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Abstract 

Background 
The processing of 3’ untranslated regions (3’ UTRs) of messenger RNAs is coordinated in              

relation to the cellular state. Systematic changes in 3’ UTR length through corresponding             

changes in the use of alternative polyadenylation (poly(A)) sites have been reported in             

various systems, including  human  cancers, yet the  key regulators remain  largely unknown. 

Results 
To uncover sequence elements that drive the use of poly(A) sites in specific conditions, we               

have developed PAQR, a method for quantifying poly(A) site use from RNA sequencing             

(RNA-seq) data and KAPAC, an approach that infers activities of oligomeric sequence motifs             

on poly(A) site choice. We demonstrate that these tools enable the discovery of sequence              

specificity and the binding site position-dependent activity of RNA-binding proteins (RBPs)           

on pre-mRNA cleavage and polyadenylation (CPA), from RNA-seq data obtained upon           

perturbing RBP expression. Furthermore, application of PAQR and KAPAC to RNA           

sequencing data from normal and tumor tissue samples uncovered sequence motifs that can             

explain changes in CPA within specific cancer types. In particular, our analysis points to the               

polypyrimidine  tract binding  protein  1  as key regulator of poly(A) site  choice  in  glioblastoma. 

Conclusions 
The PAQR and KAPAC methods that we introduced here enable the identification of             

regulatory factors that shape 3’ UTR processing and the characterization of their binding             
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position-dependent activity in physiological and pathological cell states, including human          

malignancies. 
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Background 

The 3’ ends of most eukaryotic mRNAs are generated through endonucleolytic cleavage and             

polyadenylation (CPA) [1–3]. These steps are carried out in mammalian cells by a 3’ end               

processing complex composed of the cleavage and polyadenylation specificity factor (which           

includes the proteins CPSF1 (also known as CPSF160), CPSF2 (CPSF100), CPSF3           

(CPSF73), CPSF4 (CPSF30), FIP1L1 and WDR33), the mammalian cleavage factor I           

(CFIm, a tetramer of two small, NUDT21 (CFIm 25) subunits, and two large subunits, of               

CPSF7 (CFIm 59) and/or CPSF6 (CFIm 68)), the cleavage factor II (composed of CLP1 and               

PCF11), the cleavage stimulation factor (CstF, a trimer of CSTF1 (CstF50), CSTF2 (Cstf64)             

and CSTF3 (CstF77)), symplekin (SYMPK), the poly(A) polymerase (PAPOLA, PAPOLB,          

PAPOLG) and the nuclear poly(A) binding protein (PABPN1) [3, 4]. Crosslinking and            

immunoprecipitation (CLIP) revealed the distribution of core 3’ end processing factor binding            

sites in pre-mRNAs [5] and the minimal polyadenylation specificity factor that recognizes the             

polyadenylation signal, consisting of the CPSF1, CPSF4, FIP1L1, and WDR33 proteins, has            

been  identified  [6, 7].  

 

Most genes have multiple poly(A) sites (PAS), which are differentially processed across cell             

types [8], likely due to cell type-specific interactions with RBPs. The length of 3’ UTRs is                

most strongly dependent on the mammalian cleavage factor I (CFIm), which promotes the             

use of distal poly(A) sites [5, 9–12]. Reduced expression of CFIm 25 has been linked to 3’                 

UTR shortening, cell proliferation and oncogene expression in glioblastoma cell lines [11],            

while increased levels of CFIm 25 due to gene duplication has been linked to intellectual               

disability [13]. The CSTF2 component of the CstF subcomplex also contributes to the             

selection of poly(A) sites [5, 14], but in contrast to CFIm, depletion of CSTF2 leads to                

increased use of distal poly(A) sites, especially when the paralogous CSTF2T is also             

depleted [14]. PCF11 and FIP1L1 proteins similarly promote the use of proximal poly(A)             

sites [12]. 

 

Many splicing factors modulate 3’ end processing. Most strikingly, the U1 small nuclear             

ribonucleoprotein (snRNP) promotes transcription, masking poly(A) sites whose processing         

would lead to premature CPA, through a ‘telescripting’ mechanism [15, 16]. The U2AF65             

spliceosomal protein interacts with CFIm [17] and competes directly with the heterogeneous            

nucleoprotein C (HNRNPC) for binding to uridine(U)-rich elements, regulating the splicing           

and thereby exonization of Alu elements [18]. HNRNPC represses CPA at poly(A) sites             
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where U-rich sequence motifs occur [19]. Other splicing factors that have been linked to              

poly(A) site selection are the neuron-specific NOVA1 protein [20], the nuclear and            

cytoplasmic poly(A) binding proteins [12, 21], the heterogeneous ribonucleoprotein K          

(HNRNPK) [22], and the poly(C) binding protein (PCBP1) [23]. However, the mechanisms            

remain poorly understood. An emerging paradigm is that position-dependent interactions of           

pre-mRNAs with RBPs influence poly(A) site selection, as well as splicing [24]. ‘Impact             

maps’ are used to visualize the relationship between the location of RBP binding sites and               

the response of exons to perturbations in RBP expression processing of exons. However,             

whether ‘impact maps’ can be inferred directly from genome-wide RNA sequencing data            

obtained  upon  perturbing  RBP expression  is not known.  

 

To address this problem, we have developed KAPAC (for k -mer a ctivity on polya denylation             

site c hoice), a method that infers position-dependent activities of sequence motifs on 3’ end              

processing from changes in poly(A) site usage between conditions. As 3’ end sequencing             

remains relatively uncommon, we have also developed PAQR, a method for polya denylation            

site usage quantification from RNA sequencing data, that allows us to evaluate 3’ end              

processing in data sets such as those from The Cancer Genome Atlas (TCGA) Research              

Network [25]. We demonstrate that KAPAC identifies binding motifs and position-dependent           

activities of regulators of CPA from RNA-seq data obtained upon the knock-down of these              

RBPs, and in particular, that CFIm promotes CPA at poly(A) sites located ~50 to 100               

nucleotides (nt) downstream of the CFIm binding motifs. KAPAC analysis of TCGA data             

reveals pyrimidine-rich elements associated with the use of poly(A) sites in cancer and             

implicates the polypyrimidine tract-binding protein 1 (PTBP1) in the regulation of 3’ end             

processing  in  glioblastoma.  

