inter-pulse interval was 20 ms, and the number 
of flashes for a given stimulus determined the maximum interval. 4-20 flashes/s were presented 
on each trial, always over the course of 1000ms. The stimulus was created using 25 fixed time 
bins each 20ms in duration. A Poisson coin flip determined whether an event (flash) would occur 
in each bin. An empty 20ms time bin followed each flash. This 1000ms period was followed by a 
100 ms delay, leading to a total time in the port of 1100ms.  
Each 20ms flash pulse was generated by a half-wave rectified sinusoidal signal thresholded at 
the peaks and with a base frequency of 200Hz. This approach effectively controls the total LED 
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on-time or the "density" of the 20ms pulses. It is similar to pulse-width modulation technique used 
to control LED brightness. During normal sessions, the base frequency is multiplied by a 
brightness factor, which is kept constant across sessions. 

Brightness Manipulation 
For the brightness manipulation experiments, the 20ms flash duration was held constant, so that 
the subjects could not use the flash duration as a cue for the correct stimulus category. In the 
uniform brightness manipulation experiment, the normal brightness factor was either halved or 
doubled to produce the "dimmer" and "brighter" conditions. In the uncorrelated brightness 
manipulation experiment, we varied the LED on-time within the flash duration such that the 
brightness factor was inversely scaled with the flash rate. Because the lowest number of flashes 
presented was 4 flashes/s, and we did not change the flash duration, we normalized all flash 
sequences such that the total LED on-time was equal to 4 flashes/s. All brightness manipulations 
were randomly introduced on 5% of all trials. 

Head bar implantation and skull preparation 
For retinotopic mapping experiments, mice were implanted with a custom titanium head bar. Mice 
were anesthetized with isoflurane (2%) mixed with oxygen and secured onto a stereotaxic 
apparatus. Body temperature was maintained at 37°C with a rectal temperature probe. The eyes 
were lubricated with Puralube ointment before the start of the surgery, followed by subcutaneous 
injection of analgesia (Meloxicam, 2mg/kg) and antibiotic (Enrofloxacin, 2mg/kg). Fur on the scalp 
was removed with hair clippers and Nair (Sensitive Formula with Green Tea), followed by betadine 
(5%) swab. Lidocaine (100 μL) was injected underneath the scalp before removing the scalp. The 
skull was cleaned with saline and allowed to dry. A generous amount of Vetbond tissue glue (3M) 
was then applied to seal the skull. Once the Vetbond was dry, the head bar was secured with 
Metabond (Parkwell) and dental acrylic. Postsurgical analgesia was applied. Mice were allowed 
3 days to recover before retinotopic mapping. 

Retinotopic Mapping 
Retinotopic mapping was performed in awake head-fixed animals adapted from (Garrett et al, 
2014; Juavinett et al. 2016). Periodic (Fourier) stimulation was used: a narrow bar (10°) was 
drifted across the four cardinal directions of the screen. Presented within the drifting bar was a 
flickering checkerboard pattern (12° checks, 5Hz). One trial consisted of 11 sweeps of the bar in 
22 seconds in one of the four cardinal directions. The first cycle was discarded because it 
introduced stimulus onset transients. Each trial was repeated 15 times for each direction. The 
monitor was placed in the visual hemifield contralateral to the imaging hemisphere, positioned at 
an angle of 77° from the midline of the mouse and a distance of 15 cm. Imaging data was acquired 
at 20 frames per second.  

Optogenetic Inactivation 
For JAWS inhibition experiments, mice were injected with AAV8-CamKII-JAWS-KGC-GFP-ER2 
(UNC Vector Core) into area AM identified by retinotopic mapping. AM is a prominent candidate 
for decision-making as it appears to at least partially overlap with the previously defined location 
of posterior parietal cortex (Funamizu et al. 2016; Krumin et al. 2017) and has projections to 
frontal and motor areas. Similar projection patterns have been observed in primate lateral 
intraparietal area LIP (Cavada and Goldman-Rakic 1989a, 1989b), an area routinely implicated 
in perceptual decision-making studies (Gold and Shadlen 2007; Hanks and Summerfield 2017).  
 Virus injections were performed using Drummond Nanoject III, which enables automated delivery 
of small volumes of virus. To minimize virus spread, the Nanoject was programmed to inject 
slowly: six 30 nL boluses, 60 s apart, and each bolus delivered at 10 nL/sec. Approximately 180nL 
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of virus was injected at multiple depths (200 and 500 μm) below the brain surface. Following the 
virus injection, 200 μm fiber (metal ferrule, ThorLabs) was implanted above the injection site. The 
optical fiber was secured onto the skull with Vitrebond, Metabond, and dental acrylic. The animals 
were allowed at least 3 days to recover before behavioral training. A red 640nm fiber-coupled 
laser (OptoEngine) was used for inactivation. Experiments were conducted with multiple laser 
power levels: 0.5, 1, and 2 mW (16, 32, and 64 mW/mm2). One power level was used per session. 
On inactivation sessions, laser light was externally triggered using a PulsePal (Sanworks LLC) 
device. The laser stimulation pattern was a square pulse (1 second long) followed by a linear 
ramp (0.25s), which began at the onset of the stimulus. Stimulation occurred on 25% of trials. 

