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Abstract 
 
	
Bipolar disorder (BD) is a mental disorder characterized by alternating periods of 
depression and mania. Individuals with BD have higher levels of early mortality than the 
general population, and a substantial proportion of this may be due to increased risk for 
co-morbid diseases. Recent evidence suggests that genetic pleiotropy, either in the form 
of a single risk-allele or the combination of multiple loci genome-wide, may underlie 
medical co-morbidity between traits and diseases. In order to identify the molecular 
events that underlie BD and related medical co-morbidities, we generated imputed whole 
genome sequence (WGS) data, using a population specific reference panel, for an 
extended multigenerational Old Order Amish pedigree (400 family members) segregating 
BD and related disorders. We identified all disease-causing variants at known Mendelian 
loci present in this pedigree. In parallel, we performed genomic profiling using polygenic 
risk scores to establish each family members risk for several complex diseases. To 
explore the contribution of disease genes to BD we performed gene-based and variant-
based association tests for BD, and found that Mendelian disease genes are enriched in 
the top results from both tests (OR=20.3, p<0.001; OR=2.2, p<0.01). We next identified a 
set of Mendelian diseases and variants that co-occur in individuals with BD more 
frequently than their unaffected family members, including the R3527Q mutation in 
APOB associated with hypercholesterolemia. Using polygenic risk scores, we 
demonstrated that BD in this pedigree is driven by the same common risk-alleles as in the 
general population (β=0.416, p<0.0006). Furthermore, in the extended Amish family we 
find evidence for a common genetic etiology between BD and clinical autoimmune 
thyroid disease (p<0.001), diabetes (p<0.0004) and lipid traits (p<0.0003). We identify 
local risk regions for these traits that drive the differences between BD individuals and 
unaffected family members. Our findings provide evidence for the extensive genetic 
pleiotropy that can drive epidemiological findings of co-morbidities between diseases and 
traits. We propose that identifying such patterns of phenotypic and genetically-defined 
pleiotropy may enable subtyping of complex diseases and facilitate their genetic 
dissection.  
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Introduction 
 
Psychiatric disorders frequently co-occur with other medical illnesses, markedly reducing 
patients’ quality of life. Individuals with mood disorders have higher levels of early 
mortality than the general population, in part due to co-morbid medical disease (Parks et 
al., 2006).  In addition, individuals with a higher burden of medical illness also display an 
increased severity of psychiatric symptoms (Beyer et al., 2005). Bipolar disorder (BD) is 
a highly heritable mood disorder characterized by recurrent periods of depression and 
mania.  Individuals with BD have increased rates of asthma, diabetes, hyperlipidemia, 
epilepsy and thyroid disease, among other diseases (Forty et al., 2014). 
 
Historically, increased rates of medical illness in patients with psychiatric disorders had 
been attributed to the side effects of antipsychotic medication or to a reduced ability to 
maintain a healthy lifestyle. However, recent evidence suggests that shared genetic risk 
loci or common biological pathways may underlie the pervasive pleiotropy between 
psychiatric and non-psychiatric disorders (Bulik-Sullivan et al., 2015; Pickrell et al., 
2016; Prieto et al., 2016; Sivakumaran et al., 2011). Genetic pleiotropy can be identified 
at the level of individual alleles, or genetic correlations between disorders can be 
calculated genome-wide to quantify the proportion of shared associated loci between 
traits (Bulik-Sullivan et al., 2015). 
 
Co-morbidity arising from pleiotropic loci has been noted in Mendelian disorders, with a 
significant number of Mendelian disease-causing variants leading to complex phenotypes 
(Zhu et al., 2014). In individual-level data gathered from medical records of over 110 
million patients, Mendelian variants were found to contribute non-additively to risk for a 
subset of complex diseases (Blair et al., 2013). Furthermore, common variants associated 
with complex disease are enriched in Mendelian disease genes (Blair et al., 2013). Shared 
genetic influences between common complex traits have also been identified. Using data 
from genome-wide association studies (GWAS), several groups have identified loci 
underlying multiple traits (Pickrell et al., 2016; Sivakumaran et al., 2011). Such cross-
phenotype associations (Solovieff et al., 2013) have been found even between distinct 
traits; for example, a nonsynonymous variant in SLC39A8 is associated with both 
schizophrenia and height, among others (Pickrell et al., 2016).  
 
Genetic correlations have demonstrated the shared genetic influences between multiple 
clusters of diseases, including significant correlations between psychiatric disorders (Gale 
et al., 2016; Hammerschlag et al., 2017; Lee et al., 2013; Lo et al., 2017). Shared genetic 
etiology has been identified between BD and both schizophrenia and major depressive 
disorder (Lee et al., 2013), suggesting extensive biological pleiotropy between these 
psychiatric conditions (O'Donovan and Owen, 2016). Given the polygenic nature of these 
disorders (Wray et al., 2014), this result is unsurprising, as polygenicity is consistent with 
comorbidity and pleiotropy (Gratten et al., 2014). Gratten et al. (2014) also notes that 
genetic correlations between BD data sets are more variable, possibly suggesting greater 
genetic heterogeneity within BD compared to other psychiatric phenotypes. 
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Population isolates are frequently utilized in genetic studies of disease in order to reduce 
the genetic and phenotypic heterogeneity found in outbred populations. Disease-gene 
identification in population isolates usually attempts to identify both common and low-
frequency variants, observed within and across families.  Moreover, founder effects can 
lead to an increase in allele frequencies for many deleterious alleles and clusters of 
deleterious variants on shared haplotypes. Genetic studies of the Old Order Amish led to 
the identification of over 200 Mendelian disease loci (Puffenberger et al., 2012; Strauss 
and Puffenberger, 2009; Strauss et al., 2012), and the same population has been 
extensively utilized in studies of complex metabolic and psychiatric diseases (Georgi et 
al., 2014; Kember et al., 2015; Rampersaud et al., 2007; Steinle et al., 2005; Strauss et al., 
2014; Xu et al., 2017).  
 