Results 

Inferring sequence motifs active on  PAS  selection  with KAPAC  

As binding specificities of RBPs have only recently been started to be determined in vivo in                

high-throughput [26], we developed an unbiased approach, evaluating the activity of all            

possible sequences of length k (k-mers, with k in the range of RBP-binding site length, 3-6                

nucleotides [27]) on PAS usage. Briefly, we first compute the relative use of each PAS p                

among the P poly(A) sites (P > 1) in a given terminal exon across all samples s, as                  

, where is the number of reads observed for poly(A) site p in sample sU p,s = Rp,s

Σ RP
p =1′ p ,s′

  Rp,s               

(Figure 1A). KAPAC aims to explain the observed changes in relative poly(A) site usage              
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in terms of the number of counts of a k-mer k located at a specific distance relative U p,s         N p,k            

to the poly(A) site p (Figure 1B-C). Running KAPAC for various relative distances (Figure              

1D) allows the identification of the most significantly active k-mers as well as the distance               

from the  PAS where  individual  k-mers have  the  highest activity. 

 

 
Figure 1: Schematic outline of the KAPAC approach. - (A) Tabulation of the relative              

usage of poly(A) sites in different experimental conditions (here: control, treatment). (B)            

Tabulation of k-mer counts for windows located at defined distances relative to poly(A) sites.              

(C) Based on the observed changes in poly(A) site usage across conditions and the counts               

of k-mers in windows located at specific distances from the poly(A) sites, KAPAC infers              

k-mer activities in each condition and ranks k-mers based on the absolute z-score of the               

mean activity difference in the two conditions. (D) Fitting the KAPAC model for windows              
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located at specific distances relative to poly(A) sites, position-dependent activities of           

sequence  motifs on  poly(A) site  use  are  inferred.  

 

KAPAC uncovers expected position-specific activities of RBPs on               

pre-mRNA  3’  end processing 

To evaluate KAPAC we analyzed RNA 3’ end sequencing data that were obtained after              

perturbation of known RBP regulators of cleavage and polyadenylation. Consistent with the            

initial study of poly(C) binding protein 1 (PCBP1) role in cleavage and polyadenylation [23],              

as well as with the density of its CCC - (C)3 - binding element around PAS that do and PAS                    

that do not respond to PCBP1 knock-down (Figure 2A), KAPAC revealed that (C)3 motifs              

strongly activate the processing of poly(A) sites located 25-100 nucleotides downstream           

(Figures 2B-C).  

 

As in a previous study we found that the multi-functional heterogeneous ribonucleoprotein C             

(HNRNPC) modulates 3’ end processing (see also Figure 2D), we also applied KAPAC to 3’               

end sequencing data obtained upon the knock-down of this protein. Indeed, we found that              

(U)n sequences ( nucleotides) have a strongly repressive activity on poly(A) site   n = 3 − 5           

choice, which, reminiscent of HNRNPC’s effect on exon inclusion [18], extends to a broad              

window, from approximately -200 nucleotides upstream to about 50 nucleotides downstream           

of poly(A) sites (Figure 2E-F). In contrast to the density of (U)5 motifs, which peaks               

immediately downstream of poly(A) sites, KAPAC inferred an equally high repressive activity            

of (U)5 motifs located  upstream of the  poly(A) site.  

 

These results demonstrate that being provided only with estimates of poly(A) site expression             

in different conditions, KAPAC uncovers both the sequence specificity of the RBP whose             

expression was perturbed in the experiment, and the position-dependent, activating or           

repressing  activity of the  RBP on  poly(A) site  choice.  
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Figure 2: KAPAC accurately uncovers the activity of known regulators of poly(A) site             
choice. (A) Smoothened (+/-5nt) density of non-overlapping (C)3 motifs in the vicinity of             

poly(A) sites that are consistently processed (increased, decreased or unchanged use) in            

two PCBP1 knock-down experiments. (B) Difference of (C)3 motif activity inferred by KAPAC             

in the two replicates of control (Ctrl) versus PCBP1 knock-down (KD) experiments. The             

positive differences indicate that (C)3 motifs are associated with increased PAS use in control              

samples. The table shows the three most significant motifs, with the z-score and position of               

the window from which they were inferred. (C) Model of the KAPAC-inferred impact of              
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PCBP1 on cleavage and polyadenylation. (D) Smoothened (+/-5nt) density of          

non-overlapping (U)5 tracts in the vicinity of sites that are consistently processed (increased,             

decreased or unchanged use) in two HNRNPC knock-down experiments. (E) Difference of            

(U)5 motif activity inferred by KAPAC in the two replicates of control (Ctrl) versus HNRNPC               

knock-down (KD) experiments. The negative differences indicate that (U)5 motifs are           

associated with decreased PAS use in the control samples. The table with the three most               

significant motifs is also shown, as in panel (B). (F) Model of the KAPAC-inferred impact of                

HNRNPC on  cleavage  and  polyadenylation. 

The PAQR method to estimate relative PAS  use from  RNA-seq data 

As 3’ end sequencing data remain relatively uncommon, we sought to quantify poly(A) site              

use from RNA sequencing data. The drop in coverage downstream of proximal PAS has              

been interpreted as evidence of PAS processing, generalized by the DaPars method to             

identify changes in 3’ end processing genome-wide [11]. However, DaPars (with default            

settings) reported only 5 targets from the RNA-seq data obtained upon the knockdown of              

HNRNPC [28], and they did not include the previously validated HNRNPC target CD47 [19],              

whose distal PAS is preferentially used upon HNRNPC knockdown (Figure 3A).           

Furthermore, as DaPars quantifications of relative PAS use in replicate samples had limited             

reproducibility (Supplementary Figure 1), so did the motif activities inferred by KAPAC based             

on these estimates (Figure 3B). These results prompted us to develop PAQR, a method to               

quantify PAS use from RNA-seq data (Figure 3C). PAQR uses read coverage profiles to              

progressively segment 3’ UTRs at annotated poly(A) sites. At each step, it infers the              

breakpoint that maximizes the ratio of the squared deviation from the mean coverage of a 3’                

UTR segment when dividing the segment in two regions with distinct mean coverage (Figure              

3C and Methods) as opposed to considering as a single segment with one mean coverage.               