Psychometric function 
We fitted a four-parameter psychometric function to the responses of subjects that performed the 
visual flashes categorization task. The general form of the psychometric function defines the 
probability (pH) that the subject chooses the port associated with high flash rate as: 

	
Equation	1 

where	 γ and λ are the lower and upper asymptote of the psychometric function, which 
parameterize the guess rate and lapse rate, respectively; F is a sigmoidal function, in our case a 
cumulative Normal distribution; x is the event rate i.e. the number of flashes presented during the 
one second stimulus period; 𝛼 parameterizes the horizontal shift or bias of the psychometric 
function and 𝛽  describes the slope or sensitivity. The psychometric function 𝐹(𝑥; 	𝛼, 𝛽) for a 
cumulative Normal distribution is defined as: 

 

𝐹(𝑥; 𝛼, 𝛽) =
𝛽
√2𝜋

4 𝑒𝑥𝑝7
−𝛽9(𝑥 − 𝛼)9

2 :
;

<=
	

	
Equation	2 

The parameters of the psychometric function were estimated with the Palamedes Toolbox (Prins 
and Kingdom 2009). 

Choice History 
We implemented two probabilistic choice history models to evaluate the influence of prior 
choice(s) on the current choice of the subject. The first approach, assessed whether success or 
failure on the most recent trial influenced the performance on the current trial (Busse et al. 2011): 

	

Equation	3 

where	 t indicates the current trial and E is the signed stimulus evidence of the current trial. 
Evidence is computed as the difference between the flash rate of the trial and the category 
boundary (12 flashes/s). Isuccess and Ifailure	are indicator variables for success (reward) and failure 
on the previous trial, respectively. The coefficients (β0,	βE,	βS, and βF) were estimated with MATLAB 
glmfit.  
The second model (Fründ et al. 2014) assessed the influence of choices made several trials in 
the past: 

pH = γ + 1−γ −λ( )F x;α,β( )

ln pH
1− pH

⎛

⎝
⎜

⎞

⎠
⎟= β0 +βEE t( )+βSIsuccess t −1( )+βFI failure t −1( )
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Equation	4 

where	t indicates the current trial and E is the signed stimulus evidence of that trial. The additional 
regressors Eτ and Cτ represent the evidence and choice on τ previous trials in the past, 
respectively. Coefficients (β0, βE,	βE(τ),and	βC(τ)) were estimated with MATLAB glmfit. 

Logistic Regression Reverse Correlation 
The logistic regression function for estimating the weights associated with each moment of the 
stimulus (the psychophysical kernel) can be written as:  

	

Equation	5	

where β0 is a scalar bias term, x is a vector of the 25 successive time windows over the trial, and 
w is a vector of the weights for each time window. β0 and weight vector w were estimated with 
the MATLAB function glmfit. 

Generalized Linear Mixed Model (GLMM) 
To statistically test whether there was a significant effect of photoinhibition of area AM on the 
population group level, we used a Generalized Linear Mixed-Model (GLMM). GLMMs are an 
extension of the Generalized Linear Model, which can be used to model both fixed and random 
effects in categorical data. In psychophysics, GLMMs can be used to generalize results across 
multiple subjects and experimental conditions (Knoblach and Maloney 2012; Moscatelli et al. 
2012; Erlich et al. 2015).  
The GLMM model written in the Wilkinson notation: 