The Amish Study of Major Affective Disorder (ASMAD) is a large extended pedigree 
collected over 30 years ago with an initial focus on bipolar disorder.  In addition to a 
significant enrichment of mood disorders in this family (~150 family members, 
corresponding to one third of the pedigree), the pedigree includes individuals with 
autoimmune thyroid disorder (Jaume et al., 1999) and Ellis-van Creveld Syndrome, an 
autosomal recessively inherited chondrodysplastic dwarfism (Ginns et al., 2015; 
McKusick et al., 1964). Our previous work on this pedigree revealed a complex and 
polygenic inheritance of bipolar disorder with multiple linkage regions and clusters of 
BD risk-alleles on different haplotypes, supporting a high degree of locus and allelic 
heterogeneity (Georgi et al., 2014; Kember et al., 2015). Further dissection of the genetic 
architecture of mental illness in this pedigree has been greatly enhanced by the recently 
established whole-genome sequence-based imputation reference panel for the Anabaptist 
population (Amish and Mennonite; Anabaptist Genome Reference Panel, AGRP; (Hou et 
al., 2017)).  
 
In this study, we used the AGRP in combination with genotypes for the ASMAD 
pedigree to permit the identification of all known disease-causing and loss-of-function 
(LoF) variants at known Mendelian loci in subjects with mood disorders. In parallel, we 
performed genomic profiling using polygenic risk scores to establish individuals’ risk for 
several complex traits and diseases. Long-range phased haplotypes estimated using the 
extended pedigree permitted the exploration of co-segregation between bipolar risk 
factors and medical disease loci. We find that a set of Mendelian diseases co-occur in BD 
individuals more frequently than in their unaffected family-members, and that risk scores 
for metabolic traits are higher in BD individuals, indicating a common genetic etiology 
for these traits in the extended Amish family. 
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Results 
 
Identifying the spectrum of mutations in disease genes 
 
By combining SNP genotype data from 394 ASMAD family members with the 
Anabaptist Genome Reference Panel (Hou et al., 2017) we established high quality 
phased whole genome sequence for the entire ASMAD extended family. Although 
available phenotype records for this collection are limited to information about bipolar 
and related neuropsychiatric disorders (Supplemental table 1), the availability of imputed 
genotypes allows a “sequence-first” approach to identify ASMAD family members who 
are carriers of known Mendelian disease variants; and to ascertain the individual-level 
burden of common and rare variants in genes associated with a wide range of medical 
conditions.  
 
Disease genes were identified using the Human Genome Mutation Database (HGMD, 
(Stenson et al., 2014)) by selecting genes with known disease causing mutations 
(HGMD-DM). Out of 3,456 HGMD-DM genes, 239 contain either known disease 
causing variants or LoF variants in the ASMAD imputed whole genome sequence. The 
set of HGMD-DM genes were enriched among all genes with predicted damaging 
variants that are rare in 1000 Genomes and ExAC (<2%) and common in ASMAD (>5%) 
(57 HGMD-DM out of 239 genes, OR=1.58, p-val=0.003747, two-sided	Fisher’s	exact	
test,	Supplemental Table 2). Also, HGMD-DM genes are enriched among both sets of 
genes (Gene-based test for BD association – MONSTER) and sets of variants (variant-
based test for association – EMMAX) that are nominally associated with BD in this 
pedigree. Out of the top 6 genes that have p-values<0.001, 5 of these are known disease 
genes (OR=20.3, p-value=0.001, two-sided	Fisher’s	exact	test, Supplemental Table 3). 
Out of the top 44 exonic variants that have p-values <0.001, 17 of these are in known 
disease genes (OR=2.2, p-value=0.01, two-sided	 Fisher’s	 exact	 test, Supplemental 
Table 4).  
 
In light of these initial results, and the previously noted trend towards a higher burden of 
CNVs in HGMD-DM genes in subjects with bipolar disorder (Kember et al., 2015), we 
closely examined variants in disease genes to screen for the presence of Mendelian 
diseases in this pedigree, and to query their contribution to the clinical heterogeneity of 
BD.  Following extensive curation of variants (see Methods), 62 variants were identified 
as high confidence disease-causing, of which 17 are known to be more common in the 
Amish (>5% difference) (Supplemental Figure 1, Supplemental Table 5). Based on the 
allelic state of these variants in individuals, we predict that 22 of these are likely to cause 
disease due to being present in a homozygous (for recessive diseases) or heterozygous 
(for dominant diseases) state (Supplemental Table 6). Burden of genomically-predicted 
medical conditions varies between nuclear families, with some families (and individuals 
within these families) carrying variants for up to 5 Mendelian diseases (Supplemental 
Figures 2-19). Furthermore, each individual has on average 31 LoF variants in disease 
genes with 5 disease genes predicted to be completely inactivated.  
 
BD individuals show co-morbidity with a specific set of Mendelian diseases  
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Overall burden of disease causing variants and LoF variants in disease genes is not 
associated with BD status in the pedigree. However, the percentage of individuals 
carrying specific Mendelian disease-causing variants differs between BD individuals and 
unaffected individuals (Figure 1). To identify if a specific set of Mendelian diseases show 
co-morbidity with BD, we applied association rule discovery to determine diseases that 
co-occur more frequently than expected with affected or unaffected status of mood 
disorders (Figure 1, A and B; rule confidence: 0.015-0.123, rule lift: 1.012-1.694). In the 
ASMAD pedigree, BD individuals are more likely to carry variants causing familial 
hypercholesterolemia, small fiber neuropathy, and Xerocytosis hereditary (Figure 1, C). 
Variants causing Adrenocortical hyperplasia and Apolipoprotein C-III deficiency are 
found more frequently in unaffected individuals.  
 