A key aspect of PAQR is that it only attempts to segment the 3’ UTRs at experimentally                 

identified poly(A) sites, from an extensive catalog that was recently constructed [19]. Using             

the HNRNPC knock-down data set that was obtained independently [28] for benchmarking,            

we found that the PAQR-based quantification of PAS use led to much more reproducible              

HNRNPC binding motif activity and more significant difference of mean z-scores between            

conditions (-22.92 with PAQR-based quantification vs. -10.19 with DaPars quantification,          

Figure 3B,D). These results indicate that PAQR more accurately and reproducibly quantifies            

poly(A) site  use  from RNA-seq  data.  
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Figure 3: Overview on PAQR. (A) Read coverage profile of the CD47 terminal exon, whose               

processing is affected by the knock-down of HNRNPC [19]. (B) KAPAC-inferred           

position-dependent activities of the (U)5 motif from DaPars-based estimates of relative PAS            

use in RNA-seq data from control and HNRNPC knock-down samples [28]. (C) Sketch of              

PAQR: (1.) Samples with highly biased coverage along transcripts, presumably affected by            

RNA degradation, are identified and excluded from the analysis, (2.) processed PAS are             

detected based on the characteristic coverage profile of the terminal exon and (3.) relative              

PAS use is calculated from the average read coverage of individual 3’ UTR segments, each               

corresponding to the terminal region of an isoform that ends at a used poly(A) site. (D)                

Similar HNRNPC activity on PAS use is inferred by KAPAC from both PAS use estimates               

generated by PAQR from RNA sequencing data, and from PAS use measured directly by 3’               

end  sequencing  (Figure  2E).  
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KAPAC reveals a position-dependent activity of CFIm binding on cleavage                   

and polyadenylation 

As KAPAC allows us to infer position-dependent effects of RBP binding on 3’ end              

processing, we next sought to unravel the mechanism of CFIm, the 3’ end processing factor               

with a relatively large impact on 3’ UTR length [5, 9, 10, 12]. We thus depleted either the                  

CFIm 25 or the CFIm 68 component of the CFIm complex by siRNA-mediated knock-down              

in HeLa cells, and carried out RNA 3’ end sequencing. As expected, CFIm depletion led to                

marked and reproducible 3’ UTR shortening (Figure 4A, see Methods for details). We found              

that the UGUA CFIm binding motif occurred with high frequency upstream of the distal              

poly(A) sites whose usage decreased upon CFIm knock-down, whereas it was rare in the              

vicinity of all other types of PAS (Figure 4B). These results indicate that CFIm promotes the                

processing of poly(A) sites that are located distally in 3’ UTRs and are strongly enriched in                

CFIm binding motifs in a broad region upstream of the poly(A) signal. KAPAC analysis              

supported this conclusion, further uncovering UGUA as the second most predictive motif for             

the changes in poly(A) site use in these experiments, after the canonical poly(A) signal              

AAUAAA (Figure 4C), which is also enriched at distal PAS [5]. Interestingly, the activity              

profile further suggests that UGUA motifs located downstream of PAS may repress            

processing of these sites, leading to an apparent decreased motif activity when CFIm             

expression  is high. 

 

We repeated these analyses on RNA-seq data obtained independently from HeLa cells            

depleted of CFIm 25 [11], obtaining similar activity profile (Figure 4D), including the apparent              

negative activity of sites that are located downstream on PAS processing. These results             

demonstrate that CFIm binds upstream of distal PAS to promote their usage, whereas             

binding  of CFIm downstream of PAS may, in  fact, inhibit processing  of poly(A) sites.  
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Figure 4: Position-dependent activation of pre-mRNA processing by CFIm. (A) The           

distributions of average terminal exon lengths (see Methods) computed from 5’123           

multi-PAS terminal exons quantified in CFIm 25, CFIm 68 knock-down and control samples             

demonstrate significant shortening of 3’ UTRs upon CFIm depletion. (B) Smoothened           

(+/-5nt) UGUA motif density around PAS of terminal exons with exactly two quantified             

poly(A) sites, grouped according to the log fold change of the proximal-distal ratio (p/d ratio)               

upon CFIm knock-down. The left panel shows the UGUA motif frequency around the             

proximal and distal PAS of the 750 exons with the largest change in p/d ratio, while the right                  

panel shows similar profiles for the 750 exons with the smallest change in p/d ratio. (C)                

KAPAC analysis of CFIm knock-down and control samples uncovers the poly(A) signal and             

UGUA motif as most significantly associated with changes in PAS usage. (D) UGUA motif              

activity is similar when the PAS quantification is done by PAQR from RNA sequencing data               

of CFIm 25  knock-down  and  control  cells [11].  
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KAPAC implicates the pyrimidine tract binding proteins in 3’ end                   

processing in  glioblastoma 

We then asked whether KAPAC can uncover a role of CFIm 25 in 3’ UTR shortening in                 

glioblastoma (GBM), as has been previously suggested [11]. 3’ UTRs are indeed markedly             

shortened in these tumors (Figure 5A) and the activity profile of the UGUA motif (Figure 5B)                

was similar to that inferred from the CFIm 25/68 knock-down data (Figure 4D). However,              

UGUA was not among the 20 motifs that most significantly explained the change in PAS               

usage in these samples. Rather, KAPAC revealed that variants of the CU dinucleotide             

repeat, located from ~ 25 nt upstream to ~ 75 nt downstream of PAS, are most significantly                 

associated with the change in PAS usage in tumors compared to normal samples (Figure              

5B, C). Among the many proteins that can bind polypyrimidine motifs, the mRNA level of the                

pyrimidine tract binding protein 1 (PTBP1) was strongly anti-correlated with the median            

average length of terminal exons in this set of samples (Figure 5D). This suggested that               

PTBP1 masks the distally-located, CU repeat-containing PAS, which are processed only           

when PTBP1 expression is low, as it is in normal cells. Indeed, 180 of the 202 sites where                  

the CU repeat motif was predicted to be active, were located most distally in the               

corresponding terminal exons. As with HNRNPC, a seemingly parallel repressive activity of            

PTBP1 on exon inclusion was reported before [29]. The PTBP1 crosslinking and            

immunoprecipitation data recently generated by the ENCODE consortium [30] confirmed the           

enriched binding of the protein downstream of the PAS of CU-containing, KAPAC-predicted            

targets (Figure 5E). Furthermore, the enrichment of PTBP1-eCLIP reads is highest for the             

highest scoring PTBP1 targets (Figure 5F), a result which is not explained by the expression               

level of these categories of genes. These results indicate that PTBP1 is a more likely               

regulator of PAS use  in  glioblastoma  than  CFIm 25. 

12 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 29, 2017. ; https://doi.org/10.1101/195958doi: bioRxiv preprint 

https://doi.org/10.1101/195958


 

Figure 5: Regulation of PAS choice in glioblastoma samples from TCGA. (A)            

Cumulative distributions of weighted average length for 1’172 terminal exons after applying            

PAQR to five normal and five tumor samples show that terminal exons are significantly              

shortened in tumors, as observed upon depletion of CFIm 25 or CFIm 68 in cell lines. (B)                 

Although the UGUA motif has the expected KAPAC-inferred activity profile in this data set,              

the changes in PAS use are best explained by CU dinucleotide-containing repeats (inset).             

(C) Activity profile of the most significant, UCUCUC motif, in glioblastoma samples. The             

presence of the motif in a window from -25 to +75 relative to the PAS is associated with                  

increased processing of the site in normal tissue samples. (D) The expression of PTBP1 in               

the 10 samples from (A) is strongly anti-correlated (dark colored points, Pearson’s r (rP) =               

-0.97, p-value < 0.0001) with the median average length of terminal exons in these samples.               