	
Equation	6 

Each term of the equation has a coefficient, β. The model specifies that the subject’s response, 
r, is a function of the fixed effects: the evidence, defined as the difference between flash rate and 
the category boundary; its coefficient represents the slope of the psychometric function, the 
photoinhibition indicator variable opto, and the interaction between the evidence and opto. The 
interaction term evidence:opto evaluates whether photoinhibition alters the subject’s sensitivity or 
the slope of the psychometric function. The model allows the four fixed effects parameters to vary 
for each individual subject (random effects). The model uses a probit linking function and was fit 
using a Maximum Likelihood procedure. The GLMM analysis was performed using the R package 
’lme4’ as described in Erlich et al (2015). 
The effect of photoinhibition on the horizontal location of the psychometric function was quantified 
by the choice bias. The choice bias was defined as: 

	

Equation	7 

where	βopto,	βevidence,	βevidence:opto are estimated coefficients from the GLMM equation above. The 

ln pH
1− pH

⎛

⎝
⎜

⎞

⎠
⎟= β0 +βEE t( )+ βE (τ )Eτ +βC(τ )Cτ

τ=1

N=7

∑

ln pH
1− pH

⎛

⎝
⎜

⎞

⎠
⎟= β0 + x

Tw

r ~1+ evidence+opto+ evidence :opto+ (evidence | subject / opto)

choice bias =
βopto

βevidence +βopto:evidence
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choice bias reflects the equivalent change in the stimulus that would recapitulate the observed 
effects of photoinhibition and is in units of flashes/s. Positive choice bias would indicate that on 
photoinhibition trials caused the subject to be biased towards high-rate responses. Since the 
choice bias is computed from estimated parameters of the GLMM model, we computed the errors 
(95% confidence intervals) via error propagation. 

Results 
We trained mice to categorize a stochastic pulsatile sequence of visual flashes (Figure 1), similar 
to earlier studies with rats (Raposo et al. 2012; Brunton et al. 2013; Scott et al. 2015). Mice 
performed a three-port choice task (Uchida and Mainen 2003), in which they judged whether the 
total number of full-field flashes presented during a 1000ms period exceeded an experimenter-
defined category boundary (12 flashes/s, Figure 1A). Each flash in the sequence was 20 ms long 
and followed by an inter-flash interval drawn from a discrete exponential distribution. 

Figure 1  A dataset of over half a million trials demonstrates mice can be trained to make stable 
and reliable decisions about visual stimuli (A) Task schematic and trial structure of the three-port 
choice task. The mouse initiated trials and stimulus delivery by poking the center port. Mice reported 
whether stimuli were low-rate (left port) or high-rate (right port). Mice waited at the center port for at 
least 1100 ms, with the stimulus delivered after a variable delay (10-100ms). At the end of the 1000ms 
stimulus period, an auditory "Go" tone was played. Correct choices to the left or right were rewarded 
with a small drop of water (2 μL), incorrect choices were followed by a 2-3 s timeout. (B) Percent 
correct on easiest stimulus conditions (4 and 20 flashes/s) plotted across total trials experienced by the 
mouse. Individual mice: gray traces and average: black trace, 27 mice. (C) Psychometric function fit for 
individual mouse from single session (494 trials), and (D) Pooled data from 27 mice averaged across 
multiple sessions (537,288 trials). Individual mice: gray traces and average: black trace.  
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Mice learned to categorize stochastic sequences of visual flashes 
Mice performed hundreds of trials per session (median 767 trials) and reached high performance 
accuracy at the easiest level of the task (Figure 1B). Behavioral performance was quantified by 
fitting a psychometric function (Eq. 1, Figure 1C,D). Individual mice on single sessions (Figure 
1C) and across multiple sessions (Figure 1D) made increasingly more high-rate choices as the 
flash rate increased, achieving psychometric performance comparable to rats trained on the same 
task (Raposo et al. 2012).  

Mice decisions were influenced most by flashes early in the sequence  
To maximize accuracy, animals should count all the flashes presented during the fixed stimulus 
presentation period. Because all flashes in the sequence are equally informative about the overall 
count, subjects should apply an equal weight to all flashes. However, mice might instead make 
use of only a portion of the stimulus. Overweighting flashes early in the sequence would reflect 
an impulsive strategy of making up one’s mind too early, whereas overweighting flashes later in 
the sequence would reflect a forgetful/leaky strategy (Kiani et al. 2008). 
To distinguish these strategies, we used the well-established logistic regression approach to 
estimate the psychophysical kernel (Huk and Shadlen 2005; Katz et al. 2016; Yates et al. 2017). 
The logistic regression-based reverse correlation approach reveals the timecourse of how 
incoming stimuli, on average, influence the subject’s choice. Our use of stimuli that appear 
stochastically over time and our large dataset together enabled a continuous and precise 
characterization of this timecourse. Across mice (Figure 2A), the entire sequence of flashes was 
informative, as indicated by non-zero regression weights throughout the trial. Interestingly, flashes 
presented earlier in the sequence informed the choice more strongly than flashes presented later 
in the sequence. This implies that mice tended to overweight stimuli presented early in the trial, 
consistent with an impulsive integration strategy. The psychophysical kernels of rats (Figure 2B) 
trained on the same task were generally flat, reflecting an integration strategy in which evidence 
is weighted equally over time. 

