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Summary 19 

Decisions are based on value expectations derived from experience. We show 20 

that dorsal anterior cingulate cortex and three other brain regions hold multiple 21 

representations of choice value based on different time-scales of experience 22 

organized in terms of systematic gradients across the cortex. Some parts of each 23 

area represent value estimates based on recent reward experience while others 24 

represent value estimates based on experience over the longer term. The value 25 

estimates within these four brain areas interact with one another according to 26 

their temporal scaling. Some aspects of the representations change dynamically 27 

as the environment changes. The spectrum of value estimates may act as a 28 

flexible selection mechanism for combining experience-derived value 29 

information with other aspects of value to allow flexible and adaptive decisions 30 

in changing environments. 31 

  32 
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Introduction 33 

When an organism makes a decision, it is guided by expectations about the 34 

values of potential choices. Estimates of value are, in turn, often dependent on 35 

past experience. How past experience should be used when deriving value 36 

estimates to guide decisions is not, however, always clear. While it might seem 37 

ideal to use the most experience possible, from both the recent and more distant 38 

past, this is only true if the environment is stable. In a changing environment it 39 

may be better to rely only on most recent experience because earlier experience 40 

is no longer informative1 ,2.  41 

 Previous studies have focused on value learning: how value estimates are 42 

updated after the choice is made and the choice outcome is witnessed1,2. These 43 

studies have emphasized that each outcome has a greater impact on value 44 

estimates when the environment is changeable or volatile; the learning rate (LR) 45 

is higher and so value estimates are updated more after each choice outcome. 46 

Similarly, each outcome has a greater effect on activity in brain areas such as 47 

dorsal anterior cingulate cortex (dACC) when the environment is volatile (Fig. 1).  48 

However, while volatility affected dACC at the time of each decision-49 

outcome, there was no evidence that it affected average dACC activity at the time 50 

of the next decision.  It is therefore unclear how dACC activity might change as a 51 

function of the learning rate determining the choice value estimates that guide 52 

decision making at the point in time when decisions are actually made (Fig.1). 53 

This is this question that we address here. Rather than investigating dACC 54 

activity at the time of decision outcomes and in relation to learning we focus 55 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 29, 2017. ; https://doi.org/10.1101/195842doi: bioRxiv preprint 

https://doi.org/10.1101/195842


4 
 

instead on how dACC represents value estimates employed at the time of 56 

decision making. 57 

 58 

 59 

Fig. 1. When outcomes of decisions are witnessed, average activity in dACC reflects 60 

the environment’s volatility. Under high volatility, the options’ values are updated 61 

with a high learning rate a. However, at the time of the actual decision on the next 62 

trial, volatility no longer exerts a significant effect on average dACC activity. 63 

However, the representation of choice value estimates necessary for decision-64 

making might be represented in some other way such as an anatomically 65 

distributed pattern of activity. 66 

 67 
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 When making decisions, the brain might first attempt to determine the 68 

best suited LR for the given environment and then calculate a single value 69 

estimate based only on this LR.  If this is the case then there may be no overall 70 

change in average dACC activity but variance in dACC might best be explained by 71 

value estimates calculated at the best LR rather than other inappropriate LRs.  72 

Alternatively dACC might hold simultaneous representations of value estimates 73 

based on a broad spectrum of LRs. Although intuitively the former might seem 74 

computationally simpler, there is evidence that neurons in macaque dACC reflect 75 

recent reward experience with different time constants as might be expected if 76 

they were each employing a different LR3–5. However, the role of such neurons in 77 

behavior remains unclear. Here we sought evidence for the existence of value 78 

estimates in dACC and elsewhere in the human brain, based on experience over 79 

different time scales (and therefore employing different LRs), and examined how 80 

such representations mediate decision making (Fig. 1). 81 

We developed a new approach to analyse neural data going beyond the 82 

typical use of computational models in investigation of brain behavior 83 

relationships. Typically, the free parameters of a computational model (e.g. LR) 84 

are fitted to the behavior of the subject from which trial-wise estimates of the 85 

computed variables can be extracted (e.g. value estimates). However, here we 86 

also test whether neuronal populations exist with responses that are better 87 

characterised by parts of parameter space that are not overtly expressed in 88 

current behavior. Identification of such representations is precluded by focusing 89 

exclusively on the parameters currently expressed in behavior. Here we take the 90 

approach of fitting LR values to each voxel independently, visualising those 91 

parameters over anatomical space and computing their interactions. Instead of 92 
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investigating where in the brain clusters of voxels express similar neural activity 93 

related to value estimates, here we examine the range of value estimates across 94 

voxels.  We also examine changes to this pattern as a function of volatility. 95 

Results 96 

Experimental Strategy 97 

We used fMRI data from 17 subjects acquired during a probabilistic reversal 98 

learning task1. Subjects repeatedly chose between two stimuli with visible 99 

reward magnitudes and hidden reward probabilities that had to be learned 100 

through feedback (Fig. 2A). Thus in this experiment subjects had to use past 101 

experience to estimate reward probabilities for each choice. Accordingly, reward 102 

magnitude estimates should be based on the stimuli displayed on each trial but 103 

the reward probability estimates should depend on recent experience over 104 

several trials. The reward probability might be estimated with different LRs 105 

depending on how quickly the environment is changing1. Each choice’s value can 106 

then be derived by combining the explicit reward magnitude with the estimated 107 

probability of receiving the reward. Each session comprised two sub-sessions 108 

(order counterbalanced across subjects): one where reward probabilities 109 

remained stable and another sub-session where reward probabilities were 110 

volatile (Fig. 2B). The transition between the two sub-sessions was not 111 

announced to the subject.  112 

In order to investigate whether the human brain represents multiple 113 

reward probability estimates that are based on a spectrum of LRs, we used a 114 

novel approach to analyse fMRI data. In addition to other regressors modelling 115 
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standard variables of interest (such as the reward magnitudes displayed to 116 

subjects on the screen, the reward received, etc) and physiological noise, we 117 

added two regressors, one modelling the estimated reward probability of the 118 

chosen option during the decision phase, another one modelling the prediction 119 

error during the outcome phase. We repeated this entire analysis 30 times for 120 

probability estimates and prediction errors based on 30 different LRs ranging 121 

from 0.01 to 0.99 (slow to fast LRs), deriving the best-fitting LR for every voxel 122 