In contrast, the expression of PTBP2 changes little in tumors compared to normal tissue              

samples, and has a positive correlation with terminal exon length (light colored points, rP =               
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0.85, p-value = 0.002). (E) Position-dependent PTBP1 binding inferred from two eCLIP            

studies (in HepG2 (thick red line) and K562 (thick blue line) cell lines) by the ENCODE                

consortium is significantly enriched downstream of the 202 PAS predicted to be regulated by              

the CU-repeat motifs. 1000 similar-sized sets of poly(A) sites with the same positional             

preference (distally-located) as the targets of the CU motif were selected and the density of               

PTBP1 eCLIP reads was computed as described in the Methods section. The mean and              

standard deviation of position-dependent read density ratios from these randomized data           

sets are also shown. (F) The median ratio of PTBP1-IP to background eCLIP reads over               

nucleotides 0 to 100 nt downstream of the PAS (position-wise ratios computed as in (E)), for                

the top 101 (“top”) and bottom 101 (“low”) predicted PTBP1 targets as well as for the                

background  set (“bg”) of distal  PAS. 

A novel U-rich motif is associated with 3’ end processing in prostate                       

cancer 

Cancer cells, particularly from squamous cell and adenocarcinoma of the lung, express            

transcripts with shortened 3’ UTRs (Figure 6A, Supplementary Table 1). The negative            

correlation between the mRNA level expression of CSTF2 and the 3’ UTR length (Figure 6B)               

led to the suggestion that overexpression of this 3’ end processing factor plays a role in lung                 

cancer [31]. Applying KAPAC to 56 matching normal - tumor paired, lung adenocarcinoma             

samples, we did not find any motifs strongly associated with PAS use changes in this               

cancer. In particular, we did not recover G/U-rich motifs, as would be expected if CSTF2               

were responsible for these changes [31]. This was not due to functional compensation by the               

paralogous CSTF2T, as the expression of CSTF2T was uncorrelated with the 3’ UTR length              

(Figure 6C). Rather, the CSTF2-specific GU repeat motif had variable activity between            

patients, and did not exhibit a peak immediately downstream of the PAS (Figure 6D), where               

CSTF2 is known to bind [5]. Thus, as in glioblastoma, PAS selection in lung adenocarcinoma               

likely involves factors other than  core  3’  end  processing  components.  

 

Exploration of other cancer types for which many paired tumor - normal tissue samples were               

available revealed that U-rich motifs are more generally significantly associated with           

changes in PAS use in these conditions (Supplementary Table 2). Most striking was the              

association of the presence of poly(U) and AUU motifs with an increased PAS use in colon                

and prostate cancer, respectively (Figure 6E and F). These results indicate that KAPAC can              

help identify regulators of 3’ end processing in complex tissues environments such as             

tumors. 
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Figure 6: Analysis of TCGA data sets. (A) For TCGA data sets with at least 5 matching                 

normal - tumor pairs with high RNA integrity (mTIN > 70), the distributions of patient-wise               

medians of tumor - normal tissue differences in average terminal exon lengths are shown.              

Except the adenocarcinoma of the stomach (STAD), the median is negative for all cancers,              

indicating global shortening of 3’ UTRs in tumors. (B) Among 56 matching lung             

adenocarcinoma (LUAD)-normal tissue pairs (from 51 patients) where global shortening of           

terminal exons was observed, the CSTF2 expression (in fragments per kilobase per million,             

FPKM) was negatively correlated (rP = -0.72, p-value = 2.5e-18) with the median of average               

exon length. (C) For the same samples as in (B), no significant correlation (rP = -0.01,                

p-value = 0.89) between the expression of CSTF2T and the median of average exon length               

was observed. (D) Activity profile of the UGUG CSTF2-binding motif inferred from matched             

LUAD tumor - normal tissue sample pairs. For visibility, 10 randomly selected sample pairs              

are shown instead of all 56. (E, F) Activity profiles of UUUUU and AUU, the motifs most                 
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significantly associated by KAPAC with changes in PAS use in colon adenocarcinoma            

(COAD) (E) and prostate adenocarcinoma (PRAD) (F), respectively (11 tumor - normal            

tissue  sample  pairs in  both  studies). 

Discussion 

Sequencing of RNA 3’ ends has uncovered a complex pattern of PAS and 3’ UTR usage                

across cell types and conditions, and particularly that the length of 3’ UTRs increases upon               

cell differentiation and decreases upon proliferation [32, 33]. However, the responsible           

regulators remain  to  be  identified.  

 

The knock-down of most 3’ end processing factors leads to short 3’ UTRs [12].              

Paradoxically, similar 3’ UTR shortening is also observed in cancers, in spite of a positive               

correlation between expression of 3’ end processing factors and the proliferative index of             

cells [3]. This may suggest that 3’ end processing factors are not responsible for 3’ UTR                

processing in cancers, and that other regulators remain to be discovered. However, the             

possibility remains that 3’ end processing factors, although highly expressed, do not match             

the increased demand for processing in proliferating cells. Although reduced levels of CFIm             

25 have been linked to 3’ UTR shortening and increased tumorigenicity of glioblastoma cells              

[11], here we did not find consistently lower expression of CFIm 25 in tumors compared to                

normal samples, but rather that samples with low apparent CFIm 25 expression also had              

stronger 3’ end bias in read coverage, indicative of RNA degradation (Supplementary Figure             

2). Consistently, our KAPAC analysis of samples where RNA degradation was limited did not              

uncover the CFIm 25-specific UGUA as significantly explaining the PAS usage changes in             

glioblastoma samples. Of note, in the study of [11] only 60 genes had significantly shortened               

3’ UTRs in glioblastoma relative to normal brain, and only 24 of these underwent significant               

3’ UTR shortening upon CFIm 25 knock-down in HeLa cells, in spite of 1’453 genes being                

affected by the CFIm 25 knock-down. However, applying KAPAC to 5 normal and 5              

glioblastoma tumor samples which showed most separable distributions of terminal exon           

lengths, we uncovered a pyrimidine motif, likely bound by the PTBP1, as most significantly              

associated with changes in PAS use in these tumors. Our findings are supported by previous               

observations that PTBP1 acts antagonistically to CSTF2, repressing PAS usage [34], and            

that increased PTBP1 expression, as we observed in glioblastoma tumors, promotes           

proliferation and migration in glioblastoma cell lines [35]. Our analysis demonstrates that de             

novo, unbiased, motif analysis of tumor data sets can reveal specific regulators of PAS              

usage. At the same time, it underscores the importance of assessing the RNA integrity of the                
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analyzed samples, as variations in the degree of RNA degradation between samples can             

lead  to  inaccurate  estimates of gene  expression  levels. 