Half of the Mendelian diseases (6 out of 12) that were identified by association rule 
discovery as either enriched or depleted in BD individuals are associated with 
cardiovascular disease or endocrine traits. We therefore explored additional damaging 
variants associated with lipid phenotypes (Table 1), and found that they are present at a 
higher frequency in individuals with BD compared to unaffected individuals, including 
the G574R mutation in ABCG8 associated with hyperabsorption and sisterolemia, and the 
R3527Q mutation in APOB. In addition to the heterozygotes detected, three homozygotes 
for the R3527Q mutation were found within the same nuclear family. Strikingly, 
protective lipid variants are found at a lower frequency in BD individuals compared to 
unaffected individuals, including a variant in LPA, associated with a reduction in 
thermogenic lipoprotein. Variants associated with heart rhythm (in KCNH2, SCN5A and 
SNTA1) show no allele frequency difference between affected and unaffected individuals. 
We also found that a higher percentage of BD individuals than expected have multiple 
lipid variants, whereas a lower percentage of unaffected individuals carry multiple lipid 
variants (Supplemental figure 20). Overall, over one third (34.0%) of affected individuals 
(broad extended phenotype) carry at least one variant associated with damaging lipid or 
iron overload effects, compared to just under one quarter of unaffected individuals 
(24.7%).  
 
Common polygenic risk for bipolar disorder 
 
To compare the genetic architecture of BD in the Amish with a non-founder population, 
and to further explore the enrichment of variants associated with lipid traits in BD 
subjects, we sought to measure the aggregate effect of common variants underlying both 
psychiatric and endocrine/metabolic traits in family members with and without mood 
disorders. To achieve this, we evaluated different phenotypic models from the most 
defined (BPI individuals only) to the most general (all individuals with any psychiatric 
phenotype, including minor psychiatric symptoms). Heritability estimates generated for 
this pedigree previously have shown significant heritability for mood disorder phenotypes 
(Georgi et al., 2014). Using a refined pedigree structure, updated from accurate 
genealogical records, we estimated narrow sense heritability for the following phenotype 
models: narrow (BPI and BPII only), broad (BPI, BPII, and MDDR), broad extended 
(presence of any psychiatric phenotype), depression (MDDR, MDD, and Minor 
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Depression), and well. We found significant heritability for all phenotype models 
(Supplemental Table 7), with broad extended being the most heritable phenotype 
(h2=0.81, p=9.76E-10). We generated polygenic risk scores based on GWAS summary 
data (from Europeans) for multiple traits and tested for an association between the risk 
score and presence of mood disorder (Figure 2, Table 2, Supplemental Table 8). 
Polygenic risk scores (PRS) incorporate multiple SNPs, including those that do not reach 
the threshold for genome-wide significance, to predict an individual’s risk for disorder. 
First, we used summary statistics from a GWAS for bipolar disorder by the Psychiatric 
Genomics Consortium (PGC BD2, (Stahl et al., 2017)), to generate risk scores for bipolar 
disorder for all individuals in the ASMAD pedigree. Linear mixed model analyses 
implemented using the pedigreemm R package (binomial test, (Vazquez et al., 2010)) 
permitted an association test for risk scores while accounting for relatedness within the 
pedigree. We tested the difference in risk scores between unaffected and affected 
individuals for the above phenotype models.  
 
Bipolar disorder risk score was significantly associated with affected phenotype for broad 
extended (β=0.416, SE=0.121, p=0.000588), broad (β=0.523, SE=0.129, p=0.000048), 
and narrow phenotypes (β=0.499, SE=0.138, p=0.000298), but not for depression 
phenotype (β=0.273, SE=0.155, p=0.078473). To verify this result, we used a modified 
polygenic transmission disequilibrium test (see methods) and also found a statistically 
significant deviation in risk scores, with affected individuals having a higher polygenic 
risk than their unaffected siblings (mean deviation 0.27, p=0.03). This increase is mostly 
driven by higher risk scores of individuals with BPI, BPII, BP:NOS, and MDDR 
(Supplemental Figure 21). The percentage of affected individuals, on average, increases 
with increasing deciles of PRS (Figure 3A). Furthermore, the percentage of individuals 
with BPI, BPII and BP:NOS is highest in the 10th PRS decile, whereas the percentage of 
individuals with minor depression or other non-specified disorder is lowest in this decile 
(Figure 3B). Offspring with an affected parent (either one or both parents affected) have 
higher risk scores than offspring from unaffected parents (Supplemental Figure 22). 
Furthermore, descendants that can trace their lineage back to the two pioneer members of 
this pedigree (“in family”) have significantly higher risk scores for bipolar disorder than 
Amish individuals who are “married in” (β=1.653, SE=0.370, p=0.000008, Supplemental 
Figure 23), suggesting that the pioneer individuals carried high risk for bipolar disorder. 
Risk scores vary across the pedigree, although they are more similar within nuclear 
families (Supplemental Figure 24).  
 