Figure 2 Decisions in mice and rats reflect evidence presented throughout the trial. (A) 
Psychophysical kernels from 27 mice (537,288 trials) and (B) 2 rats (26,890 trials). Gray traces, 
individual subjects; black trace, average. Values were above 0 throughout the trial for almost all 
subjects, demonstrating that stimuli presented throughout the 1000ms duration influence the animal’s 
eventual choice.  	
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Mice were influenced by performance on previous trial.  
Next we used the same dataset to evaluate whether mice were influenced by performance on 
previous trials. Several studies have reported that human and animal subjects performing 
perceptual tasks are influenced by previous choices (Busse et al. 2011; Fründ et al. 2014; Scott 
et al. 2015; Abrahamyan et al. 2016; Urai et al. 2017, Hwang et al. 2017), even when the trials 
are independent. We used two quantitative models to assess whether the event-based, visual 
accumulation decisions used here were likewise influenced by choices made on previous trials.  
The first approach assessed whether success or failure on the most recent trial influenced the 
performance on the current trial (Methods; Busse et al. 2011). Figure 3A shows a scatter plot of 
the coefficients for previous success (βS) and previous failures (βF). Nearly all the 27 mice had 
positive βS coefficients, indicating that mice tended to repeat the same choice on the current trial 
if they were rewarded on the previous trial. Many of the mice also had positive βF coefficients, 
meaning that they mice tended to repeat their choice following a failure (Figure 3A, Stay 
quadrant), while others had negative βF coefficients, indicating a tendency to switch choices 
following a failure (Figure 3A, Win-Stay, Lose Switch quadrant). The overall observed trial history 
patterns were similar to that observed in human subjects performing a perceptual decision-making 
task (Abrahamyan et al. 2016). The second approach evaluated the influence of the history of 
previous choices on the current choice. The model is equivalent to the model described by (Fründ 
et al. 2014). This model revealed that the most recent choice had the greatest influence on the 
current choice (Figure 3B).  

Decisions are influenced by cumulative brightness  
An alternate strategy to accumulating sensory events is to base the decision on the overall 
brightness experienced over the course of the stimulus. This is a feasible strategy given that the 
flash event rate is directly proportional to the total LED on-time and therefore the total photons 
emitted in a sequence.  

Figure 3  Mice were influenced by both the outcome and choice on the previous trial (A) 
Previous choice history: Influence of successes and failures on the current choice for each mouse (n 
= 27 mice). Coefficients were estimated for each session individually and mean coefficients across 
sessions are plotted. Error bars represent standard error of the mean. (B) Effect of previous choices 
(n = 7 trials in the past). Gray traces, individual subjects (n = 27 mice); black trace, average across 
subjects. 
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To test whether mice were influenced by brightness, we performed two brightness manipulation 
experiments on a subset of animals (Figure 4). First, the intensity of all flashes in a given 
sequence was randomly increased or decreased on 5% of all trials (Figure 4A). If subjects are 
influenced by rate alone, their decisions will be the same regardless of brightness (Figure 4B, top 
row). By contrast if subjects are influenced by brightness, they will report more high-rate choices 
on brighter trials, and more low-rate choices on dimmer trials (Figure 4B, middle and bottom rows). 
This is what we observed (Figure 4C, left): brighter stimuli drove a high-rate bias (shift of 1.0±0.5 
flashes/s), while dimmer stimuli drove a low-rate bias (shift of 0.8±0.5 flashes/s).  When we tested 
rats on the same manipulation, the changes were even larger (Figure 4C, right): we observed a 
high rate bias of 4.8±0.9 flashes/s for brighter stimuli and a low rate bias of 3.1±0.8 flashes/s for 
dimmer stimuli. 
Second, we removed the correlation between brightness and flash rate by adjusting the flash 

