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Abstract	22	
Quantitative	systems	pharmacology	(QSP)	models	aim	to	describe	mechanistically	23	
the	pathophysiology	of	disease	and	predict	the	effects	of	therapies	on	that	disease.	24	
For	most	drug	development	applications,	it	is	important	to	predict	not	only	the	25	
mean	response	to	an	intervention	but	also	the	distribution	of	responses,	due	to	26	
inter-patient	variability.	Given	the	necessary	complexity	of	QSP	models,	and	the	27	
sparsity	of	relevant	human	data,	the	parameters	of	QSP	models	are	often	not	well	28	
determined.	One	approach	to	overcome	these	limitations	is	to	develop	alternative	29	
virtual	patients	(VPs)	and	virtual	populations	(Vpops),	which	allow	for	the	30	
exploration	of	parametric	uncertainty	and	reproduce	inter-patient	variability	in	31	
response	to	perturbation.	Here	we	evaluated	approaches	to	improve	the	efficiency	32	
of	generating	Vpops.	We	aimed	to	generate	Vpops	without	sacrificing	diversity	of	33	
the	VPs’	pathophysiologies	and	phenotypes.	To	do	this,	we	built	upon	a	previously	34	
published	approach	(Allen,	Rieger	et	al.	2016)	by	(a)	incorporating	alternative	35	
optimization	algorithms	(genetic	algorithm	and	Metropolis-Hastings)	or	36	
alternatively	(b)	augmenting	the	optimized	objective	function.	Each	method	37	
improved	the	baseline	algorithm	by	requiring	significantly	fewer	plausible	patients	38	
(precursors	to	VPs)	to	create	a	reasonable	Vpop.	#ddct	#qsp	39	
	40	
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ordinary	differential	equations,	genetic	algorithm,	Metropolis-Hastings	43	

2 Abbreviations	44	
GA	–	Genetic	Algorithm	45	
GoF	–	Goodness	of	Fit	46	
HDLc	–	High	Density	Lipoprotein	Cholesterol	47	
LDLc		-	Low	Density	Lipoprotein	Cholesterol	48	
MH	–	Metropolis-Hastings	49	
NHANES	–	National	Health	And	Nutrition	Examination	Survey	50	
NSA	–	Nested	Simulated	Annealing	51	
SA	–	Simulated	Annealing	52	
PP	–	Plausible	Patient	53	
QSP	–	Quantitative	Systems	Pharmacology	54	
TC	–	Total	Cholesterol	55	
VP	–	Virtual	Patient	56	
Vpop	–	Virtual	Population	57	

3 Introduction	58	
Physiologically	based	mathematical	models	are	often	used	to	describe	and	predict	59	
the	response	of	a	patient	to	an	existing	therapy	or	novel	agent.		These	models,	60	
frequently	referred	to	as	quantitative	systems	pharmacology	(QSP)	models,	are	used	61	
to	simulate	clinical	trials	in	drug	development	(Musante,	Ramanujan	et	al.	2017).	In	62	
these	applications,	it	is	important	that	they	not	only	capture	the	mean	patient	63	
response	to	treatment	but	also	inter-patient	variability	and	how	that	variability	may	64	
evolve	over	time.	In	addition,	due	to	the	novel	nature	of	many	therapies;	the	65	
complexity	of	human	physiology;	and	generally	limited	human	data,	QSP	models	are	66	
rarely	fully	determined	by	data.	One	approach	to	these	challenges	is	to	develop	67	
alternate	parameter	sets	to	capture	the	variability	in	the	real	clinical	trial	population	68	
and	sample	as	much	uncertainty	in	the	model	parameters	as	possible	(Gadkar,	69	
Budha	et	al.	2014,	Hallow,	Lo	et	al.	2014,	van	de	Pas,	Rullmann	et	al.	2014).		70	
	71	
Previously,	we	published	an	algorithm	for	the	generation	and	selection	of	these	72	
alternative	value	sets	(Allen,	Rieger	et	al.	2016).	The	algorithm	used	simulated	73	
annealing	(SA)	to	generate	as	large	a	population	of	“plausible	patients”	(PPs)	as	was	74	
practical.	SA	was	used	with	a	cost	functional	that	optimized	solutions	to	be	75	
biologically	feasible.	These	PPs,	which	we	call	a	“plausible	population”,	were	termed	76	
plausible	since	each	generated	parameter	set	simulated	a	patient	that	was	77	
physiologically	reasonable,	and	could	be	in	a	clinical	trial,	but	there	was	not	yet	any	78	
selection	for	how	likely	it	was	for	that	patient	to	have	been	in	a	particular	clinical	79	
trial.	We	then	used	our	novel	selection	technique	to	choose	those	patients	from	the	80	
plausible	population	that	most	resembled	a	desired	clinical	population.	These	81	
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selected	patients	were	then	termed	virtual	patients	(VPs),	and	as	a	collection	they	82	
were	called	a	virtual	population	(Vpop).	83	

Since	the	original	algorithm	created	a	plausible	population	that	was	naïve	to	the	84	
targeted	Vpop	distribution,	significant	computational	effort	was	expended	in	85	
generating	PPs	in	unlikely	regions	of	the	target	distribution.	Here	we	propose	86	
alternative	algorithms	to	improve	the	generation	of	the	plausible	population	for	87	
more	efficient	generation	of	the	Vpop.	The	common	approach	for	each	newly	tested	88	
algorithms	is	to	use	information	about	the	target	distribution	in	generating	the	89	
plausible	population.	We	explored	this	idea	in	three	ways:		90	

(1) Nested	simulated	annealing	(NSA),	which	augments	the	SA	method	by	91	
targeting	PP	generation	using	the	probability	density	function	of	the	target	92	
distribution; 93	

(2) 	A	genetic	algorithm	(GA),	which	iteratively	builds	a	plausible	population	94	
according	to	a	fitness	function	defined	by	the	desired	distribution;	and	lastly 95	

(3) A	Metropolis-Hastings	(MH)	inspired	importance-sampling	technique. 96	

Results	of	the	original	SA	method	were	re-generated,	for	direct	comparison	to	each	97	
of	the	three	new	approaches.  98	

4 Methods	99	

This	current	work	is	the	evaluation	of	three	approaches	for	the	generation	of	Vpops	100	
that	match	distributions	of	clinical	cohorts	or	populations.	The	general	flow	for	our	101	
algorithm	is	(Figure	1):	102	