(Fig. 2C, D, E). In other words, the 30 repetitions of the analysis make it possible 123 

to derive 30 different estimates of the reward probability based on 30 different 124 

LRs.  The 30 different LRs were chosen so as to sample the entire LR space 125 

between 0.01 (almost no learning) and 0.99 (almost complete revision of value 126 

estimates on each trial) and to be equally spaced in terms of their correlation to 127 

the neighbouring regressors (Fig. 2D; Methods).  In the previous study Behrens 128 

et al.1 assumed one dynamic, but unitary LR generating value estimates across 129 

the brain. However, assigning a best-fitting LR to each voxel based on its own 130 

data reveals a pattern of diverse value estimates based on different time periods 131 

of experience (different LRs). The best-fitting LR of a voxel corresponds to the 132 

value regressor calculated with an LR that explained most of the variance in the 133 

voxel’s time-course, compared to the other LR regressors, regardless of how 134 

much variance it actually explains.  While such an approach is unlikely to capture 135 

the full range of factors affecting activity in a voxel it has the potential to identify 136 

relationships between brain activity and choice value estimates that cannot be 137 

captured with standard analysis techniques.  138 
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 139 

 140 

Fig. 2. Methods and analysis. (A) Probabilistic reversal learning task. Subjects had 141 
to choose between a green and a blue stimulus with different reward magnitudes 142 
(displayed at the centre of each stimulus). In addition to the reward magnitude, 143 
which changed randomly from trial to trial, the value of each stimulus was 144 
determined by the probability of reward associated with each stimulus which 145 
drifted during the course of the experiment and had to be learned from feedback. 146 
After choice (here: green on second panel), the red bar moved from left to right if 147 
the chosen option was rewarded. Subjects tried to reach the silver bar for £10 and 148 
the gold bar for £20. (B) Example of reward probability schedule and estimated 149 
volatility of the reward probability from a Bayesian learner when the stable phase 150 
came first1. Each session had a stable phase of 60 trials where one stimulus was 151 
rewarded 75% of trials, the other 25%, and a volatile phase with reward 152 
probabilities of 80% vs. 20%, swapping every 20 trials. The order was 153 
counterbalanced between subjects. (C) Analysis. As in a conventional fMRI 154 
analysis, the blood-oxygen-level-dependent (BOLD) signal time course in every 155 
voxel was analysed in a GLM with a design matrix containing relevant regressors. 156 
Additionally, one of the regressors modelled a key component of choice value, the 157 
estimated reward probability of the chosen option during the decision phase, 158 
another one the prediction error during the outcome phase. The same LRs used 159 
when deriving the reward probability estimates were used also for the prediction 160 
error regressors (the reward probability and prediction error regressors are 161 
referred to collectively as LR regressors). This analysis was repeated 30 times, 162 
deriving the beta-values for probability estimates and prediction errors based on 163 
30 different LRs. Thus 30 different estimates of the reward probability based on 164 
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30 different LRs were tested for their ability to explain BOLD signal variance. (D) 165 
With equal distance separating LRs across the LR spectrum [0.01 to 0.99] the 166 
regressors would be more strongly correlated at higher LRs, therefore we derived 167 
30 LRs with larger intervals between higher LRs, resulting in uniform correlation 168 
across the spectrum. (E) In an environment with high volatility, the stimulus-169 
reward history should be more steeply discounted (corresponding to a higher LR) 170 
than in a stable environment because information from many trials ago is likely to 171 
be outdated. The plots in the blue boxes show the relative contribution of the 172 
previous trials’ outcomes to the current reward probability estimation with 173 
different LRs. We thus derived the best-fitting LR for every voxel in every subject, 174 
averaging across the group. For example, within dACC the BOLD signal in some 175 
voxels is best explained by a low LR (red) while in others it is best explained by a 176 
high LR (yellow).  177 
 178 

We combined two approaches to define the brain areas that we 179 

investigated in detail. First, a priori we anatomically defined two regions of 180 

interest (ROIs) that are known to play important roles in decision-making: 181 

dACC1,6–13, and the inferior parietal lobule (IPL)14–16. The anatomical masks for 182 

dACC and IPL were taken from connectivity-based parcellation atlases17,18. 183 

Subsequently, we checked that these regions were task-relevant by looking for 184 

activity that was associated significantly with the reward magnitude of the 185 

choice taken and constrained the ROIs by the conjunction of the anatomy and 186 

task-relevant activity (Fig. 3A).  187 

In order to confirm that the voxels in our ROIs reflected activity that was 188 

related to probability estimates, we ran a singular value decomposition (SVD) 189 

over the LR regressors (before HRF-convolution, normalisation and high-pass 190 

filtering) to derive singular values capturing most of the variance associated with 191 

the LR regressors. For every voxel we then derived the Akaike Information 192 

Criterion (AIC) scores from our main GLM (in the absence of any LR regressors). 193 

