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1 Abstract

Neural mass models are accepted as efficient modelling techniques to model empirical obser-
vations such as disturbed oscillations or neuronal synchronization. Neural mass models are
based on the mean-field assumption, i.e. they capture the mean-activity of a neuronal popula-
tion. However, it is unclear if neural mass models still describe the mean activity of a neuronal
population when the underlying neural network topology is not homogenous. Here, we test
whether the mean activity of a neuronal population can be described by neural mass models
when there is neuronal loss and when the connections in the network become sparse. To this
end, we derive two neural mass models from a conductance based leaky integrate-and-firing
(LIF) model. We then compared the power spectral densities of the mean activity of a network
of inhibitory and excitatory LIF neurons with that of neural mass models by computing the
Kolmogorov-Smirnov test statistic. Firstly, we found that when the number of neurons in a
fully connected LIF-network is larger than 300, the neural mass model is a good description of
the mean activity. Secondly, if the connection density in the LIF-network does not exceed a
crtical value, this leads to desynchronization of neurons within the LIF-network and to failure
of neural mass description. Therefore we conclude that neural mass models can be used for
analysing empirical observations if the neuronal network of interest is large enough and when
neurons in this system synchronize.

Key words: neural mass, leaky integrate-and-firing model, mean-field approximation
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2 Introduction

There is an increasing need in neuroscience to comprehend the enormous amount of empirical
data obtained with neuroimaging modalities such as fMRI and MEG/EEG by means of theo-
retical analysis. Computational approaches such as neural mass models are widely used in this
context (Deco et al., 2008). The advantage of neural mass models is that they simulate the
average activity of all neurons in a neuronal population, and thereby avoid the overwhelming
detailed behaviour of all individual neurons in a neuronal population. However, neural mass
models are based on a mean-field approximation, which assumes homogeneity of the underly-
ing neuronal population. As realistic neuronal populations are naturally inhomogeneous, it is
unclear to what extent neural mass models are able to capture the average activity of these
realistic populations.

The mean field approximation has its roots in statistical physics where it is often applied to
reduce many body systems to low dimensional systems (Landau and Lifshitz, 1968). For in-
stance, mean-field theory has been used in ising spin systems to replace individual interactions
between atomic spins by an effective mean-field which accounts for the average interaction over
all local atomic spins. However, it is known from these systems that a mean-field description
fails when this average interaction term is dependent on spatial location (e.g. inhomogeneity),
when fluctuations around this average are large or when the size of the system becomes too small.

Mean-field theory has been widely applied in neuroscience where the underlying assumption
is it that each neuron in a neuronal population can be described by equivalent statistics and
that each neuron converges to the same attractor in phase space (Deco et al., 2008). This
allows to describe the dynamics of neuronal population by a limited number of time dependent
variables corresponding to the average dynamics of the population (Baladron et al., 2012). The
very first studies in neuroscience demonstrated analytically that the mean-field approximation
was valid for homogenous neural networks when the numbers of neurons tend to infinity (Amari,
1972; Amari et al., 1977). Ever since, numerous studies have analysed the mean-field in neural
networks under diverse conditions such as in finite neural networks (Mattia and Del Giduice,
2002; Touboul and Ermentrout, 2011), with different connectivity patterns (Cessac and Vieville,
2013; Moynot and Samuelides, 2002; Samuelides and Cessac, 2007; Brunel and hakim, 1999;
Cessac, 1995), using different single-cell neuronal models (Abbot and Vreeswijk, 1993; Cessac,
2008; Treves, 1993)), using realistic parameter regimes (Grabska-Barwinska and Latham, 2013),
or as a function of time (Molgedey et al, 2013; Moynot and Samuelides, 2002), the so-called
dynamic mean-field approaches.

Despite the large number of previous studies on mean-field approaches in neural networks,
both the derivation of neural mass models from single-cell neuronal models and the effect of
mean-field approximations involved in this derivation to describe the average activity of re-
alistic inhomogeneous neuronal populations are not fully elucidated (Breakspear et al., 2003;
Faugeras et al., 2009; Wong and Wang, 2006). In notable work by Rodrigues and colleagues
(2010), two mappings between conductance based leaky integrate-and-fire (LIF) neurons and a
commonly used neural mass model were introduced that allowed for an interpretation of model
characteristics between the two scales (Rodrigues et al., 2010). The two models were based on
different assumptions with regard to the time scales of the membrane and synaptic activities
of neurons, as these time scales were either considered similar or dissimilar. Irrespective of the
assumption related to these time-scales, both models resulted in a neural mass model similar
to that of the well-known Freeman model (Freeman, 1975). Although these findings form a
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basis for future research, neurons in the simulated neuronal populations in this study were kept
in a non-spiking regime which is not a realistic representation of the underlying physiology as
spiking is a prerequisite for neuronal populations to communicate between each other.