 

In spite of mounting evidence for the role of CFIm in the regulation of polyadenylation at                

alternative PAS in terminal exons, its mechanism has remained somewhat unclear.           

‘Canonical’ PAS, containing consensus signals for many of the 3’ end processing factors             

including CFIm, tend to be located distally in 3’ UTRs [5]. If core 3’ end processing factors                 

bind to specific PAS and select them for processing, reducing the concentration of 3’ end               

processing factors should increase the stringency of PAS selection. Yet the siRNA-mediated            

knockdown of CFIm leads to increased processing at proximal sites, and not to preferential              

processing of the ‘high-affinity’, distal PAS. Here we have found that CFIm indeed promotes              

the usage of distal PAS to which it binds, while CFIm binding motifs are depleted at both the                  

proximal and the distal PAS of terminal exons whose processing is insensitive to CFIm level.               

Therefore, the decreased processing of distal PAS upon CFIm knock-down is not explained             

by a decreased ‘affinity’ of these sites. A model that remains compatible with the observed               

pattern of 3’ end processing is the so-called ‘kinetic’ model, whereby reducing the rate of               

processing at a distal, canonical site when the regulator is limiting, leaves sufficient time for               

the processing of a suboptimal proximal site. Kinetic aspects of pre-mRNA processing have             

started to be investigated in cell lines that express slow and fast-transcribing RNA             

polymerase II (RNAPII) [36]. Analyzing RNA-seq data from these cells, we found that             

terminal exons that respond to CFIm knock-down in our data, underwent more pronounced             

shortening in cells expressing the slow polymerase (Supplementary Figure 3), in agreement            

with the kinetic model. Nevertheless, this effect was also apparent for exons in which              

proximal and distal poly(A) sites were located far apart, it was not limited to CFIm targets.                

Furthermore, the changes in 3’ UTR length in a sample from the fast RNAPII-expressing cell               

line were surprisingly similar to the changes we observed for the slow polymerase. Thus,              

current data do not provide unequivocal support to the kinetic model underlying the relative              

increase  in  processing  of proximal  PAS upon  CFIm knock-down.  

 

Generalized linear models have been widely used to uncover transcriptional regulators that            

implement gene expression programs in specific cell types [37, 38]. Similar approaches have             

not been applied to 3’ end processing, possibly because the genome-wide mapping of 3’ end               

processing sites has been lagging behind the mapping of transcription start sites. Here we              

demonstrate that the modeling of PAS usage in terms of motifs in the vicinity of PAS can                 

reveal global regulators, while the reconstructed position-dependent activity of their          
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corresponding motifs provides insights into their mechanisms. Interestingly, some of the           

proteins that we touched upon in our study are splicing factors. This underscores a general               

coupling between splicing and polyadenylation that has been long surmised (e.g. [17]), and             

for which evidence has started to emerge [39]. Interestingly, the activities of splicing factors              

on poly(A) site choice paralleled the activities of these factors on splice site selection.              

Specifically, we found that both HNRNPC, which functions as an ‘RNA nucleosome’ in             

packing RNA and masking decoy splice sites [24], and PTBP1 repress the processing of the               

PAS to which they bind. This unexpected concordance in activities suggests that other             

splicing factors simultaneously modulating 3’ end processing are to be uncovered. Splicing is             

strongly perturbed in cancers [40], and the role of splicing factors in the extensive change of                

the  polyadenylation  landscape  remains to  be  defined. 

 

Sequencing of RNA 3’ ends has greatly facilitated the study of 3’ end processing dynamics.               

However, such data remain relatively uncommon, and many large-scale projects have           

already generated a wealth of RNA sequencing data that could, in principle, be mined to               

uncover regulators of cleavage and polyadenylation. We found a previously proposed           

method for inferring the relative use of alternative PAS from RNA-seq data, DaPars [11], to               

have limited reproducibility, possibly because biases in read coverage along RNAs are            

difficult to model. To overcome these limitations, we developed PAQR, which makes use of              

a large catalog of PAS to segment the 3’ UTRs and infer the relative use of PAS from                  

RNA-seq data. We show that PAQR enables a more reproducible as well as accurate              

inference of motif activities in PAS choice compared to DaPars. PAQR strongly broadens the              

domain of applicability of KAPAC to include RNA sequencing data sets that have been              

obtained in a wide range of systems, as we have illustrated in our study of TCGA data. As                  

single-cell transcriptome analyses currently employ protocols designed to capture RNA 3’           

ends, it will  be  especially interesting  to  apply our methods to  single-cell  sequencing  data. 

Conclusions 

In this study, we developed PAQR, a robust computational method for inferring relative             

poly(A) site use in terminal exons from RNA sequencing data and KAPAC, an approach to               

infer sequence motifs that are associated with the processing of poly(A) sites in specific              

samples. We demonstrate that these methods help uncover regulators of polyadenylation in            

cancers and also shed light on their mechanism of action. Our study further underscores the               

importance of assessing the quality of samples used for high-throughput analyses, as this             

can  have  substantial  impact on  the  estimates of gene  expression.  
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Methods 

Datasets 

A-seq2 samples 

3’ end sequencing data from HeLa cells that were treated with either a control siRNA or                

siRNAs targeting the CFIm 25 and the CFIm 68 transcripts were generated as follows. HeLa               

cells were cultured in DMEM (# D5671, Sigma Aldrich) supplemented with L Glutamine             

(#25030081, ThermoFisher Scientific) and 10% fetal bovine serum (#7524, Sigma-Aldrich).          

For siRNA treatment, cells were seeded in 6 well polystyrene-coated microplates and            

cultured to reach a confluence of ~50%. Subsequently, the cells were separately transfected             

with 150 picomoles of siRNA, either control (sense strand sequence - 5’ AGG UAG UGU               

AAU CGC CUU GTT 3’), or directed against CFIm 25 (sense strand sequence - 5’ GGU                

CAU UGA CGA UUG CAU UTT 3’) or against CFIm 68 (sense strand sequence - 5’ GAC                 

CGA GAU UAC AUG GAU ATT 3’), with Lipofectamine RNAiMAX reagent (# 13778030 ,            

ThermoFisher Scientific). All siRNAs were obtained from Microsynth AG and had dTdT            

overhangs. The cells were incubated with the siRNA Lipofectamine RNAiMax mix for at least              

48 hours before cells were lysed. Cell lysis and polyadenylated RNA selection was             

performed according to the manufacturer's protocol (Dynabeads™ mRNA DIRECT™         

Purification Kit, #61011, Thermo Scientific). Polyadenylated RNA was subsequently         

processed and libraries were prepared for sequencing on the Illumina HiSeq 2500 platform             

as described earlier [19]. Sequencing files were processed according to Martin et al. [41] but               

without using the random 4-mer at the start of the sequence to remove duplicates. A-seq2 3’                

end processing data from control and si-HNRNPC-treated cells was obtained from a prior             

study [19]. 