1. Implement	an	ordinary	differential	equation	(ODE)	model	that	describes	the	103	
biological	system	of	interest;	104	

2. For	each	state	(variable)	in	the	model,	define	a	lower	and	upper	limit	for	105	
assessing	if	a	steady	state	solution	is	plausible	(all	states	between	lower	and	106	
upper	limits)	or	not;	107	

3. For	each	parameter	of	the	model	(e.g.,	rate	constants,	Michaelis-Menten	108	
constants),	also	define	a	plausible	lower	and	upper	limit	for	the	search	109	
algorithms;	110	

4. Optimize,	using	one	of	four	algorithms,	for	solutions	of	the	model	that	are	111	
PPs;	112	

5. Collect	the	PPs	generated	by	the	optimization	into	a	plausible	population,	113	
terminating	the	search	for	PPs	when	the	optimization	achieves	a	preset	114	
number	of	PPs	in	the	plausible	population;	115	

6. Perform	acceptance/rejection	sampling	on	the	plausible	population	to	select	116	
the	VPs	from	the	PPs	that	allow	us	to	match	the	statistics	of	the	target	clinical	117	
population.	118	
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This	section	is	organized	to	describe	these	three	methods	(NSA,	modified	GA,	and	119	
modified	MH),	and	how	to	apply	them	to	generate	VPs.	This	is	followed	by	a	120	
description	of	how	the	results	were	analyzed,	including	a	novel	metric	to	quantify	121	
the	uniqueness	of	a	collection	of	parameter	sets.	122	

4.1 Mathematical	Model	and	Data	123	

Following	our	previous	approach,	we	tested	our	proposed	methods	using	a	124	
published	ODE	model	of	lipoprotein	metabolism	(van	de	Pas,	Woutersen	et	al.	125	
2012).	In	brief,	the	van	de	Pas	model	is	a	model	of	cholesterol	production	by	the	126	
liver	and	its	transit	through	the	plasma.	The	ODE	cholesterol	model	has	nine	127	
equations,	or	state	variables	(Supplementary	Table	S1).	These	state	variables	128	
correspond	to	the	mass	or	concentrations	of	species	within	particular	129	
compartments	(e.g.,	liver,	plasma,	peripheral	tissues).	The	focus	or	primary	outputs	130	
of	the	model	are	calculating	levels	of	high-density	lipoprotein	cholesterol	(HDLc)	131	
and	“non-high-density	lipoprotein	cholesterol”,	which	we	assumed	to	be	equivalent	132	
to	low-density	lipoprotein	cholesterol	(LDLc).	Thus	the	parameters	of	the	ODE	133	
model	we	changed	in	the	global	optimization	methods	were	the	rate	constants	of	the	134	
mass	action	model	(e.g.,	production,	reaction,	clearance	constants,	see	135	
Supplementary	Table	S2).	For	the	present	work	of	creating	baseline	PPs	and	VPs,	we	136	
only	used	the	ODE	model	to	simulate	physiologically	reasonable	patients	at	steady	137	
state	and	were	not	concerned	with	the	transient	changes	of	the	model.	138	

While	the	ODE	model	has	nine	states,	not	all	of	them	are	frequently	collected	in	139	
clinical	trials.	The	outputs	of	the	model	we	matched	to	the	statistics	of	human	140	
clinical	data	through	our	Vpop	selection	algorithm	were:	HDLc,	LDLc,	and	total	141	
cholesterol	(TC).	As	in	original	paper,	for	our	reference	population	to	match	we	used	142	
the	National	Health	and	Nutrition	Examination	Survey	dataset	(NHANES	2011-143	
2012).		The	NHANES	dataset	contained	fasting	values	for	plasma	cholesterol	levels	144	
in	2,942	patients.	The	data	was	well	represented	by	a	joint	lognormal	distribution	145	
(Supplementary	Figure	S1).	146	

4.2 Summary	of	Original	SA	Algorithm	(Baseline	Comparator)	147	
In	(Allen,	Rieger	et	al.	2016)	we	optimized	the	steady-state	solutions,	𝑥∗,	to	fall	148	
within	biologically	reasonable	ranges	rather	than	to	a	specific	point	using	the	cost	149	
functional		150	

𝑔 𝒑 = max 𝑥!∗ 𝒑 − !!!!!
!

!
− !!

!
− !!

!

!
, 0!

!!! ,  (1)	151	

where	𝑁is	the	number	of	states	of	the	model	(N	=	9	for	van	de	Pas	et	al.),	and	𝑙!and	152	
𝑢! 	represent	the	biologically	plausible	lower	and	upper	bounds	for	the	𝑖!!	state	153	
variable’s	steady-state	solution	(see	Supplementary	Table	S1).	Note	that	if	𝑥!∗(𝒑)	is	154	
within	the	plausible	biological	bounds,	then	𝑔 𝒑 = 0,	and	the	parameter	set	𝒑	is	155	
called	a	PP.	SA	iteratively	proposes	values	of	𝒑	until	𝑔 𝒑 = 0.	A	new	initial	𝒑	is	then	156	
generated,	and	the	SA	optimization	is	repeated	until	a	plausible	population	is	157	
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created.	158	

4.3 NSA	Algorithm	159	
The	NSA	algorithm	incorporates	information	about	the	target	data	distribution	in	160	
the	process	of	generating	the	plausible	population.	By	modifying	the	cost	functional,	161	
equation	(1),	we	can	include	information	about	the	desired	distribution,	thus	162	
decreasing	the	number	of	PPs	required	per	VP.	The	joint	distribution	of	NHANES	163	
patient’s	LDLc,	HDLc,	and	TC	is	well	approximated	by	a	multivariate	lognormal	164	
distribution,	with	a	probability	density	function	that	is	roughly	ellipsoidal	in	iso-165	
density	lines.	The	hypercube	in	which	𝑔 𝒑 = 0	in	equation	1,	was	changed	to	an	166	
ellipsoidal	shape,	in	the	dimensions	𝑥!∗(𝒑)	that	correspond	to	LDLc,	HDLc,	and	TC.	167	
The	edge	of	this	ellipsoid	corresponds	to	the	least-probable	value	(with	respect	to	168	
the	multivariate	log-normal)	for	which	𝑔 𝒑 = 0	.		169	
However,	the	modified	g(p)	makes	no	distinction	between	low-probability	solutions,	170	
at	the	edge	of	the	ellipse,	and	high-probability	solution,	near	the	centroid	of	the	171	
ellipsoid.	Hence,	to	fully	use	information	from	the	target	distribution,	we	considered	172	
multiple	nested	ellipsoids,	relegating	acceptable	PPs	according	to	whether	they	173	
achieve	sufficiently	high	probability	density	with	respect	to	this	target	distribution.	174	
From	this,	the	modified	g(p)	controls	the	number	of	PPs	generated	in	each	ellipse.		175	