This reveals how well a model lacking multiple LRs accounts for activity 194 

variation in every voxel in the brain. We also ran an identical GLM that contained 195 

the same regressors but also the first three principle components from the SVD 196 
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(HRF-convolved, demeaned and high-pass filtered), and again computed the AIC 197 

score. This reveals how well a model containing LR-based reward probability 198 

estimates accounts for activity variation in every voxel in the brain. We then 199 

compared the AIC scores of the two models of brain activity at every voxel using 200 

random-effects Bayesian model comparison for group studies19. This procedure 201 

returned protected exceedance probabilities for every voxel, revealing the 202 

degree to which the model containing the singular values, reflecting value 203 

estimates based on one or multiple LRs, was the more likely model of the neural 204 

data (Fig. 3B). For voxels with a high exceedance probability we can state that 205 

LRs have an impact on activity. Having established initial candidate areas of 206 

interest in an unbiased way we then went on in subsequent analyses to establish 207 

more specifically how reward probability estimates based on different LRs were 208 

represented.  209 

 210 

 211 
Fig. 3. Regions of Interest. (A) dACC and IPL regions defined by conjunction of 1) 212 
anatomical masks for dACC and IPL from the connectivity-based parcellation 213 
atlases (http://www.rbmars.dds.nl/CBPatlases.htm)17,18 and 2) significantly 214 
decreasing activity (blue) associated with the magnitude of the chosen option 215 
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during decision (B) The dACC and IPL region showed high evidence for coding LRs 216 
(posterior exceedance probability > 0.95). 217 
 218 

The relevance of the dACC and IPL regions that we had defined a priori 219 

based on anatomy was confirmed: these ROIs showed high evidence of coding 220 

reward probability estimates based on LRs. Accordingly, for subsequent analyses 221 

we constrained the ROI masks to those voxels that fulfilled both the anatomical 222 

and task-relevant exceedance probability criteria. We found two further clusters 223 

with high evidence in the right frontal operculum (rFO) and bilateral lateral 224 

frontopolar cortex (FPl) (Fig. S1A). We focus on reporting results for our primary 225 

regions of interest, dACC and IPL, but in the supplemental information we show 226 

related results for rFO and FPl. Using a different model, with an additional 227 

regressor coding the outcome of the trial (win or loss), the evidence in favour of 228 

an LR-based model in these regions was even stronger (Supplemental Material 2 229 

and Fig. S1B). This finding is consistent with several other demonstrations that 230 

value representations in dACC guide stay/switch or engage/explore decisions of 231 

the sort that might be used to perform the current task in humans9,20–24 and 232 

other primates25,26.  233 

Diversity and Topography of Value Representation 234 

The high exceedance probabilities in dACC and IPL reveal that LRs have an 235 

impact on activity in these regions, but not whether different voxels represent 236 

probability estimates based on different LRs and whether there is any 237 

topographic structure in such a representation. Using our multivariate mapping 238 

approach, we found that in our ROIs, voxels did not homogeneously integrate the 239 

reward history with the same LR, but that there was some degree of spatial 240 
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topographic organization of the diverse probability estimates (Fig. 4). In both IPL 241 

and dACC, a significant amount of variability in the best-fitting LRs in voxels was 242 

explained by the x, y, and z coordinates of the voxel when regression models 243 

were fitted to each subject’s data (t-test over the variance explained by every 244 

subject’s regression model (r2) against the mean r2 of 10,000 regression models 245 

with randomly permuted coordinates. dACC: Mean r2 true data = 0.101, mean r2 246 

permuted data = 0.002, t16 = 5.071, p < 0.001, IPL right hemisphere: Mean r2 true 247 

data = 0.124, mean r2 permuted data = 0.003, t16 = 5.566, p < 0.001, IPL left 248 

hemisphere: Mean r2 true data = 0.182, mean r2 permuted data = 0.006, t16 = 249 

5.040, p < 0.001).  The principle axis of anatomical organization in dACC in 250 

humans and other primates is approximately rostrocaudally oriented18,27. 251 

Although this axis does not fully correspond to the cardinal axes in the standard 252 

space for illustrating neuroimaging data (Montreal Neurological Institute [MNI] 253 

space) we nevertheless examined whether LRs were also organized along the 254 

MNI y-axis.   Consistently, across subjects, in the dACC, LRs showed a gradient 255 

along the MNI y-axis with increasing LRs in the rostral direction (t-test of 256 

subjects' regression coefficients of the y-coordinate regressor against 0, t16 = 257 

2.175, p = 0.045). No major direction of anatomical organization has been 258 

reported for the IPL. 259 

 Previous studies have suggested that some brain regions may reflect a 260 

particular time scale of experience or LR that is appropriate to its function28 but 261 

our analysis suggests dACC and IPL are, in addition, representing a spectrum of 262 

different LRs. Other relatively abstract features, such as numerosity are known 263 

to be represented topographically even though such representations do not map 264 

onto sensory receptors or motor effectors in any simple manner29. The 265 
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distribution of LRs in dACC might approximately be related to the rostral-to-266 

caudal gradient in its connectivity with limbic versus motor areas30.  267 

 268 

 269 

Fig. 4. Topographic maps of LRs. (A) A topography of diverse estimates of the 270 
reward probability based on different LRs exists in the ROIs. Bright yellow and 271 
white colors indicate voxels with high LRs while darker, redder voxels indicate 272 
voxels with lower LRs.  The color bar on the left indicates the set of LRs (high LRs 273 
at top, low LRs at bottom) chosen in 30 steps to minimize correlation between 274 
regressors in LR space (see also figure 2d).  (B) Spatial gradient along the rostro-275 
caudal axis in dACC in two example subjects. Each voxel’s best-fitting LR is plotted 276 
against its position on the y-coordinate. The color of the dots reflects the number 277 
of voxels having a given combination of values (see color bars beneath graph). 278 
Red lines: Regression of all voxels’ best-fitting LR against their y-coordinate. 279 
 280 