Figure 4  Stimulus brightness influences rate decisions (A) Schematic of the uniform brightness 
manipulation experiment. The intensity of individual flashes was varied such that all flashes were 
dimmer or brighter than normal on 5% of randomly selected trials. (B) Left: stimulus spaces and 
decision planes (gray lines). Right: Predicted psychometric functions. Each row reflects a candidate 
way in which the stimulus in each condition would influence decisions given the strategy indicated in the 
label. Top: stimulus rate. Middle: stimulus brightness. Bottom: Hybrid strategy in which both features 
are used. (C) Measured psychometric functions. Left: 8 mice; 108,547 trials. Right: 2 rats; 26,201 trials. 
Points: subjects’ responses. Solid line: 4-parameter cumulative Normal psychometric function fit to the 
data. Error bars: Wilson binomial 95% confidence intervals. (D) Schematic of uncorrelated brightness 
manipulation experiment. The intensity of individual flashes was scaled inversely with the flash rate on 
5% of randomly selected trials.  All sequences have the same cumulative brightness, independent of 
flash rate. (E) Same as B but for the manipulation in D. (F) Measured psychometric functions. Left: 2 
mice; 6326 trials. Right: 2 rats; 9946 trials. Points: subjects’ responses. Solid line: 4-parameter 
cumulative Normal psychometric function fit to the data. Error bars: Wilson binomial 95% confidence 
intervals. 
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intensity in each sequence to the flash rate on 5% of trials. As a result, the total brightness over 
time was the same across all flash rates (Figure 4D). If subjects are influenced by rate alone, their 
decisions will be unaffected by brightness (Figure 4E, top row). By contrast if subjects are 
influenced by brightness, they will have a low-rate bias on uncorrelated trials since the brightness 
level used was that of the lowest rate stimulus (Figure 4E, middle and bottom rows). This is what 
we observed: both mice and rats had a low-rate bias (shift of 3±8 flashes/s for mice, 21±7 for rats, 
Figure 4F). Importantly, the dependence of decisions on stimulus rate was reduced but still 
present (Figure 4F, blue lines not completely flat; i.e. Sensitivity>0, p=4´10-10 for mice, p=6´10-15 
for rats, likelihood ratio test, corrected for parameter on boundary). This argues in favor of a hybrid 
strategy (Figure 4E, bottom row). If animals had used brightness alone, the psychometric 
functions would have been flat.  

Inactivation of secondary visual area AM biases perceptual decisions 
To test whether the evidence accumulation paradigm engaged cortical circuitry, we sought to 
reversibly silence secondary visual AM in mice during decision-making. To target AM, we 
performed widefield retinotopic mapping in each mouse (Figure 5). Briefly, we imaged visually 

Figure 5  Retinotopic Mapping allows precise localization of visual areas for subsequent 
manipulation. – (A) Altitude and (B) azimuth phase maps (C) Visual field sign map with labeled 
visual areas (D) Visual area borders overlaid on photograph of skull.	
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evoked activity in awake transgenic mice expressing GCaMP6 in excitatory neurons (Ai93; 
CamkIIα-tTA; Emx-cre) in response to a vertical or horizontal bar that periodically drifted across 
the screen in the four cardinal directions (Kalatsky and Stryker 2003; Garret et al. 2014; Zhuang 
et al. 2017). This procedure enabled generation of phase maps for altitude and azimuth visual 
space (Figure 5A,B) and subsequently visual field sign maps (Figure 5C), which were used to 
estimate the borders between cortical visual areas and reliably identify AM (Figure 5D). Note that 
the location of area AM is very close to the stereotaxic coordinates used to target PPC (Harvey 
et al. 2012, Hwang et al. 2017, Goard et al. 2016). Future studies are needed to establish whether 
AM is a separate cortical area from PPC or whether there is overlap (partial or complete) between 
the two.  
To reversibly silence AM, we used cruxhalorhodopsin JAWS (Halo57), a red light-driven chloride 
ion pump capable of powerful optogenetic inhibition (Chuong et al. 2014; Acker et al. 2016). 
Optogenetic stimulation was randomly interleaved on 25% of trials within a session. The 