Note	that	while	biological	upper	and	lower	bounds	exist	for	all	of	the	nine	model	176	
outputs,	we	only	have	distributional	information	regarding	LDLc,	HDLc,	and	TC.	As	a	177	
result,	the	modified	cost	function	still	achieves	a	minimum	when	the	remaining	six	178	
dimensions	falls	within	the	hypercube	of	biologically	plausible	solutions.		179	

We	use	the	following	equation	for	the	surface	of	an	ellipsoid	that	will	encompass	the	180	
data:  181	

𝑿− 𝝁 !𝛴!! 𝑿− 𝝁 = 𝑐!,      (2) 182	

where	𝑿	is	a	3	×	1	vector	representing	a	point	in	the	log-scaled	vector	of	[LDLc,	183	
HDLc,	and	TC],	and	𝝁	and	𝛴 are	maximum	likelihood	estimates	of	the	mean	and	184	
covariance	matrix	of	the	multivariate	normal	distribution,	and	𝑐!

	
controls	the	185	

extreme	point	of	the	ellipsoid.	By	letting	𝑿	be	the	data	point	furthest	from	the	mean	186	
in	(2),	we	can	explicitly	calculate	the	minimum	value	for	𝑐!

	
that	allows	the	data	to	187	

be	encompassed	by	the	ellipsoid.	188	

First	consider	only	one	ellipsoid	region.	Then	the	modified	cost	functional	is		189	

ℎ 𝒑 =  𝑔 𝒑 − 𝛾( 𝑿− 𝝁 !𝛴!! 𝑿− 𝝁 − 𝑐!) ,     (3) 190	

where	𝑔 𝒑 	is	given	by	equation	(1)	for	N	=	6,	and	is	calculated	for	the	6	state	191	
variables	for	which	we	do	not	have	distributional	information.	We	can	interpret	this	192	
cost	functional	as	forcing	these	6	state	variables	to	be	within	plausible	biological	193	
bounds	while	forcing	the	remaining	3	log-scaled	observables	to	be	within	the	194	
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smallest	ellipsoid	region	that	encompasses	the	clinical	data.	Notice	we	have	an	195	
additional	parameter,	𝛾,	which	is	a	scaling	factor	that	is	a	free	parameter	of	the	196	
method	for	balancing	the	weight	of	the	ellipsoid	term	on	the	cost	functional.	A	value	197	
of	𝛾 = 0.1	was	used	for	all	simulations	(Rieger	and	Allen	2017).	198	

Now	consider	several	nested	ellipsoid	regions.	The	cost	functional	for	each	nested	199	
ellipsoid	is	given	in	(3)	but	with	modified	𝑐!	values	in	order	to	control	the	200	
distribution	of	the	plausible	population.	The	number	of	nested	ellipsoids,	𝑅,	is	201	
another	free	parameter	of	this	method.	We	denote	the ellipsoids	as	𝐸! ⊂ 𝐸! ⊂ ⋯ ⊂202	
𝐸! ,	with	the	𝑘!!	ellipsoid	centered	at	the	mean 𝝁	and	defined	as	𝐸! = {𝑿: 𝑿−203	
𝝁 !𝛴!! 𝑿− 𝝁 ≤ 𝑐!!}. 204	

We	choose	the	𝑐! 	values	such	that	a	𝑘/𝑅	proportion	of	the	observations	are	within	205	
the	𝑘!!	ellipsoid:	206	

𝛷 𝑥 𝑑𝑥 =  !
!!!
   ,               (4) 207	

where	𝛷(𝑥)	is	the	multivariate	normal	distribution,	and	𝑘 = 1…𝑅.	We	find	an	208	
approximate	solution,	𝑐! 	,	to	this	integral,	by	using	a	Monte	Carlo	approach.		209	
Equivalently,		210	

𝛷 𝑥 𝑑𝑥 =  !
!!!
      (5) 211	

                                            𝛷 𝑥 𝑑𝑥 =  !
!!!\!!!!
.   (6) 212	

 213	

For	this	method,	we	sequentially	populate	each	ellipsoid	uniformly	such	that	the	214	
final	plausible	population	approximates	the	distribution	for	the	target	patient	215	
distribution.	We	therefore	need	to	calculate	how	many	PPs	are	required	for	each	216	
ellipsoid,	given	a	desired	total	number	of	PPs.	Define	𝑞! 	as	the	proportion	of	the	217	
total	plausible	population	within	the	𝑘!!	ellipsoid.	Then,	since	we	assume	the	data	218	
are	approximately	uniformly	distributed	throughout	each	ellipsoid,	we	want	to	219	
solve	a	system	of	R	equations	for	each	𝑞! 	obtained	by	solving	220	

!
!
= !!!!!!!

!!
!
!!! 𝑞!,       (7) 221	

for	𝑗 = 1,… ,𝑅.	Where	𝑉! 	is	the	volume	of	the	𝑗!!	ellipsoid.	We	define	𝑉! = 0.	Note	222	
that	𝑉! ∝ 𝑐!!,	where	𝑛	is	the	dimension	of	the	multi-dimensional	distribution.	Then,	223	
equation	(7)	can	be	re-written	as	224	

!
!
=

!!
!!!!!!

!

!!
!