3’  end sequencing data pertaining to PCBP1 

3’ end sequencing data from control and si-PCPB1-treated cells were downloaded from SRA             

(accession: SRP022151) and converted to fastq format. Reverse complemented and          

duplicate-collapsed reads were then mapped to the human genome with segemehl version            

0.1.7 [42]. We did not use STAR for these data set because these libraries, generated by                

DRS (direct RNA sequencing) had a high fraction of short reads that STAR did not map.                

From uniquely mapped reads for which at least the last 4 nucleotides at the 3’ end perfectly                 

matched to the reference, the first position downstream of the 3’ end of the alignment was                

considered  as cleavage  site  and  used  for quantification  of PAS use. 
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RNA-seq data from  The Cancer  Genome Atlas 

BAM files for matching normal and tumor RNA-seq samples listed in Supplementary Table 3              

were obtained from the Genomic Data Commons (GDC) Data Portal [43] along with gene              

expression values normalized with HTSeq and reported in fragments per kilobase per million             

(FPKM). 

Other  RNA-seq data sets 

Publicly available raw sequencing data was obtained from NCBI Gene Expression Omnibus            

(GEO) [44] for the studies of CFIm 25 knock-down in HeLa cells [11] (accession number               

GSE42420), of HNRNPC knock-down in HEK293 cells [28] (GSE56010) and for HEK293            

cells expressing mutated versions of POLR2A that have overall different rates of RNAPII             

transcription  elongation  [36] (GSE63375).  

PTBP1 CLIP data 

PTBP1-eCLIP data generated by the ENCODE consortium [30] was obtained from the            

ENCODE Data Coordination Center [45] (accession numbers for the IP and control samples             

from K562 cells ENCSR981WKN and ENCSR445FZX, and from HepG2 cells          

ENCSR384KAN and  ENCSR438NCK).  

Processing of the sequencing data  

Raw reads obtained from RNA-seq experiments were mapped according to the RNA-seq            

pipeline for long RNAs provided by the ENCODE Data Coordinating Center           

(https://github.com/ENCODE-DCC/long-rna-seq-pipeline/blob/master/dnanexus/align-star-pe

/resources/usr/bin/lrna_align_star_pe.sh) using the GENCODE version 24 human gene        

annotation. Raw reads from eCLIP experiments carried out by the ENCODE consortium for             

the PTBP1 were first trimmed with cutadapt version 1.9.1 [46], both at the 5’ and at the 3’                  

ends to remove adapters. A second round of trimming guaranteed that no double ligation              

events were further processed. The reads were then mapped to the genome with STAR,              

version 2.5.2a [47]. Detection and collapsing of PCR duplicates was done with a custom              

python script similar to that described by van Nostrand et al. [26]. BAM files corresponding to                

biological  replicates were  then  merged. 
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PAQR 

Inputs 

PAQR requires an alignment file in BAM-format and a file with all poly(A) sites mapped on                

the genome, in BED-format. The assessment of RNA integrity (see below) also requires the              

transcript annotation  of the  genome, in  BED12-format.  

Poly(A)  sites 

PAQR quantifies the relative use of poly(A) sites in individual terminal exons. We started              

from the entire set of poly(A) sites in the PolyAsite resource [19], but this set can be                 

exchanged or updated, and should be provided as a BED-file to the tool. We converted the                

coordinates of the poly(A) sites to the latest human genome assembly version, GRCh38,             

with liftOver [48]. Terminal exons with more than one poly(A) site (terminal exons with              

tandem poly(A) sites, TETPS) and not overlapping with other annotated transcripts on the             

same strand were identified based on version 24 of the GENCODE [49] annotation of the               

genome. When analyzing RNA-seq data that was generated with an unstranded protocol,            

PAQR does not quantify poly(A) site usage in terminal exons that overlap with annotated              

transcripts on  the  opposite  strand.  

Quantification  of PAS  usage 

The main steps of the PAQR analysis are as follows: first, the quality of the input RNA                 

sequencing data is assessed, to exclude samples with evidence of excessive RNA            

degradation. Samples that satisfy a minimum quality threshold are then processed to            

quantify the read coverage per base across all TETPS and poly(A) sites with sufficient              

evidence of being processed are identified. These are called ‘used’ poly(A) sites (or uPAS).              

Finally, the  relative  use  of the  uPAS is calculated. 

Assessment  of sample integrity 

The integrity of RNA samples is usually assessed based on a fragment analyzer profile [50].               

Alternatively, a post hoc method, applicable to all RNA sequencing data sets, quantifies the              

uniformity of read coverage along transcript bodies in terms of a ‘transcript integrity number’              

(TIN) [51]. We implemented this approach in PAQR, calculating TIN values for all transcripts              

containing TETPS. For the analysis of TCGA samples and of RNA-seq samples from cells              

with different RNAPII transcription speeds, we only processed samples with a median TIN             

value  of at least 70, as recommended  in  the  initial  publication  [51]. 
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RNA-seq read coverage profiles  

For each sample, nucleotide-wise read coverage profiles along all TETPS were calculated            

based on read-to-genome alignments (obtained as described above). In processing          

paired-end sequencing data, PAQR ensured unique counting of reads where the two mates             

overlap. When the data was generated with an unstranded protocol, all reads that mapped to               

the locus of a specific TETPS were assumed to originate from that exon. The locus of each                 

TETPS was extended by 200 nt at the 3’ end, to ensure inclusion of the most distal poly(A)                  

sites (see below). To accurately quantify the usage of the most proximal PAS, when poly(A)               

sites were located within 250 nt from the start of the terminal exon, the coverage profile was                 

first extended upstream of the PAS based on the reads that mapped to the upstream               

exon(s). Specifically, from the spliced reads, PAQR identified the upstream exon with most             

spliced reads into the TETPS and computed its coverage. When the spliced reads that              

covered the 5’ end of the TETPS provided evidence for multiple splice events, the most               

supported exons located even further upstream were also included (Supplementary Figure           

4).  