Mechanisms of Adaption to Changes in the Environment 281 

As already explained, in a volatile environment, ideally decisions should be based 282 

on probability estimates derived from voxels with higher LRs, while in a stable 283 

environment, voxels with lower LRs might inform the decision. This suggests 284 

that one of two changes to the representation might occur as volatility of the 285 

reward environment changed. First, voxels might have dynamically changing 286 

LRs, depending on the environment (Fig. 5A). Alternatively, each voxel might 287 

retain its best-fitting LR regardless of volatility but the degree to which variance 288 
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in each voxel’s activity was explained by reward probability estimates with the 289 

best-fitting LR might get stronger in high LR voxels in volatile environment (or 290 

stronger in low LR voxels in stable environments). In other words, the regressor 291 

effect size (beta-weight) in high LR and low LR voxels might increase and 292 

decrease in volatile and stable environments respectively (Fig. 5B). To probe 293 

these hypotheses, we split the BOLD signal time course into stable and volatile 294 

sub-sessions and again identified the best-fitting LR for every voxel in each of the 295 

two sub-sessions. We then compared the best-fitting LR in each sub-session in 296 

every voxel.  297 
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 298 

Fig. 5. Schematic figure depicting possible ways in which multiple value estimates, 299 
based on different periods of experience determined by different LRs, might be 300 
represented in the brain as indexed by fMRI. We consider how such 301 
representations might change as the environment’s volatility changes. Each row 302 
shows the representation of value estimates in nine example voxels in a stable 303 
and in a volatile environment. A) According to the LR shift hypothesis, in a stable 304 
environment neurons in more voxels would compute value estimates based on 305 
lower LRs while they would shift towards higher LRs in a volatile environment. B) 306 
The signal strength shift hypothesis predicts that the value estimates computed 307 
by the neurons of each voxel remain constant in all environments, but that those 308 
voxels with value estimates that are currently most relevant for the environment 309 
(high LR voxels in volatile environments and low LR voxels in stable 310 
environments) increase their signal strength. C) The combination hypothesis 311 
suggests a combination of the two mechanisms in A) and B). 312 
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 313 

In the dACC and IPL, the LRs of the voxels’ probability estimates were 314 

approximately normally distributed (Lilliefors test: dACC p=0.363; IPL p=0.950) 315 

but they had significantly higher LRs in the volatile compared to the stable sub-316 

session (average LR difference in dACC: 5.36 [details of LR scaling are shown in 317 

Fig. 2D], t-test of each subject's mean change in LR's against 0: t16 = 3.68, 318 

p=0.002, average LR difference in IPL: 4.34, t16 = 2.58, p=0.020) (Fig. 6). This 319 

finding suggests an adaptation mechanism resembling the one outlined in the 320 

shift-hypothesis (Fig. 5A). However, there might also be a change in how much of 321 

the neural activity in a voxel can be explained by the best-fitting LR. This would 322 

constitute a change in the effect size or beta-weight of the best fitting regressor 323 

(Fig. 5B,C). 324 

 325 

 326 

Fig. 6. Dynamic changes in LR between stable and volatile sub-session. A) Change 327 
in LR in every voxel between stable and volatile sub-session. Values on the color 328 
bars show the change in LR rank. B) Distribution of number of voxels with best-329 
fitting LRs in the two regions of interest. 330 
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 331 

We therefore tested whether there was a dynamic change in the effect 332 

sizes of the best-fitting LRs depending on which LRs were currently behaviorally 333 

relevant. If such a boosting of relevant LR signals exists, then we would expect 334 

voxels with lower best-fitting LRs to have higher beta-weights in the stable sub-335 

session (a negative correlation between best-fitting LR and beta-weight) and 336 

voxels with higher best-fitting LRs to having the higher beta-values in the 337 

volatile session (positive correlation between best-fitting LR and beta-weight). 338 

We calculated the correlation between best-fitting LR and beta-weights for every 339 

subject in the two sub-sessions and transformed the correlation coefficients to z-340 

scores (Fisher transformation). In the dACC, there was indeed such a dynamic 341 

change in effect size (mean difference in z-scores stable minus volatile sub-342 

session -0.230, t16 = -3.802, p = 0.002), while this was not the case for the IPL 343 

(mean difference -0.056, t16 = -0.818, p = 0.425.) (Fig. 7). This shows that in the 344 

dACC, there is a combined adaptation of both the best-fitting LRs in voxels and a 345 

change in the effect size of the best-fitting LR, depending on the behavioral 346 

relevance of the best-fitting LR in a given environment (Fig. 5C). Thus, voxels 347 

change so as to code LRs appropriate for the current environment and they 348 

change so as to encode appropriate LRs more strongly than inappropriate LRs. In 349 

the IPL, however, only the former adaptation to the environment seems to take 350 

place (Fig. 5A).  351 

  352 
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  353 

Fig. 7. Change in the correlation between beta-weights of the best-fitting LR 354 
regressors and the best-fitting LR between sub-sessions. A) In the dACC, the 355 
correlation was significantly positive for the volatile sub-session and significantly 356 
different from the negative correlation seen in the stable phase. B) Average beta-357 
weights across the whole spectrum of LRs in stable and volatile sub-session in the 358 
dACC. 359 

LRs as Organizational Principle of Interregional Interaction 360 

So far we have seen that four brain regions carry multiple estimates of the value 361 

of choices that are based on different time constants of experience 362 

corresponding to different LRs. Thus, multiple LRs constitute an organizing 363 

principle determining distribution of activity patterns within these areas. We 364 

therefore next asked whether multiple LRs exerted a similar influence over the 365 

manner in which the areas interacted with one another. In other words, do 366 

voxels that code recent reward probability experience with a small time constant 367 

(high LR) in one brain region (e.g. dACC) interact preferentially with voxels with 368 

high LRs elsewhere? Similarly, are low LR voxels in different brain areas 369 

preferentially interacting with one another? 370 

For every subject, we extracted the mean residual BOLD time course for 371 

all voxels after regressing out all the information contained in our original design 372 

matrix (coding, for example, for the various task events) and additionally all 30 373 