!
!!! 𝑞!,       (8) 225	
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which	can	be	solved	recursively	for	the	𝑞! 	(starting	with	𝑘 = 𝑅,	and	defining	𝑐!! =226	
0).		227	

Alternatively,	since	the	NHANES	data	provided	individual	level	data,	the	target	228	
distributions	𝑐! 	(and	𝑞!)	were	calculated	empirically,	see	source	code	(Rieger	and	229	
Allen	2017).	230	

With	the	ellipsoids	defined	we	can	generate	the	plausible	population	by	randomly	231	
generating	a	parameter	set	in	the	ranges	we	defined	from	a	uniform	distribution.	232	
Then,	for	a	pre-defined	plausible	population	of	size	𝑚,	for	𝑙 = 1	to	𝑚,	we	identify	a	233	
PP	by	minimizing:	234	

ℎ! 𝒑 =  𝑔 𝒑 − 𝛾( 𝑿− 𝝁 !𝛴!! 𝑿− 𝝁 − 𝑐!!),      (9) 235	

where	𝑔 𝒑 	is	given	by	equation	(1)	for	N	=	6,	and	is	calculated	for	the	6	state	236	
variables	for	which	we	do	not	have	distributional	information.	See	Supplementary	237	
Text	1	for	further	details.	238	

This	method	requires	choosing	the	number	of	nested	ellipsoids.	The	greater	the	239	
number	of	ellipsoids,	the	closer	the	distribution	of	the	plausible	population	will	240	
match	that	of	the	clinical	population,	thus	reducing	the	number	of	PPs	required	per	241	
VP.	However,	an	increase	in	the	number	of	ellipsoids	increases	computation	time	for	242	
the	plausible	population.	In	this	case,	we	used	five	ellipsoids.	We	then	use	our	243	
rejection	sampling	method	to	select	the	VPs	from	the	plausible	population.	244	

4.4 Modified	GA	245	

A	commonly	used	population-based	approach	for	optimizing	nonlinear	models	is	a	246	
genetic	algorithm	(GA),	(Golberg	1989,	Conn,	Gould	et	al.	1991).	For	our	problem,	247	
we	created	our	plausible	population	using	MATLAB’s	ga	function	(MATLAB	2016).	248	
This	algorithm	first	creates	an	initial	population,	where	each	patient	is	drawn	from	a	249	
uniform	distribution.	The	algorithm	then	assigns	a	fitness	value	to	each	patient	250	
using	a	cost	(fitness)	functional.	Similar	to	the	NSA	method,	we	modify	equation	(1)	251	
by	incorporating	information	about	the	desired	distribution.	Specifically,	the	cost	252	
functional	is	given	by		253	

𝐻 𝒑 =    𝑔(𝒑)−𝛾(𝒑) 
if	𝑔 𝒑 > 0
otherwise, 		 (10)	254	

where	𝛾(𝒑)	is	the	likelihood	of	a	given	log-scaled	observable	value	𝑿	given	by		255	

𝛾 𝒑 	=	 !
!! ! !

exp − !
!
𝑿− 𝝁 !𝛴!! 𝑿− 𝝁 .	 (11)	256	

This	cost	functional	can	be	interpreted	as	forcing	all	state	variables	to	be	within	257	
plausible	biological	bounds	and	additionally	assessing	a	penalty	as	the	log-scaled	258	
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observables	deviate	from	𝝁.		259	

As	the	algorithm	progresses,	children	are	created	for	each	generation;	those	with	a	260	
cost	functional	value 𝐻 𝒑 < 0	become	PPs.	Since	many	PPs	are	created	each	261	
generation,	there	is	no	way	to	specify	the	exact	number	of	PPs	generated.	Thus	we	262	
must	preset	the	minimum	number	of	PPs	desired,	but	in	practice	we	tended	to	263	
generate	slightly	more	than	sought	(see	Supplementary	Code).	Once	the	plausible	264	
population	is	created,	we	use	rejection	sampling	to	determine	the	Vpop	from	the	265	
plausible	population.		266	

4.5 Modified	MH	Algorithm	267	

The	Metropolis-Hastings	(MH)	algorithm	can	be	used	to	approximate	a	desired	268	
distribution,	for	a	review	see	(Robert	2015).	To	apply	the	MH	approach	here	we	269	
need	to	modify	the	algorithm.	To	see	why,	consider	the	original	algorithm.	Let	𝜋(𝒑)	270	
be	our	desired	target	multivariate	probability	distribution	for	the	vector	𝒑.	The	MH	271	
algorithm	generates	a	sequence	of	𝒑,	such	that	the	distribution	of	this	sequence,	272	
{𝒑𝟎,… ,𝒑𝑵}	converges	to	𝜋 𝒑 	as	𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝑠 → ∞.	Let	𝑄 𝒑,𝒒 	be	some	symmetric	273	
proposal	distribution,	which	is	interpreted	as	generating	a	proposed	value	𝒒	from	274	
𝑄 𝒑,𝒒 	when	the	process	is	at	value	p.	Then	the	original	MH	algorithm	is	as	follows:		275	

1. Generate	an	initial	vector	𝒑𝟎,	set	𝑖 =	1.	276	
2. Generate	a	proposed	vector	𝒑∗~ 𝑄 𝒑𝒊!𝟏,𝒑∗ .	277	
3. Calculate	the	probability	𝒑∗	is	accepted,	𝛼 = min 1, ! 𝒑∗

! 𝒑𝒊!𝟏
.	278	

4. Generate	𝑌~𝑈(0,1),	if	𝑦 ≤ 𝛼,	set	𝒑𝒊 = 𝒑∗.	If	𝑌 > 𝛼,	set	𝒑𝒊 = 𝒑𝒊!𝟏.	279	
5. Repeat	steps	2	to	4	for	𝑖 = 1,… ,𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠	to	collect	{𝒑𝟎,… ,𝒑𝑵}	as	280	

a	sampling	from	the	target	distribution.	281	

This	MH	algorithm	approximates	the	target	distribution	𝜋 𝒑 	by	randomly	sampling	282	
from	it.	At	first	glance,	this	approach	appears	immediately	applicable	to	the	problem	283	
at	hand	and	will	generate	a	plausible	population	that	will	converge	to	the	Vpop	as	284	
𝑁 → ∞.	However,	this	algorithm	requires	modification	because	we	do	not	know	285	
𝜋(𝒑) 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖;	i.e.,	we	do	not	know	how	the	parameters	sets	should	be	distributed	286	
such	that	the	model,	when	simulated	using	those	parameters,	matches	the	data.		287	

We	rewrite	our	target	distribution	as	𝑇(𝑿𝒑),	where	𝑿	is	the	observable	outcomes	288	
generated	by	the	model	𝑀,	using	a	parameter	set	(which	in	this	case	is	in	the	log-289	
space,	so	𝑿𝒑 = log𝑀(𝒑)).	Then	our	algorithm	becomes	290	