Common risk variants for disease suggest pleiotropy between common complex 
traits and bipolar disorder 
 
Risk score analyses can also be used to query genetic associations between complex 
disorders that have shown co-morbidity in individuals but were otherwise thought to be 
causally unrelated (Wray et al., 2014). Therefore we compiled published GWAS 
summary statistics data (Supplemental table 9) and generated risk scores for 22 additional 
traits, including common psychiatric disorders, personality measures, educational 
attainment, Alzheimer’s, Type 2 diabetes, autoimmune thyroid disease, lipid traits, and 
cardiovascular disease (Figure 2, Table 2). Risk scores for clinical autoimmune thyroid 
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disease, lipid traits (Total cholesterol, Triglycerides, LDL, HDL) and type 2 diabetes 
were found to be significantly higher in individuals with mood disorder, suggesting that 
in this pedigree there are shared loci between bipolar disorder and both lipid traits and 
diabetes. Thyroid hormone levels, positive thyroid antibodies, HDL, LDL, triglyceride, 
total cholesterol, and diabetes risk scores were significantly associated with affected 
phenotype (bonferroni corrected p-value=0.0023, broad extended thyroid hormone 
p=0.000997, thyroid antibodies p=0.001915, HDL p=0.001453, LDL p=0.000620, TG 
p=0.000269, TC p=0.001866, diabetes p=0.001027; broad thyroid hormone p=0.003233, 
thyroid antibodies p=0.005292, HDL p=0.000530, LDL p=0.000716, TG p=0.000166, 
TC p=0.000900, diabetes p=0.000339; narrow thyroid hormone p=0.003294, thyroid 
antibodies p=0.001068, HDL p=0.005891, LDL p=0.004083, TG p=0.003742, TC 
p=0.008997, diabetes p=0.003486), but only thyroid hormone, LDL and triglyceride risk 
scores were nominally associated with depression phenotype (thyroid hormone 
p=0.003417, LDL p=0.038238, TG p=0.006943) (for full results, see Supplemental table 
8). 
 
In the extended Amish pedigree, risk scores for bipolar disorder are positively correlated 
with risk scores for lipid traits (TG r=0.55, p<2.2e-16, TC r=0.55, p<2.2e-16, LDL 
r=0.52, p<2.2e-16, HDL r=0.57, p<2.2e-16, Supplemental Figure 25), diabetes (r=0.54, 
p<2.2e-16), thyroid levels (thyroid hormone levels r=0.31, p=1.692e-10), major 
depression (r=0.39, p=6.376e-16), schizophrenia (r=0.55, p<2.2e-16), and Alzheimer’s 
disease (r=0.40, p=2.922e-16), and negatively correlated with years of education (r=-
0.21, p=1.961e-05), suggesting an overlap between loci that contribute to risk for these 
traits. Furthermore, we explored the effect of inbreeding on risk score values, as 
increased homozygosity in offspring of closely related parents is known to increase the 
incidence of recessive Mendelian disorders, but the effect on complex disorders is less 
well quantified. We found that higher inbreeding values (measured as a higher number of 
observed homozygous genotypes than expected), but not increased average length of 
homozygous regions, are correlated with an increased risk score for bipolar disorder 
(r=0.69, p=2.2x10-15, Supplemental Figure 26), suggesting a role for increased 
homozygosity in common disease risk. 
 
Identifying pleiotropic regions of the genome 
 
To establish which genomic regions contribute to the genome-wide risk score differences 
between affected and unaffected individuals identified above, we calculated risk scores 
across the genome using a sliding window of 5Mb (see methods). This allowed us to 
partition the genome and analyze risk for each 5Mb region to identify local polygenic risk 
for bipolar disorder, total cholesterol, LDL, HDL, triglycerides, diabetes and thyroid 
disorder associated with BD. Using linear mixed model analyses (as above) we examined 
1,112 5Mb regions (556 non-overlapping regions) per risk score. We identified 6 
genomic regions that had significantly different (p<0.01; uncorrected for multiple testing, 
since many non-overlapping regions are still highly correlated due to LD structure) risk 
scores between affected (broad extended phenotype) and unaffected individuals for 
bipolar disorder, 22 for total cholesterol, 19 for LDL, 14 for HDL, 11 for triglycerides, 11 
for diabetes, and 8 for thyroid hormone levels (Figure 4, Supplemental Table 10). Of the 
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91 regions identified, 15 regions overlapped between traits. Total cholesterol, HDL and 
diabetes local polygenic risk associated with BD overlapped in two neighboring regions 
on chromosome 3 (3p14.1-p12.3), a region previously found to be associated with 
hypertension (Koivukoski et al., 2004) that harbors multiple genes known to be involved 
in HDL and cholesterol traits. This region has also been associated with bipolar disorder, 
depression and schizophrenia in multiple studies (Chuang and Kuo, 2017; Goes et al., 
2015; Rudd et al., 2015; Schizophrenia Working Group of the Psychiatric Genomics 
Consortium, 2014). Total cholesterol and LDL local polygenic risk associated with BD 
overlapped in one region on chromosome 20 (20q11.23-q12), a region previously 
associated with hypertension and diabetes, although not found to be consistently 
associated with bipolar disorder. Bipolar disorder and LDL local polygenic risk 
associated with BD overlapped in one region on chromosome 16 (16q21), which contains 
a single gene called cadherin 8 type 2 (CDH8). CDH8 is widely expressed in the brain 
and in the aorta, and is thought to be involved in synaptic adhesion and early cortical 
development (Pagnamenta et al., 2011). The other regions were not found to overlap 
between traits, suggesting that the association of bipolar disorder with risk for other traits 
in this pedigree is due to multiple pleiotropic regions spread across the genome. 
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Discussion 
 
Co-morbidity of medical disease in individuals with psychiatric disorder is a major 
contributor to early mortality and severity of phenotype. Although previously attributed 
to poor lifestyle choices, recent genetic evidence suggests that pleiotropic loci that 
predispose to both mental illness and non-psychiatric disease may underlie at least some 
co-morbidities. Here we present a large multigenerational pedigree significantly enriched 
for Bipolar and related mood disorders, that we further genetically diagnose with 
segregating Mendelian disease variation. In addition to identifying a unique pattern of co-
segregating low-frequency Mendelian disease variants associated with mood disorder 
status, polygenic risk profiling, using several sets of common variants associated with a 
wide range of complex diseases and traits, provides strong support for a shared genetic 
architecture between mood disorders and specific metabolic and endocrine traits. 
Although our detected associations may be unique to the Amish extended pedigree, we 
propose that such patterns of phenotypic and genetically-defined pleiotropy may enable 
subtyping of complex diseases and facilitate their genetic dissection.  
 