LR regressors indexing the estimated reward probability in the decision phase 374 

and all 30 LR regressors indexing prediction error in the outcome phase. Thus, 375 
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the residual time course no longer contained any LR related information. We 376 

then created a mean residual time course for all voxels originally identified as 377 

being of the same LR within each ROI and correlated these 30 mean residual 378 

time courses with the 30 mean residual time courses of another region. We 379 

found that the more similar the best-fitting LRs, the higher was the correlation of 380 

these voxels’ residual time courses between the dACC and the IPL, as reflected in 381 

higher average correlation values along the diagonal (Fig. 8). For example, voxels 382 

with high LRs in the dACC were more correlated with high-LR voxels compared 383 

to low-LR voxels in the IPL (Fig. 8; bright yellow diagonal line running from top 384 

left to bottom right).  385 

The statistical test for demonstrating the significance of the effect is best 386 

understood with reference to figure 8. It is to examine whether the subjects’ z-387 

transformed correlation coefficients are correlated positively with their 388 

closeness to the diagonal; this was indeed the case (negative Euclidian distance, 389 

one-tailed t-test of z-transformed correlation values t16 = -2.944, p = 0.005); the 390 

correlation between the brain areas' signals became greater the more that the 391 

signals were drawn from voxels with similar LRs. 392 

 393 

 394 
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Fig. 8. LR topography as an organizing principle for interaction between regions. 395 

A) We investigated whether voxels that represent choice values with similar LRs 396 

also show stronger connectivity between regions. B) Correlation plot depicting 397 

the correlation of the residual BOLD time course averaged over all voxels with the 398 

same best-fitting LR within dACC with the residual BOLD time course over all 399 

voxels with the same best-fitting LR within IPL, averaged over all subjects. The 400 

subjects’ z-transformed correlation coefficients were correlated positively with 401 

their closeness to the diagonal. 402 

 403 

In summary, even after removing all linear task-related information 404 

(activity linearly related to task variables and value estimates), voxels with the 405 

same best-fitting LR shared a more similar pattern of activity in dACC and IPL. 406 

Thus, LRs are not just an organizational feature of individual brain regions but 407 

also an organizing principle determining how these regions interact with one 408 

another. This feature of interactions between areas was also apparent in all 409 

combinations of interactions between all the four regions that showed high 410 

evidence for the coding of reward probabilities based on multiple LRs (ACC, IPL, 411 

FPl and rFO; Fig. S6, Table S1).  412 

Ubiquity or Localization of Dynamic Topographic Value Representations 413 

We have presented evidence for topographic organization of value estimates as a 414 

function of different LRs and shown LRs are an organizational principle of 415 

connectivity between regions such as dACC and IPL. We next asked whether such 416 

representations and interaction patterns are ubiquitous in all brain areas 417 

signalling value. We therefore performed the same analyses in another brain 418 

region that has repeatedly been linked to value and decision making, the 419 
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ventromedial prefrontal cortex (vmPFC)9,14,31–37. In most studies, the strongest 420 

value-related activation was found in the anterior part of the vmPFC. We 421 

examined two vmPFC regions: anterior vmPFC and posterior vmPFC 422 

(Supplemental Materials 3). We found some, albeit weak, evidence for LR related 423 

activity in anterior vmPFC (Fig. S1C). Unlike in dACC and IPL, in vmPFC the 424 

amount of BOLD variance explained by SVD-derived singular values reflecting 425 

the LR regressors was not significantly greater than the amount of variance 426 

explained by a model lacking LR information.  In fact, when the same statistical 427 

approaches were used as in our investigation of dACC and IPL we found that 428 

activity in many voxels in vmPFC was better explained by a model lacking the LR 429 

regressors.  Value estimates with different LRs could be fit to voxels in vmPFC 430 

(Fig. S2) but there was no shift in the distribution of LRs depending on the 431 

volatility of the environment (Fig. S3, compare to Fig. 6) and there was no change 432 

in the correlation between the best-fitting LR and its beta-weight as seen in the 433 

dACC (Fig. S3, compare to Fig. 7) in either vmPFC region. Additionally, unlike 434 

dACC, IPL, rFO, and FPl, there was no evidence that voxels in either vmPFC 435 

region preferentially interacted with voxels with similar LRs in other brain 436 

regions (i.e., no diagonal with high correlation values; Supplemental Materials 5; 437 

Fig. S5, Table S1, compare to Fig. 8). In general, the average correlation over all 438 

voxels between two regions was significantly higher for dACC, IPL, rFO, and FPl 439 

than between any of these areas and either vmPFC subdivision (Table S2).  440 

In summary, there is only comparatively weak evidence for the vmPFC 441 

holding value related information that reflects recent experience of reward 442 

probability and the value estimates it held were not as sensitive to 443 

environmental volatility. Thus, the neuroanatomical gradients of probability 444 
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estimates calculated with different LRs in dACC and IPL, their sensitivity to 445 

environmental volatility, and their inter-regional LR-specific connectivity are not 446 

ubiquitous features of all value encoding brain regions. This supports the notion 447 

that the spectrum of value estimates based on multiple LRs that we find in some 448 

brain regions cannot be attributed to noise over subjects, time, or voxels. 449 

 450 

LR-based representation at decision outcome 451 

Finally, while the current investigation is focussed on the decision-making 452 

process, rather than the outcome monitoring phase of the task, we wanted to 453 

know whether we could observe comparable dynamic adaptations to 454 

environmental volatility during the outcome phase. We therefore investigated 455 

whether prediction error coding in ventral striatum (VS) would also reflect 456 

adaptations of which LRs should be expressed as a function of volatility. A model 457 

containing the first three singular values from an SVD over the prediction error 458 

regressors provided a good model of right VS activity during the outcome phase 459 

of the trials (Fig. S6A). However, using a bilateral anatomical mask of the VS 460 