1. Generate	an	initial	vector	𝒑𝟎,	set	𝑖 =	1.	291	
2. Generate	a	proposed	vector	𝒑∗~ 𝑄 𝒑𝒊!𝟏,𝒑∗ ,	write	292	

𝑄! 𝒑𝒊!𝟏,𝒑∗ = 𝑀(𝑄 𝒑𝒊!𝟏,𝒑∗ ).	293	

3. Calculate	the	probability	𝒑∗	is	accepted,	𝛼 = min 1,
! 𝑿𝒑∗ !! 𝒑∗,𝒑𝒊!𝟏

! 𝑿𝒑𝒊!𝟏 !! 𝒑𝒊!𝟏,𝒑∗
,	294	
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assume	𝛼 ≅ min 1,
! 𝑿𝒑∗

! 𝑿𝒑𝒊!𝟏
.	295	

4. Generate	𝑦~𝑈(0,1),	if	𝑦 ≤ 𝛼,	set	𝒑𝒊 = 𝒑∗.	If	𝑦 > 𝛼,	set	𝒑𝒊 = 𝒑𝒊!𝟏.	296	
5. Repeat	steps	2	to	4	for	𝑖 = 1,… ,𝑁	to	collect	{𝒑𝟏,… ,𝒑𝑵}	as	a	sampling	from	297	

the	target	distribution.	298	

In	the	canonical	version	of	the	MH	algorithm	𝛼	is	independent	of	the	proposal	299	
distribution	𝑄	because	it	is	symmetric	and	cancels	out	of	the	equation.	In	the	300	
modified	version	above,	𝑄! is	unknown	and,	in	fact,	is	unlikely	to	be	symmetric.	In	301	
order	to	proceed	we	assume	that	𝑄! is	approximately	symmetric		302	
𝑄! 𝒑∗,𝒑𝒊!𝟏 ~𝑄! 𝒑𝒊!𝟏,𝒑∗ ,	so	that	we	can	calculate	𝛼	as	above.	Because	of	this	303	
approximation	it	is	still	necessary,	following	our	previously	published	algorithm,	to	304	
apply	acceptance-rejection	sampling	to	finalize	the	Vpop	from	the	plausible	305	
population. 306	

4.6 Assessing	Similarity	Between	VPs	307	

It	is	desirable	to	examine	the	parameter	space	in	the	Vpop	to	ensure	heterogeneity	308	
of	the	VPs	(while	still	reproducing	available	data).	The	baseline	method	ensured	this	309	
diversity	by	generating	VPs	independently	and	from	different	initial	parameter	310	
estimates.	However,	this	is	not	necessarily	the	case	for	the	GA	and	MH	methods.		311	

To	assess	the	diversity	of	a	Vpop	we	devised	a	test	metric	𝑑(𝒑𝒊,𝒑𝒋)	which	scores	312	
how	similar	two	VPs	are.	By	randomly	sampling	pairs	of	VPs	from	a	given	Vpop,	we	313	
built	up	a	distribution	for	𝑑	and	could	compare	the	resultant	cumulative	density	314	
function	(CDF)	for	each	method.	The	test	metric	𝑑	is	simply	the	normalized	dot-315	
product	of	𝒑𝒊	and	𝒑𝒋	after	they	are	scaled	and	shifted:	316	

𝑑 𝒑𝒊,𝒑𝒋 = 𝒑𝒊.𝒑𝒋
𝒑𝒊 𝒑𝒋

𝒑 = diag(𝑽!𝟏 𝒑− 𝒍 )− !
!

		 (12)	317	

where	𝑽	is	a	diagonal	matrix	such	that	𝒗𝒊𝒊 = 𝒖𝒊 − 𝒍𝒊.	Hence,	diag(𝑽!𝟏 𝒑− 𝒍 )	uses	318	
the	defined	upper	and	lower	bound	for	each	parameter	(the	elements	of	𝒖	and	𝒍	319	
respectively),	to	scale	each	parameter	in	𝒑	to	be	between	0	and	1.	To	ensure	that	320	
𝑑 ∈ [−1,1]	we	further	subtract	½		from	each	element.	This	means	that,	in	principle,	321	
𝒑	can	be	orientated	in	any	direction	in	𝑚-dimensional	space	(where	𝑚	is	the	322	
number	of	parameters).	This	also	means	that	if	the	elements	of	𝒑	are	sampled	323	
uniformly	between	the	upper	and	lower	bounds	that,	by	symmetry,	the	expected	324	
value	of	the	distribution	should	be	zero	(i.e.,	the	CDF	crosses	0.5	at	𝑑 = 0).	This	is	325	
the	optimal	parameter	set	in	terms	of	diversity,	but	may	not	be	achievable	given	the	326	
constraints	applied	to	the	model.	Conversely,	if	we	generate	Vpops	from	very	similar	327	
parameter	sets	then	the	distribution	will	be	right-shifted	towards	𝑑=1.   328	
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4.7 Assessing	Goodness	of	Fit	329	

The	goodness	of	fit	(GoF)	to	the	empirical	target	distribution	was	assessed	by	using	330	
the	Kolmogorov-Smirnov	statistic	for	the	marginal	distribution	over	each	331	
dimension:	332	

GoF =  sup	 𝐹! 𝑥 − 𝐷!(𝑥) 		 (13)	333	

where		𝐹! 𝑥 	is	the	empirical	cumulative	distribution	function	for	the	𝑖!!	model	334	
observable	that	we	are	fitting	the	observed	cumulative	distribution	of	the	data,	335	
𝐷! 𝑥 .	Note	that	for	a	perfect	fit	GoF=0,	and	that	GoF	∈ 0,𝑛 ,	where	𝑛	is	the	number	336	
of	distributions	being	fitted.	337	

4.8 Source	Code	and	Simulations	338	
All	algorithms	were	implemented	in	MATLAB	2016b	(v9.1)	using	the	Global	339	
Optimization	Toolbox	(v3.4.1)	where	a	pre-packaged	routine	was	available	(e.g.,	GA,	340	
SA).	The	ODE	model	was	implemented	in	SimBiology	(v5.5).	The	K-S	Test	for	GoF	341	
utilizes	MATLAB’s	Statistics	and	Machine	Learning	Toolbox	(v11.0).	The	full	source	342	
code	is	available	for	download	from	a	GitHub	repository	(Rieger	and	Allen	2017).	343	
The	source	code	utilizes	three	independent	packages	from	MathWorks	File	344	
Exchange	(Johnson	2004,	Jos	2016,	Dorn	2017).	345	
	346	
All	simulations	were	performed	sequentially	on	a	MacBook	Pro	with	a	2.9	GHz	Intel	347	
Core	i7	processor	and	16	GB	of	RAM.	For	each	choice	of	algorithm	and	pre-set	348	
number	of	PPs,	simulations	were	repeated	five	times	and	the	mean	and	standard	349	
deviation	calculated.	350	