The expectation in studies of complex disease in founder populations is that low-
frequency disease-causing variants with strong effect sizes, that are rare in the general 
population but enriched or specific to the isolate, can be more easily identified compared 
to studies in outbred populations. However, previously published findings from the 
ASMAD population (Georgi et al., 2014; Ginns et al., 2015; Kember et al., 2015) reveal a 
complex polygenic mode of inheritance, in line with findings from general population 
studies. Here we corroborate this conclusion by reporting that bipolar disorder polygenic 
risk profiling unequivocally supports a shared genetic architecture (i.e. shared common 
risk variants) between bipolar disorder in the Amish and in an outbred population of 
European ancestry. Furthermore, as expected from studies on the shared genetic etiology 
of psychiatric disorders (Lee et al., 2013), polygenic risk scores for major depressive 
disorder are also associated with bipolar disorder in this pedigree. Interestingly, despite 
the high genetic correlation between bipolar disorder and schizophrenia in the general 
population, the schizophrenia polygenic risk score was limited in its predictive ability in 
the ASMAD sample (R2=0.019). This may reflect an ascertainment bias in recruitment or 
a unique aspect of the phenotype in this extended pedigree. For example, out of 195 
individuals with any reported psychiatric condition in the family, only a single individual 
presented with schizoaffective disorder and none with schizophrenia. Similarly, a study 
of major psychiatric disorders in mid-Western Amish in Ohio and Indiana reported lower 
rates of psychosis compared to other populations (Hou et al., 2013). 
 
Our previous analysis of regions of homozygosity did not reveal recessive risk variants 
(SNV or CNVs) for BD in this pedigree (Georgi et al., 2014; Kember et al., 2015). 
Conversely, here we report that polygenic risk scores for bipolar disorder and several 
metabolic traits are positively correlated with the inbreeding co-efficient.  Interestingly, 
in an effort to investigate genetic diversity within Anabaptist groups represented in the 
Anabaptist Genome Reference Panel (AGRP) (Hou et al., 2017), we showed that Amish 
living in Lancaster County, Pennsylvania, where the ASMAD pedigree originates, have 
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the longest homozygous-by-descent-regions. Therefore, we suggest that reduced genetic 
diversity may underlie the accumulation of both common and low-frequency, 
homozygous and compound heterozygous, risk alleles for a range of diseases and traits. 
 
Our identification of individuals who should present with a Mendelian disease, based on 
their carrier status of highly penetrant Mendelian variants, established a set of diseases 
that differ in frequency between those with and without mood disorder. Moreover, 
individuals carrying these variants in a manner insufficient for presentation of disease 
also demonstrated differences in mood disorder status. For example, a dominant familial 
hypercholesterolemia-associated APOB R3527Q variant, which has been previously 
identified as being carried by around 12% of Old Order Amish individuals (Shen et al., 
2010), was found in 19.7% of individuals with BPI, BPII or BP:NOS. This finding 
suggests that rather than one trait having a causal effect on the other (e.g. 
hypercholesterolemia “causing” bipolar disorder) it is more likely that a gene variant, or 
the haplotype containing this Mendelian variant harbors other co-segregating variants, 
that convey risk for both disorders.  
 
To further explore the biological implications of our finding that a specific set of 
Mendelian variants are enriched in individuals with mood disorders, we generated risk 
scores for multiple traits using common disease associated variants. We identified a 
number of complex metabolic and endocrinological diseases (lipid traits, diabetes and 
clinical thyroid disease) that were significantly associated with mood disorder in this 
pedigree. The relationship between thyroid disorders and mood disorders has been 
acknowledged for many years (Whybrow et al., 1969), with thyroid function associated 
with depressive symptoms, anxiety, and mania (Chakrabarti, 2011). While metabolic 
syndrome in general (Fiedorowicz et al., 2008; Vancampfort et al., 2013), and diabetes 
(Golden et al., 2008) and lipid levels (Enger et al., 2013; Patel et al., 2007) specifically, 
have been shown to be elevated in individuals with mood disorder, cross-trait analysis 
has not provided evidence for a significant genetic correlation between bipolar disorder 
and any metabolic trait (Bulik-Sullivan et al., 2015). Our study on individual level data in 
a large extended family reveals evidence for a genome-wide genetic correlation between 
mood disorder and specific metabolic traits. As this finding has not yet been replicated in 
an outbred population, we hypothesize that BD in the ASMAD family could represent a 
subtype of BD with high levels of metabolic and endocrinological disorders. This has 
been termed subgroup heterogeneity (Han et al., 2016), where a genetically distinct 
subset of individuals within a patient cohort is also genetically similar to individuals with 
another disease. There is already emerging evidence that such a subgroup exists for major 
depressive disorder (Howard et al., 2017), and the identification of a similar subgroup in 
BD cohorts may help explain the epidemiological findings of associations between these 
disorders.  
 
In an effort to quantify the regions which contribute to differences in risk scores, we take 
advantage of the long haplotypes shared between multiple related individuals to analyze 
risk scores for 5Mb regions of each chromosome and identify windows for which risk 
scores differs between individuals with mood disorder and their unaffected relatives. We 
identified a relatively small number of regions for each trait, covering 0.92-2.08% of the 
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genome, that are significantly associated with differences in risk scores. The majority of 
these regions are unique to each trait; out of the five regions identified as driving bipolar 
risk differences between affected and unaffected individuals, only one of these overlaps 
with another trait (HDL). This suggests that regions that drive the difference in polygenic 
risk for bipolar disorder are not the same regions that drive polygenic risk for diabetes 
and lipid traits. However, we assume that these regions are pleiotropic in that they carry 
risk for bipolar disorder in this pedigree (given their difference between BD and 
unaffected individuals) and also carry risk for diabetes/lipid traits based on the summary 
statistics from an independent data set. 
 