In the present study we build upon the work of this previous study and compare neural mass
signals with the average signal of inhomogeneous neuronal populations in which individual neu-
rons operate in the spiking regime (Rodrigues et al., 2010). Our main objective is to analyse
what the effect of mean-field approximations are for neural mass models when the underlying
neuronal population is inhomogeneous. In addition, we investigate the lower limit of neuronal
network size for which a neural mass description is still valid. In this study, we use a network
of conductance based inhibitory and excitatory LIF neurons to model a neuronal population
and we derive two neural mass models from the LIF model. Since it is extremely challenging to
solve this comparison problem analytically, we adopt a numerical approach to compare average
signals from neuronal populations with neural mass signals. During these analyses, we either
decrease the number of neurons or decrease the number of connections in the neuronal popu-
lation for different network topologies. Lastly, we hypothesize that a discrepancy between the
average signal of a neuronal population and the neural mass signal can potentially be explained
by desynchronization between neurons in the neuronal population.
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3 Neuronal models

3.1 Network of leaky integrate-and-fire neurons

We consider a population of N LIF neurons (Rudolph-Lilith et al., 2012). A LIF neuron can
be regarded as a parallel electric circuit with a resistor, capacitor C and an external input
current Jext. Every neuron is described in terms of the dynamics of its membrane potential
Vj with j = 1, ..., N and its time-dependent synaptic conductances. Conductances are denoted

as g
(α)
j for every neuron j, which alter due to incoming spikes. Synapses are either excitatory

or inhibitory and can be discriminated by α, where α ∈ {E, I}. We assume that Vj obeys the
stochastic dynamics

dVj = −1

τ

[
(Vj − Vmem +

∑
α

g
(α)
j

g0
(Vj − V (α)

syn )− Jext,j
C

]
dt+ σ

√
2τdWj (1)

with fixed resting state potential Vmem and reversal potentials V
(α)
syn . g0 is the leak conductance

that is considered constant and τ is the membrane time constant. Both constants are assumed
to be identical for all neurons. The membrane time constant τ is related by τ = C

g0
to the

capacitor and membrane conductance constant g0. τ determines the rise and decay of the
membrane potential and Jext,j refers to an external current on neuron j. Every neuron j is
under influence of zero-centered, δ correlated, Gaussian white noise Wj with unit variance, i.e.
that is E[Wj = 0 and E[Wj(t)Wj(t

′
)] = δjkδ(t − t

′
) where δkl is the Kroneckers delta function

and δ(t − t′) refers to Diracs delta-function. The noise strength σ is considered identical for
all neurons − see Table 1 for values of all constants (Vogels and Abbott, 2005). To simplify
our approach and to increase the interpretability of our analyses with previous LIF studies we
assume that conductances have an infinitely fast rising time (Yger et al., 2011). This can be
assumed if neurons of interest operate in the high frequency regime which is usually the case for
excitatory neurons and often also for inhibitory neurons (Creutzfeldt and Ito, 1968). Therefore,
the dynamics of the conductances can be described by a first order response and depend on the
incoming spikes as follows

dg
(α)
j = − 1

τ (α)

[
g

(α)
j − g(α)

0

(
φ

(α)
int,j + φ

(α)
ext,j

)]
. (2)

Here g
(α)
0 ∈ {g(E)

0 , g
(I)
0 } refer to constants related to the maximal conductance that serves to

discriminate between excitatory and inhibitory neurons. τ (α) determines the decay of synaptic

activity which is in general different for inhibitory and excitatory neurons. φ
(α)
int,j and φ

(α)
ext,j

corresponds to incoming firing rates from respectively internal and external sources. Due to
variation in synaptic conductances the membrane potential of neurons will fluctuate. If these
membrane potential fluctuations reach the threshold potential, the neuron spikes and the mem-
brane potential is set to a reset potential and kept in a short refractory state of 5 ms.