5 Results	351	
5.1 Comparing	the	various	algorithms	352	

To	compare	the	three	proposed	algorithms	(NSA,	GA	and	MH)	we	evaluated	four	353	
metrics	to	measure	performance	of	the	algorithm	compared	to	the	original	SA	354	
method.	For	each	algorithm,	we	evaluated:	355	

1. Efficiency:	How	many	PPs	were	needed	to	achieve	a	certain	GoF	of	the	final	356	
Vpop	to	the	observables?	357	

2. Computational	Cost:	How	fast	was	the	generation	of	PPs	and	VPs?	358	
3. Diversity:	Are	the	VPs	parametrically	similar	or	do	they	maintain	the	359	

parametric	heterogeneity	of	the	PPs?	360	
4. Convergence:	Do	the	methods	benefit	from	the	acceptance/rejection	step	or	361	

can	a	Vpop	be	generated	directly?	362	
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5.2 Comparison	of	algorithms	for	efficiency	of	yield	363	

For	each	algorithm,	we	targeted	generation	of	between	100	and	7,500	total	PPs;	364	
those	PPs	were	then	converted	into	VPs	through	the	acceptance/rejection	365	
algorithm.	The	GoF	of	the	resulting	Vpop	was	calculated	as	discussed	in	Methods.	By	366	
comparing	the	GoF	achieved	for	the	Vpops	with	varying	PPs	(Figure	2)	we	find	that	367	
as	the	number	of	PPsà5,000+,	all	of	the	algorithms	generated	essentially	368	
indistinguishable	GoFs	for	the	final	Vpop	(albeit	with	different	VPs	in	each	Vpop).	369	
However,	the	three	new	algorithms	were	more	efficient	than	the	original	SA	method,	370	
especially	when	the	number	of	PPs	<	1,000.	In	fact,	Vpops	generated	with	as	few	as	371	
100	PPs	could	have	similar	fits	to	the	observable	data	as	the	SA	method	with	500+	372	
PPs.		373	

5.3 Comparison	of	algorithms	for	computational	cost	374	

Even	if	an	algorithm	can	generate	the	same	GoF	through	far	fewer	PPs	than	the	375	
original	SA	algorithm,	this	does	not	necessarily	mean	the	process	was	376	
computationally	more	efficient.	We	further	compared	each	method	based	on	the	377	
clock	time	(evaluated	via	MATLAB’s	tic/toc	functions)	required	to	generate	a	Vpop	378	
from	7,500	PPs	(Figure	3).	While	the	NSA	method	was	arguably	superior	based	on	379	
yield,	this	algorithm	required	approximately	the	same	amount	of	time	to	execute	as	380	
the	SA	method.		Based	on	time,	the	MH	and	GA	were	the	fastest	algorithms	and	the	381	
SA	remains	among	the	least	efficient.	382	

5.4 Comparison	of	algorithms	for	parametric	diversity	of	the	final	Vpop	383	

An	advantage	of	the	SA	algorithm	is	its	ability	to	generate	Vpops	that	maintain	most	384	
of	the	parametric	diversity	of	the	original	PPs	(Supplementary	Figure	S2-3).		This	385	
diversity	in	the	Vpop	is	an	essential	feature	for	QSP	models	since	they	are	often	386	
utilized	in	simulation	of	clinical	trials	involving	novel	therapies.	If	the	underlying	387	
parameters	of	VPs	are	highly	similar/correlated,	clinical	trial	simulations	performed	388	
with	the	Vpop	may	incorrectly	predict	a	very	narrow	range	of	therapeutic	response.	389	
Therefore,	we	need	to	ensure	that	as	we	introduce	new	algorithms,	we	do	not	trade	390	
parametric	diversity	for	computational	gains.	We	measured	the	diversity	of	the	391	
Vpops	generated	by	each	algorithm	by	uniformly	sampling	pairs	of	VPs	and	392	
calculating	the	dot	product	between	each	set	of	parameters	(see	Methods).	As	a	393	
reference	point/positive	control,	we	included	a	set	of	uniformly,	randomly	394	
generated	model	parameters	(Figure	4).	The	closer	each	algorithm’s	final	VP	395	
parameter	distribution	is	to	the	random	reference,	the	more	diverse	we	considered	396	
the	set	of	VPs	in	the	Vpop.	For	this	criterion,	the	SA	method	was	found	to	have	the	397	
most	diversity,	indistinguishably	followed	by	NSA	and	MH.	The	GA	method	showed	398	
distinct	rightward	shifts	in	its	distribution,	indicating	that	fewer	independent	399	
parameter	sets	were	identified	in	the	generation	of	the	Vpops.		Supplementary	400	
figures	show	the	violin	plot	for	each	method	for	both	the	PPs	and	VPs	for	a	single	401	
iteration	(Supplementary	Figures	S3,	S5,	S7,	and	S9).	402	
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5.5 Convergence	of	the	algorithms	to	the	data	403	

In	contrast	to	the	original	SA	method,	each	of	the	methods	tested	use	information	404	
about	the	desired	population	distribution	and	thus	requires	fewer	PPs	to	achieve	an	405	
acceptable	fit	for	the	Vpop	(Figure	2).	To	evaluate	if	the	final	selection	step	was	still	406	
required	as	part	of	the	algorithm	workflow,	we	compared	the	GoF	for	each	of	the	407	
methods	before	and	after	the	acceptance/rejection	step,	starting	with	~7,500	PPs	in	408	
each	case	(Figure	5).	As	expected,	the	largest	improvement	in	Vpop	fit	from	the	PPs	409	
to	VPs	was	for	the	SA	method;	however,	all	of	the	methods	showed	at	least	a	3-fold	410	
improvement	in	GoF	through	the	final	selection	step.	The	NSA	method	showed	the	411	
best	initial	fit	for	its	PPs	to	the	NHANES	data,	reasonably	reproducing	both	the	1-412	
dimensional	and	2-dimensional	histograms	before	the	selection	step	(Figure	S3A-F).	413	
These	fits	were	approximately	equivalent	to	the	final	Vpop	fit	for	the	SA	method	414	
starting	with	1,000	PPs.	415	