Figure 6  Long wavelength laser stimulation biases decisions in control animals– (A) Experimental 
configuration. Mice were injected with AAV-GFP and implanted with a fiber in right hemisphere area AM. 
(B) Psychometric function without masking red light (2 mice, 2011 Laser-off trials; 610 Laser-on trials). 
Irradiance was 32 mW/mm2. (C) Psychometric performance with masking red light (2 mice) with easiest 
flash rate conditions (2699 Laser-off trials; 823 Laser-on trials) (D) Same as C but for sessions including 
multiple flash rates (2866 Laser-off trials; 903 Laser-on trials). Irradiance was 64 mW/mm2.	
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optogenetic stimulus pattern consisted of a 1 s long square wave followed by a 0.25 s long linear 
downward ramp to reduce the effect of rebound excitation that may occur after strong inhibition 
(Figure 6A, red line) (Chuong et al. 2014; Guo et al. 2014a).  
A potential confound when using JAWS for optogenetic inhibition is that the presence of red light 
alone may influence behavior. While it was long assumed that rodents are unable to perceive red 
light, a recent study showed that red-light delivery in the brain can activate the retina and influence 
behavior (Danskin et al. 2015). Having demonstrated here that decisions can be influenced by 
brightness (Figure 4), we feared that red-light stimulation might induce a perceived increase in 
brightness and thus a behavioral bias towards high-rate decisions on photoinhibition trials. To test 
whether decisions were affected by the presence of red light in the absence of JAWS, we 
implanted and trained mice injected with a sham virus (AAV-GFP) in AM.  
In vivo red light stimulation of sham-injected mice resulted in a high-rate bias (Figure 6B). This 
confirms the hypothesis that the red light alone influences decisions. The bias is likely because 
the red lights increased the perceived brightness of the stimulus, driving the animal to make more 
high-rate choices. Importantly, choices were biased away from the site of the implant, arguing 
against phosphenes that drew the animal’s attention towards the stimulation side. To counter the 
red-light bias, we installed additional red lights in the behavior booth to adapt long-wavelength 
sensitive photoreceptors (Danskin et al. 2015). These external “house lights” strongly reduced the 
effect of the laser stimulation on behavior (Figure 6C,D).  
Although the “house lights” reduced the red-light bias in uninjected animals, the presence of a 
residual red-light bias in any individual injected animal is difficult to ascertain. If the house-lights 
were incompletely effective in masking the red-light, the bias could diminish or possibly enhance 
the effects of direct neural manipulation, depending on how the red-light bias and neural 
manipulation interact. To surmount this problem, we developed an experimental design in which 
the stimulus-response contingency was varied while the stimulated hemisphere was held 
constant. Specifically, we trained two groups of mice on opposing behavioral contingencies: 
Group A was trained on the contingency: High-Rate, go LEFT; Group B was trained on the 
reverse: High-Rate, go RIGHT (Figure 7A). Both groups were implanted on the left.  
One scenario would be difficult to interpret: specifically, JAWS suppression could bias the 
animal’s estimate of a sensory parameter: rate or perceived brightness for example. If so, the 
(e.g., high) rate bias from the neural manipulation and the high rate bias from the red-light would 
be combined similarly in both groups of animals, simply changing the magnitude of the effect in 
both groups (Figure 7B, left; solid and dashed lines are similar in both top and bottom panels). 
Distinguishing the effect of the neural manipulation from that of the red-light would be difficult. 
Fortunately, in an alternate scenario, JAWS suppression could drive a bias to the ipsilateral side 
that is independent of the rate associated with that side. In this scenario, the effects will differ for 