3.2 Neural mass models

We derive two neural mass models from the LIF neuronal model. See appendix B for a detailed
derivation of both neural mass models. Here, we briefly mention the assumptions and subse-
quent approximations that are necessary to obtain both neural mass models.
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For the first mapping we follow an approach introduced by Rodrgues and colleagues (2010).
Based on some experimental indications, the starting assumption here is that we assume that
membrane and synaptic time scales are of the same order of magnitude (Destexhe and Se-
jnowski, 2001; Gerstner and Kistler, 2002). We consider the expectation value of the membrane
potential V (from Eq. 1), main variable of interest, and the expectation values of the synap-
tic conductances g(α) and firing rates φint for inhibitory and excitatory neurons separately

(from Eq. 2). Subsequently, we assume that fluctuations of driving forces gj(Vj − V (α)
syn ) for

synaptic currents (in Eq. 1) are relatively small which allows for a mean-field approximation

(Vj − V (α)
syn ) ≈ (V̂ − V (α)

syn ) which simplifies the expression for V . Then, the next assumption
entails that time scales of synaptic activity are of the same order irrespective their type, which
allows us to combine excitatory and inhibitory synaptic activity into one description. These
assumptions lead to modified first order differential equations (for Eqs. 1 and 2 describing V
and g) and combining these yield a second order differential equation as description for our first
neural mass model (Freeman, 1975)

[
τsyn

d

dt
+ 1

] [
τ
d

dt
+ 1

]
V = Vmem −

∑
α

g
(α)
0

g0
(φ

(α)
int + φ

(α)
ext)(V̂ − V (α)

syn ) +
Jext
C

. (3)

Note that the index j is omitted in the equation as variable V does not corresponds to single
neurons anymore but to the expectation value of Vj and hence the neural mass. We further
ignored the reset-rule and the presence of a refractory period, incorporated in the initial LIF
equations, as we assume that the most important characteristics that need to be captured are
sub-threshold post-synaptic potentials of neurons in the neuronal population. Notice that our
first neural mapping model is identical to the widely known neural mass model of Freeman

(see Appendix B) (Freeman, 1975). φ
(α)
int and φ

(α)
ext in Eq. 3 refer to average firing incoming to

neurons in the population which are assumed to be deterministic and defined as

φ
(α)
int =

1

N

N∑
j=1

N∑
k=1

∑
m

A
(α)
jk δ(t− tk,m) and φ

(α)
ext =

1

N

N∑
j=1

N∑
k=1

∑
m

A
(α)
jk δ(t− text,m). (4)

Here, δt− t′ refers to the Diracs delta-function. tk,m is the time of the m-th spike of neuron k

and synapse j, k, α may also receive external input in the form of spikes at times text,j,k,m. A
(α)
j,k

is the adjacency matrix describing whether neuron k targets neuron j.

For the second mapping we question some of the key assumptions made in the first mapping
and therefore follow a different route. First of all, we question the assumption that driving
currents should be considered as constants. Related to this, it is not entirely clear in the former
approach why this assumption only applies to synaptic driving currents but not to the leaky
driving current. In the second neural mass mapping we follow neural-field like approach. Here,

we again consider the expectation values of Vj , g
(α), φ

(α)
ext and φ

(α)
intand similarly assume that time

scales of synapses agree irrespective of their type. We now combine both first order differential
equations of V and g(α), which results in a second order differential equation. The main approx-
imation related to neural field-theory is that we follow the assumption that the time scale of
the membrane potential is much smaller than the time scale of the synaptic conductivity. This
indicates that the membrane potential instantly follows changes at the synapse. Therefore, the
dynamics of the membrane potential can be eliminated adiabatically which eventually yields for
the mean membrane potential of the second neural mass model
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[
τsyn

d

dt
+ 1

] [
τ
d

dt
+ 1

]
V = Vmem −

∑
α

g
(α)
0

g0
(φ

(α)
int + φ

(α)
ext)(V − V (α)

syn ) +
Jext
C

. (5)

Qualitative difference to Eq. 3 is that Eq. 5 contains an extra parametric force term (φ
(α)
int +

φ
(α)
ext)(V −V

(α)
syn ) on the RHS due to which this no longer agrees with Freemans model. We again

assume that φ
(α)
int and φ

(α)
ext are considered to be deterministic and are defined similarly as in Eq. 4.