6 Discussion	416	

By	design,	most	quantitative	systems	pharmacology	models	are	not	identifiable	417	
from	available	data.	While	it	would	be	desirable	to	have	parameters	well	418	
determined	and	characterized,	the	uncertainty	in	parameter	values	in	QSP	models	419	
often	reflects	our	current	knowledge	(or	lack	thereof)	of	human	(patho)-physiology.	420	
Therefore,	with	this	perspective,	we	can	use	these	models	in	a	hypothesis-421	
generation/testing	mode	to	explore	how	these	knowledge	gaps	translate	to	422	
uncertainties	in	clinical	outcomes	and	clinical	trial	design.	In	our	opinion,	the	most	423	
thorough	and	robust	way	of	doing	this	is	by	generating	the	most	diverse	Vpops	424	
given	the	available	data.					425	

Exploring	the	parameter	space	of	under-determined	quantitative	systems	426	
pharmacology	models	remains	a	challenge	but	it	is	essential	for	robust	predictions	427	
of	safety	and	efficacy	for	novel	compounds.	Here	we	presented	three	methods	for	428	
generating	diverse	parameter	sets	in	a	QSP	model.	While	this	exercise	is	by	no	429	
means	an	exhaustive	exploration	of	global	optimization	techniques,	each	algorithm	430	
improved	at	least	one	of	the	testing	metrics	compared	to	our	previously	published	431	
SA	method.	The	seemingly	simple	question	of	which	method	is	“the	best”	cannot	be	432	
definitively	answered	here	but	it	is	important	to	be	aware	of	the	pros	and	cons	for	433	
each	and	potential	steps	to	improve	performance.	434	

We	previously	discussed	the	advantages	and	disadvantages	of	using	the	SA	method	435	
for	this	application	(Allen,	Rieger	et	al.	2016).	In	comparison	to	other	methods	436	
tested	it	was	the	slowest	(or	tied	with	NSA)	and	required	the	most	PPs	for	a	quality	437	
fit.	Conversely,	it	also	generated	the	most	diverse	Vpop	with	the	fewest	imposed	438	
correlations.	The	ease	of	implementation	is	also	an	advantage	for	SA.	As	439	
implemented,	the	algorithm	required	no	prior	knowledge	of	the	final	Vpop	440	
distribution	and	there	was	a	minimal	set	of	tuning	parameters	required,	most	of	441	
which	were	default	MATLAB	options	(i.e.,	no	arbitrary	decision	about	number	of	442	
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ellipsoids,	number	of	generations).	As	such,	the	algorithm	remains	relevant	as	a	443	
“first	try”	for	generating	VPs.	Furthermore,	it	is	the	only	method	that	can	be	run	(at	444	
least	in	part)	without	prior	knowledge	of	the	target	distribution.	This	relaxed	445	
requirement	can	make	it	an	attractive	choice	for	pre-computing	plausible	446	
populations	or	for	exploring	how	the	parameter	space	relates	to	the	model	output	447	
(for	example,	identifying	parameters	in	the	model	that	can	give	rise	to	sub-448	
populations	of	interest).			449	

The	NSA	approach	iterates	on	the	SA	method	by	utilizing	prior	knowledge	of	the	450	
final	parameter	distribution	and	forcing	the	algorithm	to	regions	with	the	most	451	
desired	patient	density.	This	method	is	likely	most	efficient	when	the	target	452	
distribution	is	approximately	multivariate	normal.	Fortunately,	for	the	example	453	
here,	the	target	distribution	was	well	approximated	as	a	multivariate	lognormal.	454	
The	viability	of	this	method	for	more	eccentric	or	bimodal	distributions	would	need	455	
to	be	studied	by	applying	it	to	other	case	studies.	However,	such	distributions	are	456	
less	commonly	observed	in	clinical	trials.	For	our	case	study,	the	computational	cost	457	
to	generate	a	plausible	population	was	comparable	between	the	NSA	and	SA	458	
methods;	however,	the	NSA	approach	demonstrated	vastly	improved	yield	(VP	per	459	
PP),	which	facilitated	an	overall	more	efficient	Vpop	generation	process.	The	460	
algorithm	was	as	good,	or	better,	than	the	other	methods	tested	for	direct	461	
generation	(pre-selection/rejection)	of	a	reasonable	Vpop,	without	the	imposed	462	
correlations	found	in	Vpops	generated	by	GA.	While	essentially	the	same	as	the	SA	463	
method	to	implement,	there	is	a	problem-specific	choice	for	the	number	of	ellipsoids	464	
to	use.	Here	we	used	five	regions,	regardless	of	the	number	of	PPs	being	generated.	465	
Fine-tuning	based	on	the	model/number	of	PPs	may	potentially	improve	466	
performance.	467	

MH	is	unique	amongst	the	approaches	we	tried	in	that	it	is	a	Markov	Chain,	which	468	
should	imply	some	degree	of	correlation	between	the	PPs.	The	advantage	of	this	469	
technique	was	an	increase	in	speed	and	compared	to	the	two	methods	based	on	SA;	470	
however,	there	also	was	a	right-shift	in	the	dot	product	cumulative	distribution,	471	
implying	a	slightly	less	diverse	final	population.	Methods	have	been	published	to	472	
attempt	to	reduce	this	correlation	(Santoso,	Phoon	et	al.	2011)	and	to	improve	473	
performance	in	higher	dimensions	(Betancourt	2017),	but	we	chose	to	evaluate	only	474	
the	common	form	of	the	algorithm	and	to	leave	further	exploration	for	future	475	
improvements.		While	straightforward	to	implement,	MH	requires	the	choice	of	a	476	
proposal	distribution.	As	noted	in	the	Methods,	because	we	indirectly	sample	the	477	
distribution	of	the	observables	by	first	sampling	the	parameter	space	and	then	478	
generate	the	observables	through	model	simulation	we	do	not	have	direct	control	479	
over	the	choice	of	a	proposal	distribution.	The	implications	of	this	for	direct	480	
convergence	of	this	method	will	depend	on	the	symmetry	of	the	observable	481	
distribution	(induced	by	the	parameter	sampling)	around	every	point	on	the	482	
Markov	chain.	In	this	case,	the	approximation	we	assumed	(see	Methods)	appeared	483	
to	hold	sufficiently	for	the	MH	algorithm	to	approximate	the	empirical	distributions.	484	
However,	the	final	Vpop	was	improved	by	acceptance/rejection	sampling.		485	
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The	GA	was	very	similar	to	MH	in	that,	compared	to	the	SA-based	methods,	a	10-fold	486	
improvement	in	computational	speed	was	achieved	at	the	cost	of	some	lost	487	
heterogeneity	in	the	final	Vpop.	The	GA	is	easy	to	implement	for	QSP	models	and	the	488	
supplied	routine	with	MATLAB’s	Global	Optimization	Toolbox	was	sufficient	for	our	489	
purposes.	GA	requires	some	problem-specific	decisions,	which	may	affect	overall	490	
performance;	for	example,	the	size	of	the	population,	number	of	generations,	and	491	
mutation	rate	can	be	adjusted	as	needed.		492	