(Automated Anatomical Labeling (AAL) atlas38), the distributions of the LRs 461 

generating the prediction error were stable and did not change between the 462 

stable and volatile sub-sessions (Supplemental Materials 6; Fig. S6B). While 463 

Behrens et al.1 found an overall change in dACC activity during outcome, there 464 

was no evidence in the current study for a prediction error signal in dACC, using 465 

either standard analysis procedure similar to those used before1 nor based on 466 

Bayesian group model comparisons such as those employed here. 467 
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Discussion 468 

A number of cortical regions have been implicated in reward-guided decision 469 

making and it is possible that they operate partly in parallel12,31. For example, 470 

some aspects of decision making behavior are predicted by activity in vmPFC 471 

while others, even in the same task and at the same time, are better predicted by 472 

activity in the intraparietal sulcus31. 473 

DACC may be particularly important when deciding whether to switch 474 

and change between choices and behavioral strategies9,10,12,20–26. A flexible 475 

behavioral repertoire would be promoted by having multiple experience 476 

dependent value estimates, estimated over different time scales: representations 477 

of how well things have been recently and, simultaneously, how well they have 478 

been over the longer term. By contrasting the strength of such representations a 479 

decision-maker would be able to know whether the value of their environment is 480 

stable or improving or whether it is declining and that it might be time to explore 481 

elsewhere24. 482 

In the present study we have found evidence that indeed multiple value 483 

representations, with different time constants, are especially prominent in dACC 484 

and IPL. A diversity of value estimates based on a spectrum of LRs could either 485 

reflect features of the neural representation guiding decision making, or it might 486 

simply be a reflection of natural variability over samples, trials, and voxels. 487 

Several aspects of our findings suggest that they reflect features of neural 488 

activity rather than noise. First, multiple LR-based representations were not 489 

ubiquitous; they were prominent in only a subset of regions implicated in value 490 

representation and decision making (Supplemental Materials 3-5; Figs. S1-S5). 491 
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Second, the multiple LR representations were structured; they were 492 

topographically organized within areas (Fig. 4) and they were an organizing 493 

feature of interaction patterns between areas (Fig. 8). The conclusion that there 494 

are multiple LR-based value estimates is derived from averaging data over trials; 495 

in the future it might be interesting to examine the nature of these 496 

representations on a trial-by-trial basis.  497 

While the parallel information processing entailed by such a 498 

representation might appear an unnecessary waste of computational resources, 499 

it may be advantageous when the volatility of the environment is changing and 500 

other LRs generate better value estimates than the one currently employed to 501 

guide behaviour. Imagine a decision-maker that has estimated that the current 502 

environment is volatile and estimates choice values only on the basis of recent 503 

experience (high LR). If the decision-maker realises that actually the 504 

environment is more stable than suspected, then it needs to retrieve the 505 

outcomes of earlier decisions and reweigh each of them according to the LR that 506 

is now optimal for estimating choice values. Our evidence suggests that the brain 507 

may compute many values estimates in parallel over different time scales and 508 

that such longer term time scale estimates (lower LR estimates) are immediately 509 

available for the decision-maker to switch to on realising the true level of 510 

environmental volatility. Since these value estimates are derived in a Markov 511 

decision process, only the most recent value estimate has to be remembered and 512 

updated so that it is not necessary to remember preceding outcomes.  513 

The co-existence of multiple experience dependent value estimates guiding 514 

decisions is also consistent with the results of single unit recordings made in 515 

macaques3 in a dACC region homologous with the one we investigated here18. 516 
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Neurons that varied in the degree to which their activity reflected just recent 517 

outcomes or also outcomes in the more distant past were also reported in the 518 

intraparietal sulcus and dorsolateral prefrontal cortex3. In the present study we 519 

also found evidence for such response patterns in fMRI activity in an adjacent 520 

part of the parietal cortex (IPL), a very rostral part of prefrontal cortex (FPl), and 521 

in FO. By recording activity in individual neurons it is possible to demonstrate 522 

precisely how different neurons, even closely situated ones, can code both recent 523 

and more distant rewards with different weights. In our study, however, by 524 

manipulating the reward environment that subjects experienced in volatile and 525 

stable sub-sessions, it was possible to show how such experience dependent 526 

reward representations changed with environment and behavior. 527 

The evidence for value learning using multiple LRs in several cortical areas 528 

fits well with the idea that there exists a hierarchy of information accumulation 529 

from short time scales in sensory areas to long time scales in prefrontal, dACC, 530 

and parietal association areas39–43. In reinforcement learning, information 531 

obtained many trials ago in the past can still influence probability estimates 532 

when LRs are low. In our task, with an average trial duration of 20s1, information 533 

from several minutes ago has to be remembered. However, we can also show 534 

that even within a single area, there are gradients of time scale representation 535 

and that these representations are not fixed, but dynamically responding to the 536 

environment.  537 

In situations in which dACC value representations guide behavior there are 538 

often also value-related activations in FPl and IPL10,11,14,44,45. Typically, these 539 

areas differ from others such as vmPFC in that they encode the value of 540 

behavioral change and exploration. In addition, in the present experiment we 541 
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were able to show that there are links between the value representations in 542 

dACC and other brain regions. This suggests that multiple value representations 543 

of recent experience constitute an organizing feature of inter-areal interaction. It 544 

is not just that average activity throughout one region is related to the average 545 

activity of another.  Instead parts of dACC employing the fastest and slowest LRs 546 

are interacting with corresponding subdivisions of FPl, IPL, and rOP. The pattern 547 

of results is suggestive of a distributed representation across multiple brain 548 

regions in which the value of initiating and changing behavior is evaluated over 549 

multiple time scales simultaneously46.  550 

In a longer behavioral testing session (without fMRI acquisition) it was 551 

shown that subjects do adapt their LR in response to changes in the volatility of 552 

the environment1. The change in best-fitting LRs that we observe between the 553 

stable and the volatile sub-session is in accordance with just such a shift in 554 

behavior. The exact mechanism by which the broad spectrum of LR parameters 555 

present in dACC, concerning many possible choice values estimated at different 556 

time scales, is integrated into one eventual decision needs further elucidation.  557 