Identification  of the most  distal poly(A)  sites 

From the read coverage profiles, PAQR attempted to identify the poly(A) sites that show              

evidence of processing in individual samples as follows. First, to circumvent the issue of              

incomplete or incorrect annotations of PAS in transcript databases, PAQR identified the            

most distal PAS in each terminal exon that had evidence of being used in the samples of                 

interest. Thus, alignment files were concatenated to compute a joint read coverage profile             

from all samples of the study. Then, the distal PAS was identified as the 3’-most PAS in the                  

TETPS for which: 1. The mean coverage in the 200 nt region downstream of the PAS was                 

lower than the mean coverage in a region twice the read length (to improve the estimation of                 

coverage, as it tends to decrease towards the poly(A) site) upstream of the poly(A) site, and                

2. The mean coverage in the 200 nt region downstream of the PAS was at most 10 % of the                    

mean coverage from the region at the exon start (the region within one read length from the                 

exon start) (Supplementary Figure 5). For samples from TCGA, where read length varied,             

we have used the maximum read length in the data for each cancer type. After the distal                 

PAS was identified, PAQR considered for the relative quantification of PAS usage only those              

TETPS with at least one additional PAS internal to the TETPS and with a mean raw read                 

coverage  computed  over the  region  between  the  exon  start and  distal  PAS of more  than  five.  
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Identification  of used poly(A)  sites 

PAQR infers the uPAS recursively, at each step identifying the PAS that allows the best               

segmentation of a particular genomic region into upstream and downstream regions of            

distinct coverage across all replicates of a given condition (Supplementary Figure 6). Initially,             

the genomic region is the entire TETPS, and at subsequent steps genomic regions are              

defined by previous segmentation steps. Given a genomic region and annotated PAS within             

it, every PAS is evaluated as follows. The mean squared error (MSE) in read coverage               

relative to the mean is calculated separately for the segments upstream (MSEu) and the              

downstream (MSEd) of each PAS. A minimum length of 100 nt is required for each segment,                

otherwise the candidate PAS is not considered further. The sum of MSE in the upstream and                

downstream segments is compared with the MSE computed for the entire region (MSEt). If              

(MSEu+MSEd)/MSEt ≤ 0.5 (see also below), the PAS is considered ‘candidate used’ in the              

corresponding sample. When the data set contains at least 2 replicates for a given condition,               

PAQR further enforces the consistency of uPAS selection in replicate samples by requiring             

that the PAS is considered used in at least 2 of the replicates and furthermore, for all PAS                  

with evidence of being used in a current genomic region, the one with the smallest median                

MSE ratio computed over samples that support the usage of the site is chosen in a given                 

step of the segmentation. The segmentation continues until no more PAS has sufficient             

evidence of being used. If the data consists of a single sample, the segmentation is done                

based  on  the  smallest MSE at each  step. 

To further minimize incorrect segmentations due to PAS that are used in the samples of               

interest but not part of the input set, an additional check is carried out for each TETPS in                  

each sample, to ensure that applying the segmentation procedure considering all positions in             

the TETPS rather than the annotated PAS recovers positions that fall within at most 200 nt                

upstream of the uPAS identified in previous steps for each individual sample. If this is not the                 

case, the data for the TETPS from the corresponding sample is excluded from further              

analysis.  

Treatment  of closely spaced  poly(A)  sites 

Occasionally, distinct PAS occur very close to each other. While 3’ end sequencing may              

allow their independent quantification, the RNA-seq data does not have the resolution to             

distinguish between closely spaced PAS. Therefore, in the steps described above, closely            

spaced (within 200 nt of each other) PAS are handled first, to identify one site of the cluster                  

that provides the best segmentation point. Only this site is then compared with the more               

distantly spaced  PAS.  
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Relative usage and  library size normalized expression  calculation 

Library size-normalized expression levels and relative usage within individual terminal exons           

are calculated for each inferred poly(A) site in the appropriate samples. Concretely, taking a              

single exon in a single sample, the following steps are performed: the mean coverage of the                

longest 3’ UTR is inferred from the region starting at the most distal poly(A) site and                

extending upstream up to the next poly(A) site or to the exon start. Mean coverage values                

are similarly calculated in regions between consecutive poly(A) sites and then the coverage             

of individual 3’ UTR is determined by subtracting from the mean coverage in the terminal               

region of that 3’ UTR the mean coverage in the immediately downstream region. The              

resulting values are taken as raw estimates of usage of individual poly(A) sites and usage               

relative  to  the  total  from poly(A) sites in  a  given  terminal  exon  are  obtained.  

To obtain library size normalized expression counts, raw expressions from all quantified sites             

of a given sample are summed up. Each raw count is divided by the summed counts (i.e. the                  

library size) and multiplied by 10 6, resulting in expression estimates as reads per million              

(RPM).  

PAQR modules 

PAQR is composed of 3 modules: (1) A script to infer transcript integrity values based on the                 

method described in a previous study [51]. The script builds on the published software which               

is distributed as part of the Python RSeQC package version 2.6.4 [52]. (2) A script to create                 

the coverage profiles for all considered terminal exons. This script relies on the HTSeq              

package version 0.6.1 [53] and (3) a script to obtain the relative usage together with the                

estimated  expression  of poly(A) sites with  sufficient evidence  of usage. 

All scripts, intermediate steps, and analysis of the TCGA data sets were executed as              

workflows created  with  snakemake  version  3.13.0  [54].  

KAPAC 

KAPAC, standing for K-mer Activity on Polyadenylation Site Choice, aims to identify k-mers             

that can explain the change in poly(A) site (PAS)-usage observed across samples. For this,              

we model the relative change in PAS-usage within terminal exons (with respect to the mean               

across samples) as a linear function of the occurrence of a specific k-mer and the unknown                

"activity" of this k-mers. Note that by modeling the relative usage of PAS within individual               

terminal exons we will capture only the changes that are due to alternative polyadenylation              

and not those that are due to overall changes in transcription rate or to alternative splicing.                

We are considering k-mers of a length from 3 to 6 nucleotides in order to match the                 

expected  length  of RBP binding  sites [27]. 
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KAPAC attempts to explain the change in the relative use of a given PAS in terms of the                  

motifs (k-mers) that occur in its vicinity, each occurrence of a k-mer contributing a              

multiplicative constant to the site use. Thus, we write the number of reads observed from               

PAS i in sample s as , where is the count of k-mer k around      xp  Ri,s = α * e N( i,k * Ak,s)   N i,k        

PAS i, is the activity of the k-mer in sample s, which determines how much the k-mer  Ak,s                

contributes to the PAS use, and is the overall level of transcription at the corresponding      α           

locus. Then, for poly(A) sites in the same terminal exon we can write their log relative use                 

as function of the number of k-mer counts found in a defined window at a specific log2 U( i,s)                 

distance from the site i and the activity of these k-mers:           

(see Supplementary methods for aog  log2 U( i,s) = N i,k * Ak,s − l xp(∑
P

p=1
e N( i,k * Ak,s))       

detailed derivation). By fitting the relative use of poly(A) sites to the observed number of               

motifs around them, we can obtain the activities for each k-mer k in each sample s and        Ak,s          

calculate mean activity difference z-scores across treatment versus control pairs of samples            

(see  Figure  1  and  Supplementary methods). 