We acknowledge several limitations within our current work that highlight avenues for 
future study. There are many cases of disease genes with different alleles leading to 
different phenotypes or a specific allele leading to a range of diverse phenotypes (Lupski 
et al., 2011). Although there are clear examples of homozygous variants causing a 
recessive Mendelian disease and a complex condition in carriers (Lupski et al., 2011), our 
study does not provide the resolution required to distinguish between a single gene vs. 
haplotype effect.  Specifically, we can’t determine whether variation in the Mendelian 
disease gene alone, or variation at the level of the haplotype, is responsible for the shared 
genetic etiology of disease in this population. We expect that the long shared haplotypes 
observed in a genetic isolate are more likely to harbor multiple disease-contributing 
variants, and therefore produce the observed genetic pleiotropy. Furthermore, multiple 
mechanisms, such as zygosity, epistasis and other interacting genes (genetic background) 
or environmental effects may modify expressivity or penetrance of a specific allele (Zhu 
et al., 2014). While every attempt was made to limit our analyses to Mendelian variants 
predicted to cause disease, the presentation of Mendelian disease in members of the 
ASMAD pedigree could not be confirmed due to restrictions on re-contacting individuals 
in this legacy collection. As pleiotropic alleles continue to be identified, future studies 
would benefit from broadly phenotyping cases to fully capture the combination of traits 
and diseases present in each individual.  
 
In conclusion, we demonstrate a case of genetic pleiotropy between a complex 
psychiatric disease with both Mendelian and complex metabolic and endocrine traits. We 
suggest this indicates a common genetic etiology for these traits in the extended Amish 
family. Taken together, our results denote that medical co-morbidity between complex 
diseases and Mendelian disorders arises as a combination of chromosomal proximity of 
disease causing variants and pleiotropy of disease genes. 
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Methods 
 
Sample 
 
The genetic-epidemiologic study of bipolar disorder among the Old Order Amish in 
Pennsylvania (The Amish Study of Major Affective Disorder) has been well documented 
(Egeland et al., 1990; Hostetter et al., 1983) and the sample collection methods 
previously described in detail (Georgi et al., 2014; Kember et al., 2015). Briefly, it 
consists of a large, extended bipolar disorder pedigree of 700 individuals with a small 
number of founders. Diagnoses of individuals were made following structured interviews 
(SADS-L) and a review of medical records by a psychiatric board using strict Research 
Diagnostic Criteria (RDC) and the Diagnostic and Statistical Manual of Mental 
Disorders, 4th Edition (DSM-IV) for uniform clinical criteria (Egeland et al., 1990). The 
majority of affected individuals in the current pedigree are diagnosed as either BPI, BPII, 
or Major Depressive Disorder. Collection of blood samples followed diagnostic 
consensus, and lymphoblastoid cell lines were established by the Coriell Institute of 
Medical Research (CIMR). Signed informed consents were obtained, using language 
appropriate for Old Order Amish, to a) access medical records for the Amish Study 
clinicians exclusively to do diagnostic evaluations and clinical studies, and b) to perform 
collection of blood/tissue samples. In addition, all work contained within this study was 
approved by the IRB of the Perelman School of Medicine at the University of 
Pennsylvania. 
 
Phasing and Imputation 
 
Genotyping was performed on 394 samples from the extended Amish pedigree using 
Illumina Omni 2.5 M SNP arrays at the Center for Applied Genomics (Children’s 
Hospital of Pennsylvania, Philadelphia, PA). Quality control of the raw genotype calls 
and imputed genotype calls was conducted using PLINK (Purcell et al., 2007). 
Individuals were excluded if they (1) had a call rate < 97% or (2) exhibited elevated 
levels of Mendelian inconsistencies. Variants were excluded from analysis if they: (1) 
had a call rate < 97%  or (2) had minor allele frequencies < 0.002%  (i.e., were 
singletons). Genotypes were phased and imputed with SHAPEIT2 (Delaneau et al., 2011) 
and IMPUTE2 (Howie et al., 2009), respectively, using the Anabaptist reference panel 
(Hou et al., 2017). Phasing was performed with SHAPEIT’s duoHMM option to account 
for known familial relationships, using the known ASMAD pedigree, with the genetic 
map from the HapMap phase II (Frazer et al., 2007), in 5Mb windows. Imputation was 
performed with IMPUTE2 in 5Mb windows with the following options: -
use_prephased_g  -known_haps_g $SAMPLE.haps  -phase -buffer 500’. Following 
imputation, genotype dosages were converted to hard calls if above/below a threshold of 
1.9/0.1, or otherwise set to missing. In total, 2,379,855 variants were imputed in 394 
individuals. Quality control of the imputed calls included removing individuals who had 
a call rate < 97% (0 individuals), setting Mendelian errors to missing (124,668 variants), 
and removing variants with a call rate of <99% (120,611 variants) or had minor allele 
frequencies < 0.002% (869,901 variants). 1,372,783 variants and 394 individuals passed 
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QC. Imputation accuracy was assessed by comparing to whole genome sequence data 
available for a subset of family members (99.3% concordance).  
 