In conclusion, there are multiple experience dependent value estimates with 558 

coarse but systematic topographies in dACC and three other regions. Interactions 559 

between these regions occur in relation to this pattern of specific time scales. 560 

The distributions of value estimates are dynamically adjusted when there are 561 

changes in the environment’s volatility. Dynamic adjustment based on 562 

environmental statistics might be critical for adjusting behavior to a particular 563 

LR and for selecting a particular choice on a given trial.  564 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 29, 2017. ; https://doi.org/10.1101/195842doi: bioRxiv preprint 

https://doi.org/10.1101/195842


27 
 

Experimental Procedures 565 

The behavioral task and scanning procedures have been described in detail 566 

before1. In the task, subjects were presented with two choice options, a green 567 

and a blue rectangle (Fig. 2A). The potential reward magnitudes were presented 568 

in the centre of each stimulus while the reward probabilities had to be learned 569 

by the subjects. Reward probabilities were changing throughout the experiment. 570 

There was a stable sub-session of 60 trials where one of the stimuli was 571 

rewarded 75% of trials and the other one 25% and a volatile sub-session where 572 

reward probabilities for the stimuli were 80% and 20%, changing every 20 trials. 573 

The order of the sub-sessions was counterbalanced between subjects. Reward 574 

information was coupled between the stimuli, i.e. the feedback that the chosen 575 

stimulus was rewarded also implied that the choice of the other stimulus would 576 

not have led to a reward, and vice versa. If the chosen stimulus was rewarded, the 577 

presented reward magnitude was added to the subjects accumulating points and 578 

a red bar at the bottom of the screen increased in proportion to the points 579 

acquired. When the red bar reached a vertical silver bar, subjects received £10, if 580 

it reached a golden bar, they receive £20 at the end of the experiment. Subjects 581 

were presented with the two options for 4-8 s (jittered). When a question-mark 582 

appeared, they could signal their choice with a button press. As soon as the 583 

button press was registered, subjects had to wait for 4-8 s (jittered) until the 584 

rewarded stimulus was presented in the middle. After a jittered inter-trial-585 

interval of 3-7 s, the next trial began. EPI images were acquired at 3 mm3 voxel 586 

resolution with a repetition time (TR) of 3.0 s and an echo time (TE) of 30 ms, a 587 

flip angle of 87°. The slice angle was set to 15° and a local z-shim was applied 588 
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around the orbitofrontal cortex in order to reduce signal drop-out1. Since the 589 

response was self-timed, the experiment’s duration was variable. On average, 590 

830 volumes (41.5 min) were acquired. A T1 structural image was acquired with 591 

an MPRAGE sequence with 1mm3 voxel resolution, a TE of 4.53 ms, an inversion 592 

time(TI) of 900 ms and a TR of 2.2 s1.  593 

We used FMRIB’s Software Library (FSL)47 for image pre-processing 594 

and the first level data analysis (see Supplemental Materials 1). Subsequent 595 

analysis steps relating to the LR regressors were performed with MATLAB 596 

(R2015a 8.5.0.197613).  597 

The preprocessing was performed on the functional images of the entire 598 

session (for the initial analysis), and of the stable and the volatile sub-sessions 599 

(for subsequent analyses). In order to analyse the sub-sessions, we split the time 600 

series of BOLD data into those portions that were collected when the reward 601 

environment was in a stable or volatile sub-session. The data assigned to the first 602 

sub-session encompassed all MRI volumes collected up to and including the 603 

onset of the last outcome of that sub-session of the experiment plus two 604 

additional volumes to account for the delay of the hemodynamic response 605 

function.  606 

The data were pre-whitened before analysis to account for temporal 607 

autocorrelation48. For the subsequent mapping of LRs, we ran three GLM’s for 608 

the whole session, and separately for the stable and the volatile sub-sessions, at 609 

the first level for each participant with the following regressors: 610 

1) Decision phase main effect (duration: stimuli onset until response) 611 

2) Predict phase main effect (duration: response until outcome) 612 

3) Outcome monitor phase main effect (duration: 3s) 613 
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4) Parametric modulation of decision phase with reward magnitude of 614 

chosen stimulus 615 

5) Parametric modulation of decision phase with log of reaction time 616 

6) Parametric modulation of decision phase with stay (0) or switch (1) 617 

decision 618 

7) Parametric modulation of outcome monitor phase with the reward 619 

magnitude of the chosen stimulus 620 

We also added the temporal derivative of each regressor to the design matrix in 621 

order to explain variance related to possible differences in the timing between 622 

the assumed and the actual hemodynamic response function (HRF).  623 

Since reward magnitudes are changing unpredictably, participants 624 

estimate reward probabilities and not action values. Thus, for each subject, we 625 

then calculated the probability estimates for each stimulus from a simple 626 

reinforcement learning model49, based on all 99 LRs (α) between 0.01 and 0.99. 627 