Parameters used  for  KAPAC analysis of 3’  end sequencing data 

We considered terminal exons with multiple poly(A) sites within protein coding transcripts            

(hg38, GENCODE version 24) whose expression, inferred as previously described [19], was            

at least 1 RPM in at least one of the investigated samples. To ensure that the                

position-dependent motif activities could be correctly assigned, exons containing expressed          

PAS that were closer than 400 nt from other PAS were excluded from the analysis, as we                 

applied KAPAC to regions +/-200 nt around poly(A) sites. We randomized the associations             

of changes in poly(A) site use with k-mer counts 100 times in order to calculate p-values for                 

mean  activity difference  z-scores (see  Supplementary methods). 

Parameters used  for  KAPAC analysis of RNA-seq data 

All KAPAC analyses for RNA-seq data sets considered terminal exons with at least 2 PAS of                

any transcripts from the GENCODE version 24 annotation of the human genome. Filtering of              

the closely-spaced PAS, activity inference and randomization tests were done similar to the             

processing of 3’ end sequencing libraries. No TPM cutoff was applied as the used PAS are                

already determined  by PAQR. 

Average terminal exon  length 

An average terminal exon length can be calculated over all transcripts expressing a variant              

of that terminal exon as where is the relative frequency of use of PAS p in the     f l ,l = ΣPp=1 p p   f p            
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terminal exon and is the length of the terminal exon when PAS p is used for cleavage and   lp                

polyadenylation. To compare terminal exons with different maximum lengths, we further           

normalize the average exon length to the maximum and express this normalized value             

percentually. Thus, when the most distal site is exclusively used the average terminal exon              

length is 100, while when a very proximal site is used exclusively, the average terminal exon                

length  will  be  close  to  0  (Supplementary Figure  7).  

Average length difference 

The difference in average length of a terminal exon between two samples is obtained by               

subtracting the average length inferred from one sample from the average length inferred             

from the second sample. 3’ UTR shortening is reflected in negative average length             

differences, while  3’  UTR lengthening  will  lead  to  positive  differences.  

Definition  of the best  MSE ratio threshold 

Two studies of HNRNPC yielded 3’ end sequencing [19] and RNA sequencing [28] data of               

control and si-HNRNPC-treated cells. We used these data to define a PAQR parameter (the              

threshold MSE ratio) such as to maximize the reproducibility of the results from the two               

studies. MSE ratio values ranging from 0.2 to 1.0 were tested, Supplementary Figure 8.              

Relative use of PAS we calculated based on the A-seq2 data sets as described before [19].                

The RNA-seq data was processed to infer PAS use with different MSE cutoffs, and the               

calculate average terminal exon lengths for individual exons in individual samples and also             

differences in average exon lengths between samples. For the comparison of the RNA-seq             

based PAS quantifications with those from A-seq2, we considered both the overall number             

of terminal exons quantified in replicate data sets as well as the correlation of average length                

differences. As shown in Supplementary Figure 8 stringent (low) cutoff in MSE leads to few               

exons being quantified with high reproducibility, but the number of quantified exons has a              

peak relative to the MSE. At a threshold of 0.5 on MSE we are able to quantify the largest                   

number of exons with relatively good reproducibility, and we therefore applied this value for              

all  our subsequent applications of PAQR.  

Selection  of normal -  tumor  sample pairs for  analysis of 3’  UTR shortening 

For the analysis of motifs associated with 3’ UTR length changes in cancers, we computed               

the distribution of differences in 3’ UTR length between matched tumor-normal samples. We             

clustered the vectors of 3’ UTR length changes for each cancer type separately. We then               

identified subclusters in which all the sample pairs showed a negative median change in 3’               

UTR length. These  samples were  further analyzed  with  KAPAC. 
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Selection  of normal -  tumor  pairs from  GBM  data 

From the six processed normal samples five with similar average exon length distributions             

were selected (all of the being among the samples with the highest median average length)               

and compared to the five primary tumor samples with the lowest median average exon              

length. 

eCLIP data analysis 

We predicted targets of the CU-repeat motif as described in the Supplementary methods             

and obtained a total of 204 targets. We either used the entire set or divided the set into the                   

top half and bottom half of targets. For each poly(A) site from a given set, the read coverage                  

profiles of the 400 nt region centered on the poly(A) site were constructed from both the                

protein-specific immunoprecipitation (IP) experiment and the related size-matched control. At          

every position, we computed the ratio of the library size normalized read coverage (RPM) in               

the IP and in the background sample (using a pseudo-count of 0.1 RPM) and then average                

these ratios position-wise across all poly(A) sites from a given set, considering any poly(A)              

site with at least a single read support in either of both experiments. For comparison, we                

carried out the same analysis for 1’000 random sets of poly(A) sites with the same size as                 

the real set, and then inferred the mean and standard deviation of the mean read ratios at                 

each  position. 

Motif profiles 

Motif profiles were generated by extracting the genomic sequences (from the GRCh38            

version of the human genome assembly) around poly(A) sites from a given set, scanning              

these sequences and tabulating the start positions where the motif occurred. The range of              

motif occurrence variation at a given position was calculated as the standard deviation of the               

mean, assuming a binomial distribution with the probability of success given by the empirical              

frequency (smoothened over 7 nucleotides centered on the position of interest) and the             

number of trials given  by the  number of poly(A) sites in  the  set. 

Selection  of CFIm-sensitive and insensitive terminal exons 

For terminal exons with exactly two quantified poly(A) sites that were expressed with at least               

3 RPM in all samples (1’776 terminal exons) we calculated the proximal distal ratio was               

calculated. Then, for each knock-down versus control comparison the log10 fold change            

(knock-down divided by control) was obtained and averaged between replicates. The 750            

terminal exons with the biggest mean log fold change for CFIm 25 and CFIm 68 studies                
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were selected as CFIm sensitive while the 750 with a log fold change closest to zero were                 

considered  non-responsive. 

List  of abbreviations 

TGCA cancer cohort abbreviations used in the manuscript correspond to the following full             

names:  

BCLA - Bladder Urothelial  Carcinoma 

BRCA - Breast Invasive  Carcinoma 

COAD - Colon  Adenocarcinoma 

ESCA - Esophageal  Carcinoma 

GBM - Glioblastoma  Multiforme 

HNSC - Head  and  Neck Squamous Cell  Carcinoma 

KICH - Kidney Chromophobe 

KIRC - Kidney Renal  Clear Cell  Carcinoma 

KIRP - Kidney Renal  Papillary Cell  Carcinoma 

LIHC - Liver Hepatocellular Carcinoma 

LUAD - Lung  Adenocarcinoma 

LUSC - Lung  Squamous Cell  Carcinoma 

PRAD - Prostate  Adenocarcinoma 

READ - Rectum Adenocarcinoma 

STAD - Stomach  Adenocarcinoma 

THCA - Thyroid  Carcinoma 

UCEC - Uterine  Corpus Endometrial  Carcinoma 
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