The	curse	of	under-determined	models	has	led	to	a	long	history	of	using	different	493	
global	optimization	techniques	for	generating	parameter	sets	within	the	bounds	of	494	
the	data	(van	de	Pas,	Woutersen	et	al.	2012,	Gadkar,	Budha	et	al.	2014,	Hallow,	Lo	et	495	
al.	2014).	Use	of	global	optimization	techniques	often	feels	like	more	of	an	art	than	a	496	
science	due	to	how	problem-specific	their	application	can	be.	For	this	reason,	we	497	
examined	several	algorithms	with	different	approaches	for	exploring	constrained,	498	
multidimensional	parameter	spaces.	Requiring	only	minimal	tuning,	each	of	these	499	
algorithms	successfully	explored	the	range	of	our	23-dimensional	parameter	space	500	
and	generated	reasonable	PPs.	The	choice	of	algorithm	to	use	for	a	new	problem,	501	
particularly	one	with	higher	dimensions	and	a	less	Gaussian	set	of	observations,	will	502	
need	to	be	evaluated	on	a	case-by-case	basis.	For	example,	for	models	that	are	slow	503	
to	simulate	the	most	constraining	factor	is	computational	cost.	In	this	case	the	MH	504	
or	GA	approaches	may	be	the	most	successful;	however,	as	we	have	shown,	without	505	
adaptation	these	methods	may	come	at	a	cost	of	diversity	in	the	final	Vpop.		506	

We	hope	that	the	results	presented	here	will	provide	a	guide	to	selection	and	507	
implementation	of	these	algorithms	to	facilitate	the	generation	of	robust	Vpops	in	508	
mathematical	models	of	(patho)-physiology.			509	
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12.1 Flowchart	of	algorithm	585	
	586	
Figure	1.	Flowchart	of	algorithm.	The	initial	problem	setup	is	shared	by	each	of	the	587	
methods	attempted,	where	biologically	plausible	ranges	are	placed	on	model	588	
parameters	and	states.	Once	the	problem	is	setup,	the	generation	of	plausible	589	
patients	is	carried	out	by	one	of	four	algorithms.	Post-plausible-patient	generation,	590	
each	algorithm	follows	the	same	acceptance/rejection	sampling	steps	to	create	the	591	
virtual	population.	592	

12.2 Goodness-of-fit	vs.	number	of	plausible	patients	593	
	594	
Figure	2.	Goodness-of-fit	(lower	number	is	better)	of	the	final	virtual	population	vs.	595	
the	number	of	plausible	patients	generated	for	each	method.		Shown	is	596	
mean±standard	deviation	of	5	runs.	SA	=	simulated	annealing	(blue	circles),	NSA	=	597	
nested	simulated	annealing	(red	squares),	MH	=	Metropolis-Hastings	(yellow	598	
diamonds),	GA	=	genetic	algorithm	(purple	x’s).	599	

12.3 Comparison	of	VP	and	PP	generation	time	for	each	method	600	
	601	
Figure	3.	Comparison	of	the	time/plausible	patient	(open	bars)	or	time/virtual	602	
patient	(filled	bars)	for	each	method.	For	each	method,	~7,500	plausible	patients	603	
were	generated	and	then	a	virtual	population	was	selected	from	those	plausible	604	
patients.	Shown	is	mean±standard	deviation	of	5	runs.	Time	was	calculated	via	the	605	
functions	tic/toc	in	MATLAB.	SA	=	simulated	annealing	(blue),	NSA	=	nested	606	
simulated	annealing	(red),	MH	=	Metropolis-Hastings	(yellow),	GA	=	genetic	607	
algorithm	(purple).	608	

12.4 Diversity	of	VPs	in	final	Vpops	609	
	610	
Figure	4.	Cumulative	distribution	vs.	the	dot-product	of	the	vector	of	virtual	611	
patients’	(VPs)	parameters	to	assess	the	diversity	of	parameter	values	in	the	virtual	612	
population.	For	each	method,	50,000	dot-products	of	randomly	chosen	VPs	were	613	
calculated	and	the	cumulative	distribution	plotted.	Shown	is	mean±standard	614	
deviation	of	5	runs.	As	a	positive	control,	a	set	of	parameters	from	a	uniform	615	
distribution	was	generated	(solid,	black	line).	Distributions	closer	to	the	uniform	616	
random	control	indicate	a	more	diverse	set	of	VPs.	Distributions	skewed	towards	617	
the	right	indicates	a	more	uniform	set	of	VPs.	SA	=	simulated	annealing	(blue	circles,	618	
solid),	NSA	=	nested	simulated	annealing	(red	squares,	dashed),	MH	=	Metropolis-619	
Hastings	(yellow	diamonds,	dotted),	GA	=	genetic	algorithm	(purple	x’s,	dashed).	620	

12.5 Efficiency	of	the	acceptance/rejection	algorithm	621	
	622	
Figure	5.	Improvement	of	goodness-of-fit	(lower	number	is	better)	from	the	623	
plausible	patients	(open	bars)	à	virtual	patients	(filled	bars)	for	each	method	624	
starting	from	~	7,500	plausible	patients.	Shown	is	mean±standard	deviation	of	5	625	
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runs.	SA	=	simulated	annealing	(blue),	NSA	=	nested	simulated	annealing	(red),	MH	626	
=	Metropolis-Hastings	(yellow),	GA	=	genetic	algorithm	(purple).	627	
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