the two groups because the ipsilateral side is associated with high-rate for Group A and low-rate 
for group B (Figure 7B, top right). The difference across groups will be present even if a red-light 
bias persists (solid and dashed lines differ in both top and bottom panels in 7B, right). This 
because the red-light bias will increase high rate choices and thus simply shift both curves 
leftwards, leaving the difference between them unchanged. For Group B animals, a contralateral 
(high rate) bias from the red light, combined with an ipsilateral (low rate) bias from the JAWS 
suppression may potentially cancel each other out (Figure 7B, lower right), leading to an 
interesting scenario in which the effect of JAWS suppression is only apparent in one group. A 
comparison of the two groups is therefore essential in interpreting the dual effects of the red-light 
bias and the JAWS suppression. 
 A comparison of effects in Group A and Group B revealed a striking difference. Specifically, group   
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Figure 7 JAWS Photoinhibition of Visual Area AM. (A) Schematic of experimental configuration of AM 
photoinhibition experiment. Group A mice trained on the contingency: High-Rate, go LEFT and Group B mice 
trained on the reverse contingency: High-Rate, go RIGHT. Both groups of mice were injected with JAWS virus 
and implanted with an optical fiber on the left hemisphere. Photoinhibition occurred on 25% of trials during the 
stimulus period. (B) Predicted behavioral outcomes of AM photoinhibition. Top: predictions for neural 
manipulation alone. Left: If AM inhibition drives a high-rate bias, the outcomes would be similar for the two 
groups. Right: If AM inhibition drives a bias towards the ipsilateral side, groups A and B would show biases in 
opposite directions since the high-rate side differs for groups A and B. Bottom: Predictions for neural 
manipulation alongside a bias driven by the presence of visible light (as in Figure 6). Left: If AM inhibition drives a 
high-rate bias, both groups would again exhibit the same bias. Right: If AM inhibition drives an ipsilateral bias, 
groups A and B would again show biases in opposite directions; potentially with a very weak effect for Group B 
since the red light and neural manipulations are in opposition. (C,) Decisions for Group A (left, 4 mice; n=5722 
Laser OFF trials and n=1958 Laser ON trials) and Group B (right, 3 mice; n=4404 Laser OFF trials and n=1381 
Laser ON trials) at laser power irradiance of 64 mW/mm2. Circles represent the subject’s behavioral response 
during laser OFF (black) and laser ON (red) trials. Solid line represents the psychometric function fit to 
cumulative Normal. Error bars represent Wilson binomial (95%) confidence intervals. (D) Left: Psychophysical 
kernels for group A (37,025 Laser off trials; 12,952 Laser on trials). Right: Psychophysical kernels for group B 
(32,936 Laser off trials; 12,423 Laser on trials). 
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A (High-Rate, go LEFT) had a large, high rate bias (Figure 7C, choice bias = 10.09 flashes/s 
[2.84 18.72]) accompanied by a change in the slope of the psychometric functions (βevidence:opto = -
0.045 [-0.064 -0.026] p = 3.4e-06, GLMM Test). However, group B (High-Rate, go RIGHT) 
showed no effect (Figure 7D, βevidence:opto = 0.008 [-0.006 0.022], p= 0.27; choice bias = 0.43 
flashes/s [-0.75 1.62]). The group difference was present despite matched laser power, injection 
volume, and percentage of disruption trials. These data most resemble the lower right panel in 
Figure 7B, in which the two effects drive the psychometric function in opposing directions: the red 
light drives a high rate bias, and the JAWS suppression drives an ipsilateral bias, largely canceling 
each other out.  In keeping with the hypothesis that AM suppression drives a change in bias, 
rather than a change in sensitivity, the psychophysical kernals were largely unchanged in either 
group of animals (Figure 7D). 