4 The LIF-network vs neural mass models

4.1 Simulation of average LIF-network signals

Simulation of a neuronal population of N LIF neurons was performed using Eqs. 1, 2, 12 and 15
with parameters defined as in table 1. Eqs. 12 and 15 can be found in the appendix and describe
the incoming firing rates to each neuron, and the reset and refractory rule, respectively. See
appendix C for the algorithm that was used for this purpose. For all simulations we used a ratio
of 5:1 for excitatory versus inhibitory neurons (Yger et al., 2011). We consider a 1D network
topology where connections between neurons were established using an adjacency matrix which
is based on the network configuration of interest (see below). Simulations were executed for
50 seconds with an integration time step of 0.1ms (i.e. a sample frequency of 10 kHz). We
used an initial transient current to all neurons of Jext,j = 20nA during the first 20ms of the
simulations to trigger network activity. We choose not add a constant external current input

Jext,j or an external firing input φ
(α)
ext,j during the whole simulation time since such an external

input would refer to neuronal influence from other populations or experimental stimuli which
needed to be excluded. Subsequently, we used an Euler forward method to solve the coupled
first order differential equations for synaptic conductances gj and an Euler forward method with
additive white noise in the Stratonovich picture to solve the stochastic differential equations for
the individual membrane potentials Vj . At the end of the simulations we stored all individual
spike times tj,m to compute the average firing and subsequently computed the average network

activity V̄ = 1
N

∑N
j=1 Vj . The average network activity was main variable of interest for the

LIF populations and their average firing rates were stored and used in subsequent neural mass
simulations.
We compared average network activity with our neural mass mapping for different network
conditions:

1. Effect of network size: We ran simulations for different network sizes given a fully con-
nected network configuration. Simulations were executed in steps of ∆N = 100 for
100 < N < 1000 and in steps of ∆N = 500 for 1000 < N < 10000.

2. Effect of network density: We ran simulations for three different network topologies:
regular networks, small-world networks and random networks for networks with a size
of N = 10000. Regular networks were defined as networks were the numnber of con-
nections was equal for every node. Small-world networks were obtained by randomly
rewiring a regular network with a probability of 0.1 and random networks were obtained
by simulating Erdös Rényi networks (Watts and Strogatz, 1998; Erdös Rényi, 1965). For
each network configuration we ran simulations for different network densities between
0 < density < 1.0. Networks were reconstructed using the contest toolbox for Matlab
(http ://www.mathstat.strath.ac.uk/outreach/contest/).
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4.2 Simulation of neural mass signals

We simulated neural mass signals by solving Eqs 3 (neural mass model 1) and 5 (neural mass
model 2) by using a conventional Euler forward method. To this end, parameters in table
1 were used and the synaptic time constant in the LHS of these equations was defined as
τsyn = (τ (E) + τ (I))/2. We used V̂ = 1

T

∫ T
0 V̄ dt for the mean potentials temporal average in

the RHS of Eq. 3. The input to both neural mass models was achieved by using the average

firing rates of the simulated LIF population in the RHS of Eqs 3 and 5 (φ
(α)
int ). Similar to the

simulations of the LIF-network activity we ignored external firing input φ
(α)
ext and the external

input current Jext. We again simulated 50 seconds of data for both neural mass models with
an integration time step of 0.1ms.

4.3 Comparing average LIF-network signals and neural mass signals

The neural mass signal V and the average network signal V̄ were compared by testing whether
the spectral contents of the signals differed. To this end, we compared the power spectral
densities of the two signals by means of the two-sided Kolmogorov-Smirnov (KS) test. The two
sided KS-test quantifies the distance between two empirical distibution functions and is sensitive
for differences in location and in the shape of the distribution functions. In order to compare
both signals, both signals were filtered using a Chebyshev low pass filter with a stop frequency
of 80Hz and a pass frequency of 70Hz. Subsequently, both signals were z-transformed to ensure
that the mean was zero-centered and sealing to unit variance. Power spectral densities were
computed using the Welch’s periodogram method with a window of 3 seconds and an overlap
of 0.4. See appendix C for the pseudo-code that was used to compare average network signals
with neural mass signals.