Whole genome sequencing 
 
Whole genome sequencing (WGS) for 80 Old Order Amish family members (including 
30 parent child trios) was performed by Complete Genomics Inc. (CGI; Mountain View, 
CA) using a sequence-by-ligation method (Drmanac et al., 2010). Paired-end reads of 
length 70 bp (35 bp at each end) were mapped to the National Center for Biotechnology 
Information (NCBI) human reference genome (build 37.2) using a Bayesian mapping 
pipeline (Carnevali et al., 2012). Variant calls were performed by CGI using version 
2.0.3.1 of their pipeline. False discovery rate estimates for SNP calls of the CGI platform 
are 0.2–0.6% (Drmanac et al., 2010). Gene annotations were based on the NCBI build 
37.2 seq_gene file contained in a NCBI annotation build. The variant calls within the 
WGS were processed using the cgatools software (version 1.5.0, build 31) made available 
by CGI. The listvar tool was used to generate a master list of the 11.1 M variants present 
in the 80 Amish samples. The testvar tool was used to determine presence and absence of 
each variant within the 80 Amish WGS. Only variants with high variant call scores 
(“VQHIGH” tag in the data files) were included.  
 
Human disease catalog 
 
The Human Genome Mutation Database (HGMD) catalogs known disease associated 
variants (http://www.hgmd.org/; (Stenson et al., 2014)). Most of the clinical phenotypes 
in the database are monogenic diseases. In the June 2013 release it contained 141,000 
different variants in ~5,700 genes (“HGMD disease genes”). We examined all variants 
present in ASMAD in 3456 HGMD disease genes (‘DM’ tag in HGMD). 
 
Curation of HGMD disease causing variants 
 
251 variants present in ASMAD were annotated as being a ‘disease mutation’ in HGMD. 
In order to further refine this list to identify true disease causing mutations, we first 
removed all variants found to be present at >1% frequency in 1000 Genomes (Auton et 
al., 2015) or ExAC (Lek et al., 2016), assuming that disease causing alleles will be rare in 
a population (total remaining variants=154). Next, we merged this list with annotation 
from ClinVar (Landrum et al., 2016) and selected all variants annotated as pathogenic 
(n=62). We then identified whether each variant caused disease in a recessive or 
dominant model, and used this information to identify individuals in the ASMAD family 
predicted to display the disease phenotype based on their allelic status (n=25 variants). 
For these 25 variants, we expanded upon the HGMD and ClinVar annotation by applying 
criteria recommended by the American College of Medical Genetics and Genomics 
(ACMG; (Richards et al., 2015)) for the interpretation of sequence variants, and 
classified the variants into the categories “pathogenic”, “likely pathogenic”, “uncertain 
significance”, “likely benign” and “benign”. Out of the 25, ACMG criteria classified 3 
variants as “benign”, 6 variants as “uncertain significance”, 10 variants as “likely 
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pathogenic” and 6 variants as “pathogenic”. For analyses we removed the 3 variants 
classified as benign and retained the others (n=22 variants). 
 
EMMAX and MONSTER 
 
Association analysis for all variants was performed using EMMAX (Version from 
February 2012, (Kang et al., 2010)), a statistical test for association analysis using mixed 
models that accounts for the population structure within the sample. Gene-based 
association tests were performed using MONSTER (Jiang and McPeek, 2014), a 
statistical test that generalizes the SKAT-O method and uses a	mixed	effects	model	 to	
account	for	population	structure. 
 
Loss of function variants 
 
Variants were annotated using VEP LOFTEE (McLaren et al., 2016). We detect 1177 
putative protein truncating (frameshift, splice donor, splice acceptor, and stop-gained) 
variants. Using filters supplied by LOFTEE, we removed 176 variants (see tables below), 
resulting in 1001 high confidence loss of function variants (HC-LoF).  
 
Filter Description Number of variants 
END_TRUNC Variant falls in the last 5% of 

the transcript 
28 

EXON_INTRON_UNDEF Exon or intron boundaries 
undefined for this transcript 

1 

NON_CAN_SPLICE Variant falls in non-canonical 
splice site 

3 

NON_CAN_SPLICE_SURR Variant falls in exon with non-
canonical splice site 

7 

 
Flag Description Number of variants 
NAGNAG_SITE Splice acceptor has in-frame AG 

acceptor site one codon away 
24 

SINGLE_EXON Variant falls in a single exon 
transcript 

113 

 
We identified 167 HC-LoF variants in disease genes, of which 71 are in a homozygous 
state in one or more individuals. There are 83 rare (<1% in ExAC and 1000G) HC-LoF in 
disease genes, 17 of which are found in a homozygous state in one or more individuals. 
 
Association rule discovery 
 
Association rules for the co-morbidity of mood disorder and Mendelian diseases in 
individuals within the ASMAD pedigree were determined using the apriori algorithm 
from the arules package in R (Hahsler et al., 2005). An itemset was created for each 
individual, consisting of the affected status for mood disorder (“unaffected” or “broad 
extended” phenotype) and any co-morbid Mendelian disease as determined by the allelic 
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status of the disease causing variant in that individual. Association rules for the frequent 
itemsets were generated using the apriori command. Rules were then limited to those 
with either “broad extended” or “unaffected” on the left hand side of the rule 
(antecedents) and Mendelian diseases on the right hand side of the rule (consequents). 
 
Polygenic risk scores 
 
A polygenic risk score is generated for each individual as the sum of all variants they 
carry, weighted by the effect that variant has on phenotype. Polygenic risk scores were 
generated using the PRSice package (Euesden et al., 2015), with multiple GWAS 
summary statistics as the base dataset (see Supplemental table 9), and imputed whole 
genome sequence data in ASMAD as the target dataset. As recommended in the software, 
we performed p-value informed clumping on the genotype data with an r2 = 0.1 and a 
distance threshold of 250kb, following exclusion of the MHC region. The optimal p-
value threshold for PRS was defined as that which explained the most phenotypic 
variation for mood disorder, out of a set of pre-determined thresholds (p ≤ 0.0001, 
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5). For traits identified as significantly associated 
with mood disorder in this pedigree, we show barplots indicating the model fit and p-
value for association at each p-value threshold tested (Supplemental figure 27). 
 