Discussion 
We describe a quantitative behavioral paradigm for studying visual evidence accumulation 
decisions in freely behaving mice. Mice trained on our paradigm performed hundreds of trials per 
session and maintained stable performance across sessions. A dataset of over half a million trials 
allowed us to characterize the timecourse of accumulation with precision. We observed that mice 
were influenced by visual evidence presented throughout the trial, but that they assigned more 
weight on average to flashes presented earlier in the sequence, similar to monkeys, but unlike 
rats. Further, despite overall high accuracy, decisions were nonetheless influenced by additional 
information, such as stimulus brightness and previous reward and choice history. In addition, we 
demonstrated that area AM plays a causal role in visual decisions. Our experimental design was 
key in allowing this conclusion because control experiments demonstrated that the red stimulation 
light biases mice even in the absence of JAWS. Taken together, these results fill a gap in our 
understanding of accumulation of evidence behavior in mice, and begin to define the causal circuit 
that supports this behavior.   
Our observations of overweighting of information early in the trial are consistent with results from 
the evidence accumulation paradigm from Morcos and Harvey (2016) in head-fixed mice. Our 
large cohort of animals and stochastic stimulus arrival times allowed us to more fully characterize 
this function and extend it to a new paradigm. Interestingly, the shapes of the psychophysical 
kernels we observed in the mice are qualitatively similar to those observed in nonhuman primates 
(Katz et al. 2016; Yates et al. 2017). The shape of the kernel differed from that observed in rats 
trained on the same task (Figure 2B) and previously reported by other evidence accumulation 
paradigms (Raposo et al. 2012; Brunton et al. 2013; Sheppard et al. 2013; Scott et al. 2015). The 
difference in psychophysical weighing of evidence across species is intriguing because it 
suggests that although different species achieve comparable levels of performance, their internal 
behavioral strategies may differ. This underscores the importance of using stochastic stimuli, 
which make it possible to uncover the animal’s strategy (Churchland and Kiani 2016). 
Our brightness manipulations revealed that decisions were not based solely on rate. For both 
mice and rats, the cumulative brightness of the flash sequence also influenced decisions (Figure 
4C,F). Incorporating brightness in decision-making reflects a clever strategy because in almost 
all trials, brightness and rate provide evidence in favor of the same decision. In fact, combining 
these two sources of information is the optimal strategy (Figure 4B,E, bottom row), in the same 
way that combining  auditory and visual information is the optimal strategy in multisensory 
experiments (Raposo et al., 2012, Sheppard et al., 2013). It would be surprising if animals elected 
to marginalize brightness when it is such a useful source of information. 
The influence of brightness that we observed here contrasts findings from a recent study, which 
reported that rats performing a visual evidence accumulation task counted individual flashes 
rather than cumulative flash on-time (Scott et al., 2015). Two experimental design features may 
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explain the difference in results. First, the inter-flash interval in Scott et al. was more than an order 
of magnitude longer than that used here (250 ms vs. 20 ms) which may discourage a cumulative 
brightness strategy. Second, Scott et al. didn’t manipulate brightness on catch trials, as we did 
here, but instead conducted separate experiments in which all trials contained jittered light on-
times. This raises the interesting possibility that in Scott et al., the jittered on-times increased the 
uncertainty of cumulative on-time information. The increased uncertainty would change the 
optimal strategy, leading animals to weight cumulative on-time less than they would in other 
experiments in which brightness and event number are correlated.  
To understand the neural mechanisms that enable perceptual decision-making, we tested the 
causal role of secondary visual area AM. Our results, an ipsilateral bias on inactivation trials, 
suggest that AM normally drives contralateral choices. However, additional studies are needed to 
more definitively establish the role of AM. Because we observed that red light alone biases 
choices (Figure 6B), we inferred that the red light and the optogenetic suppression may, in some 
configurations, bias decisions in opposite directions and cancel each other out (Figure 7C, right). 
The use of other wavelengths of light to suppress activity (Lien and Scanziani 2013) or the use of 
non-optical suppression methods such as muscimol (Raposo et al. 2014; Erlich et al. 2015) could 
provide additional evidence about the role of area AM in decision-making.  
Regardless, our results make clear the need to carefully control for light-induced artifacts, both 
by adapting the animal and by experimental design that disentangles light-induced artifacts from 
true behavioral changes. The artifact we observed is most likely caused by red light propagating 
from the stimulation site through the brain and directly activating the retina. Danskin et al. (2015) 
measured retinal activation during in vivo red light stimulation and found the largest activation 
ipsilateral to the implanted stimulation fiber. Interestingly, the bias that we observed here was 
contralateral to the implanted stimulation fiber. Notably, in this cohort, the contralateral side was 
associated with high-rate choices (Fig. 6A). A likely explanation is that light from the fiber 
increased overall brightness; as we demonstrated in separate experiments (Figure 4), increased 
brightness can be interpreted as evidence for high rate choices. Additional experiments that 
systematically vary the stimulus response contingency in sham-injected animals could confirm 
this hypothesis.  
The proposed ipsilateral bias caused by AM photoinhibition is consistent with spatial hemineglect 
observed in visual parietal lesions. Spatial hemineglect, also referred to as contralateral neglect, 
is a phenomenon that occurs when subjects ignore the contralateral hemifield as a result of lesion 
to the parietal cortex. Although hemineglect has been reported in humans (Stone et al. 1991; 
Kerkho 2001) and rats (Crowne et al. 1986; Reep and Corwin 2009), we could not find a report 
on mice. The presence of hemispatial neglect would suggest that the mice are neglecting the 
tendency to go towards the affected (contralateral) visual hemifield. A related interpretation of the 
ipsilateral bias due to suppression of AM activity is that neurons in AM are active in advance of 
contralateral choices. In this scenario, the two hemispheres of AM would represent competing 
movement intentions, such that inactivation of one hemisphere leads to movement in the 
opposing direction.  
Taken together, these observations begin to address two major gaps in our understanding of 
accumulation of evidence behavior: we have precisely characterized the timecourse of evidence 
accumulation, and have uncovered that rate, brightness, and trial history jointly shape decisions.  
Finally, our results support a role for AM in visually guided evidence accumulation decisions. We 
propose that AM drives contralateral choices in the visual flashes task, such that AM inhibition 
leads to an ipsilateral bias. This is consistent with anatomical projections of AM to motor areas 
(Wang et al. 2012; Allen Brain Atlas 2015) and the recently proposed role for mouse parietal 
cortex in navigation (Krumin et al. 2017). These results point to the need for more causal 
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manipulations in mouse visual areas, and highlight the challenge in designing experiments and 
interpreting data when light is used to transiently manipulate neural activity. 
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