The model estimates the probability of one of the stimuli leading to a reward by 628 

updating the stimulus-reward probability p(a) with LR α, where R = 1 when the 629 

stimulus was rewarded and R = 0 if not: 630 

 631 

𝑝(𝑎𝑖) = 𝑝(𝑎𝑖−1) + 𝛼[𝑅 − 𝑝(𝑎𝑖−1)] 632 

 633 

The probability estimate of the other stimulus 𝑝(𝐵) is 1 − 𝑝(𝐴). From these 634 

values, we also calculated the prediction error (PE) corresponding to the 635 

outcome of that trial by subtracting the probability estimate of the chosen 636 

stimulus from the outcome (1 for rewarded trials, 0 for non-rewarded trials). 637 

Thus, the PE is a “probability PE” that is not weighted with the magnitude of the 638 
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(foregone) reward. After normalising the probability estimates for all LRs for 639 

both stimuli, we derived the probability estimate of the chosen stimulus 640 

p(chosen). These p(chosen)-regressors (hereafter “LR regressors”) and the PE 641 

regressors were convolved with the HRF, normalised and high-pass filtered in 642 

the same way (in the same manner as in FSL). We calculated a correlation matrix 643 

for the 99 resulting LR regressors for every subject and for the whole session as 644 

well as the two sub-sessions. Since the correlation between regressors is not the 645 

same for all levels of LR, we chose 30 regressors that were equally spaced in 646 

terms of their correlation to the neighbouring regressors. We did so by averaging 647 

the 30 LR regressors with equal correlation for every subject in all three sessions 648 

and subsequently rounding them to two decimals. This procedure resulted in 30 649 

LR regressors corresponding to the following LRs (see also Fig. 2): 650 

[0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.11 0.12 0.14 0.15 0.17 0.20 0.22 651 

0.25 0.28 0.32 0.36 0.40 0.46 0.51 0.57 0.64 0.71 0.78 0.85 0.93 0.99]. 652 

We used the BET procedure50 on the high-pass filtered and motion corrected 653 

functional MRI data to separate brain matter from non-brain matter. For each of 654 

the (sub-)sessions in every subject, we explained activity in the filtered fMRI 655 

data with 30 separate GLM's, each with the design matrix described above 656 

together with one of the 30 LR regressors (onset during the decision phase) and 657 

the corresponding PE regressor (onset during outcome monitoring phase).  658 

In each GLM, we retrieved the parameter estimate for the LR regressor and 659 

we mapped the following three measures to every voxel in the brain: 660 

1) best-fitting LR: the regressor with the highest beta-value (regression 661 

weights indicative of the relationship between the regressor and the 662 

BOLD signal) in the GLM. For example, if regressor 20 had the highest 663 
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beta-values amongst the 30 LR regressors, that voxel would be assigned a 664 

LR of 20. 665 

2) the change in the best-fitting LR between the stable and the volatile sub-666 

sessions (measured as best-fitting LR in the stable sub-session minus the 667 

best-fitting LR in the volatile sub-session). 668 

3) the beta-weight of the best-fitting LR regressor in the entire session and 669 

in the stable and the volatile sub-sessions  670 

The resulting images were registered to MNI-space using the non-linear 671 

warping field using nearest-neighbour interpolation. Subsequently, the single-672 

subject images were averaged across all subjects to create group-average 673 

images. 674 

We also used a standard FSL analysis with a GLM similar to the one above but 675 

with two additional regressors corresponding to the probability of the chosen 676 

stimulus during the decision phase and during the outcome monitoring phase as 677 

derived from a Bayesian learner model1 as well as a regressor coding the 678 

outcome of the trial (won or lost). This analysis was used for retrieving the beta-679 

weight of the magnitude of the chosen option’s potential reward of each voxel for 680 

the correlation analysis with the best-fitting LR regressor’s beta-weight.  681 

The magnitude regressor was also used for generating regions of interest 682 

(ROIs; Fig. 3). We defined our ROIs by the overlap of the contrast over this 683 

regressor (cluster-corrected results with the standard threshold of z=2.3, 684 

corrected significance level p=0.05) and anatomical masks derived from the 685 

connectivity-based parcellation atlases17,18 686 

(http://www.rbmars.dds.nl/CBPatlases.htm) (Fig. 3). For dACC, this included 687 

bilateral areas 24a/b, d32 as well as the bilateral anterior rostral zones of the 688 
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cingulate motor areas. For posterior vmPFC, this included bilateral area 14m and 689 

for anterior vmPFC it included 11m18. For IPL, this included inferior parietal 690 

lobule areas c and d as defined by Mars and colleagues17. The atlas only contains 691 

IPL regions for the right hemisphere, we therefore mirrored the regions along 692 

the midline to create masks for the left hemisphere. Since the anatomical masks 693 

are defined by white matter connectivity, they do not cover the entire cortical 694 

area. Therefore, the dACC and vmPFC masks were extended with 2 voxels 695 

medially, while the IPL masks were extended laterally and caudally to enssure 696 

that all grey matter voxels were covered by the masks.  697 

Evidence for variability in voxels’ activity related to reinforcement learning 698 

In order to confirm that the voxels in our ROIs actually reflected activity that was 699 

related to probability estimates, we ran a singular value decomposition (SVD) 700 

over the 99 LR regressors (before HRF-convolution, normalisation and high-pass 701 

filtering) to derive singular values capturing most of the variance associated with 702 

the variability in the 99 LR regressors. For every voxel we then derived the 703 

Akaike Information Criterion (AIC) scores from our main GLM (not containing 704 

any LR regressors) as well as from a GLM that contained the first three singular 705 

values from the SVD (HRF-convolved, demeaned and high-pass filtered). We then 706 

used random-effects Bayesian model comparison for group studies19 by passing 707 

each subject’s AIC scores for the two models to the spm_bms matlab function 708 

from SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). This 709 

procedure returned protected exceedance probabilities for every voxel, showing 710 

the probability that the model containing the singular values was a more likely 711 

model of the data than the model without those components. 712 
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