Statistical analysis 
 
Polygenic risk scores for the optimal p-value threshold for each trait were standardized 
mean=0 and standard deviation=1. Linear mixed model analyses were selected to model 
outcomes (Narrow phenotype, Broad phenotype, Broad extended phenotype, Depression 
phenotype) while accounting for relatedness. The analysis was performed using the 
pedigreemm package in R (Vazquez et al., 2010), with PRS as the independent variable 
and phenotype as the dependent variable. An empirical kinship matrix constructed from a 
vcf file by the Balding-Nicols method using rvtests (Zhan et al., 2016) was fitted as a 
random effect to account for relatedness between individuals. Risk scores were evaluated 
for 22 traits, and so a bonferroni corrected p-value<0.0023 (0.05/22) was selected as the 
level for statistical significance. 
 
Polygenic transmission disequilibrium 
 
A test for polygenic transmission disequilibrium has recently been described by Weiner 
et al. (Weiner et al., 2017). We modified this test to allow the comparison of multiple 
affected and unaffected siblings. We selected all nuclear families with at least one child 
with Broad phenotype (BPI, BPII, BP:NOS, MDDR, number of families=46). For each 
family, the polygenic transmission disequilibrium deviation was calculated as follows: 
 

𝑝𝑇𝐷𝑇𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
Average PRS affected− Average PRS unaffected

𝑆𝐷(𝑃𝑅𝑆 𝑎𝑙𝑙 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠)  

 
The test statistic for pTDT deviation was then calculated based on all families as follows: 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2017. ; https://doi.org/10.1101/196055doi: bioRxiv preprint 

https://doi.org/10.1101/196055
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝑡𝑝𝑇𝐷𝑇 =
Mean(pTDT deviation)
𝑆𝐷(𝑝𝑇𝐷𝑇 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)/√𝑛 

 

 
Where n is the number of families. 
 
Risk score chromosome windows 
 
Drawing on work from Shi et al. (Shi et al., 2016), on local genetic correlation, we 
developed a method for establishing local polygenic risk. Files containing summary 
statistics for GWAS of bipolar disorder, thyroid levels, lipid traits and diabetes were split 
into chromosomal regions using a sliding window (5 Mb window, sliding 2.5Mb). Risk 
scores were then generated for each individual in the pedigree using just the summary 
statistics for each 5Mb genetic region. As above (see Methods: statistical analysis), risk 
scores were standardized and tested using linear mixed model analyses to account for 
relatedness. Around 1,112 regions were tested per score (556 non-overlapping regions). 
P-values reported for risk score regions are uncorrected for multiple testing, since many 
non-overlapping regions are still highly correlated due to LD structure. A conservative 
Bonferroni threshold accounting for 556 independent tests at P<0.05 is p<0.00009. We 
chose a less stringent cut-off of P<0.01 for reporting these results. 
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Figure 1: Profile of co-occurring Mendelian diseases varies between affected and 
unaffected individuals. A and B: Individuals genetically diagnosed with Mendelian 
diseases. Association rule discovery looks for combinations of variables that occur 
together more frequently than expected by chance. Diseases that co-occur more than 
expected differ between individuals affected with mood disorder and unaffected 
individuals. A: Graph for 12 rules and B: Grouped matrix for 34 rules with mood disorder 
affected status (either “broad extended” or “unaffected”) as the antecedent and Mendelian 
disease as the consequent. Size of the circle demonstrates confidence in that rule. Color 
indicates lift (A: darker=higher lift, B: blue=higher lift, pink=lower lift). C: Individuals 
carrying disease causing variants. Percentage of Narrow, Broad and Broad extended 
individuals (see “common polygenic risk for bipolar disorder” in results section for 
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explanation of phenotype) carrying disease causing variants compared to percentage of 
unaffected individuals with disease causing variants. Some variants are found in a higher 
percentage of affected individuals.  
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Figure 2: Association of polygenic risk scores for multiple traits with bipolar disorder 
(broad extended phenotype) in ASMAD. Risk scores for all traits tested are displayed, 
split by trait type. Circles indicate the association of the risk scores with mood disorder in 
the ASMAD pedigree, color of circles shows the level of significance, and error bars 
show +/- standard error.  
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Figure 3: Percentage of individuals with affected status for each decile of polygenic risk 
score. A: All individuals, including unaffected individuals, are shown. B: Affected 
individuals only are shown. 
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Figure 4: Locations of genomic regions that contribute to the genome-wide risk score 
differences between affected and unaffected individuals for bipolar disorder (blue), 
diabetes (green), HDL (red), LDL (black), Total cholesterol (pink), triglycerides (dark 
green) and thyroid hormone (yellow). The location of Mendelian variants which are 
associated with either affected or unaffected status in this pedigree are also included 
(denoted by the notation: Mendelian). 
 
 
Table 1: Variants associated with lipid and cardiovascular phenotypes 

Gene Variant rsID Effect % 
Unaffected 

% 
BPI/BPII 

% Other 
psychiatric 
phenotype 

APOB Arg3527Gln rs5742904 Damaging lipid 
variant 

12.6 21.3 10.3 
ABCG8 Gly574Arg rs137852988 5.7 11.3 12.3 
HFE Cys282Tyr rs1800562 Iron overload 8.9 15.0 8.8 
CYBRD1 Arg226His rs62181680 1.2 3.8 4.4 
LPA c.4289+1G>A rs41272114 Cardioprotective 5.3 3.8 1.5 
APOC3 Arg19Ter rs76353203 3.3 2.5 1.5 
KCNH2 Gly803Arg rs199473669 Damaging 

variant affecting 
heart rhythm 

11.0 11.3 5.9 
SCN5A Glu462Lys rs199473572 2.8 1.3 0 
SNTA1 Ala257Glyrs56157422 1.2 1.3 0 
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