4.4 Synchronization properties of the LIF-network

We computed the phase locking value (PLV) between neurons in the LIF-networks to test
whether a discrepancy between average network signals and the neural mass signals could be
explained by desynchronization between neurons in the LIF-network (Mardia, 1972). For this
purpose we filtered the individual membrane potentials of neurons in the LIF-network with a
Chebyshev band-pass filter between 8-13 Hz. Subsequently, we computed the analytical signal
a(t) to extract the phase ϕ of the signals

ϕ(t) = arctan

(
im{a(t)}
Re{a(t)}

)
(6)

The PLV was then computed between neurons j and k in time interval T to determine the
amount of phase synchronization between signals of individual neurons

PLVj,k,t = T−1

∣∣∣∣∣
T∑
t=1

ei[ϕj(t)−ϕk(t)]

∣∣∣∣∣ . (7)

The PLV value between 1000 random pairs of neurons in the network was calculated. The mean
PLV and standard error was then computed and used for further analyses. All analyses were
executed using Matlab R2011b (Natick, Massachusetts: The MathWorks Inc., 2011).
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5 Results

5.1 Effect of network size

We simulated fully connected LIF-networks for a range of network sizes. For the first neural
mass model, we observed that there was discrepancy between the average network signal and
the neural mass signal when the number of neurons was less than 300 (Fig. 1C), i.e. in the lower
limit. Below the limit of 300 neurons, the Kolmogorov-Smirnov test statistic had a significant
p-value (p-value <0.05), indicating a difference between power spectral densities of the average
network signal and the neural mass signal. In Fig. 1E we show the power spectral densities with
confidence intervals belonging the neural mass signal (dashed lines) and the average network
signal (normal lines) for a LIF-network with 100 neurons. There is still an overlap between
the two in the higher alpha band and beta band regime but it can be observed that the neural
mass model failed for especially higher frequencies. For a LIF network of 2000 neurons it can be
observed that there was a large overlap between the confidence intervals of the power spectral
densities of the average network signal and the neural mass signal for a wide range of frequencies
(Fig. 1F). Only for the highest frequencies we observe a slight shift between the two.
For the second neural mass model, we again observe that there was a discrepancy between the
average network signal and the neural mass signal when the number of neurons was less than
300 (Fig 1D). Again we plotted the power spectral densities with confidence intervals below
the limit of 300 neurons and observe a discrepancy between the average network signal and the
neural mass signal for a large amount of the frequency range (Fig 1G.). There was overlap only
in the alpha frequency range. For a LIF network of 2000 neurons we again observed a large
overlap between the confidence intervals, except for the highest frequencies.
For both neural mass models we observe that the Kolmogorov-Smirnov test statistic has local
minima for networks between 500 and 1000 neurons. For larger network sizes, we observed that
the Kolmogorov-Smirnov test statistic increased as a function of number of neurons, though
not reaching significance.

5.2 Effect of network density

For three different network configurations (regular, small world and random network topology)
we assessed the effect of decreasing the density of connections in the LIF-network on the ability
of the neural mass model to describe the average network signal. Since we obtained similar
results for neural mass model 1 and neural mass model 2 in the previous analyses, we continued
these analyses by using neural mass model 1 only due to less computational expense of neural
mass model 1.
For the LIF-network with a regular network topology we observed that there was a significant
difference between the average network signal and the neural mass signal when the density of
connections in the LIF-network was smaller than 0.9 (Fig. 2A). For LIF-networks with small
world and random network topology we also observed a critical density below which there is
a discrepancy between the average network signal and the neural mass model. These critical
densities were 0.85 and 0.05 for the small world and random LIF networks respectively (Fig 2B
& 2C). By analyzing the PLV in the LIF-networks as a function of connection density we also
observed that there was an instantaneous shift to larger PLVs if the densities were higher than
the aforementioned critical densities. Note that the increase in PLV beyond these thresholds
was relatively small (in order of 0.1-0.2), but appeared to be instantaneous. When inspecting
the power density spectra of the average network signal and neural mass signal we observed a
large overlap between the confidence intervals of the average network signal and neural mass
signal after the critical densities for any network configuration (Fig. 3BDF). Before the critical
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densities we again observed a small overlap especially in the alpha band for regular and random
networks (Fig. 3AE). However, for small world LIF-networks we found that there can be still
overlap between the confidence intervals up to frequencies in the beta band (Fig. 3C). For
higher frequencies we again observed that the confidence intervals diverge. For all network
configurations, there is higher prominence of higher frequencies in the average network signal
which is not captured by the neural mass signal.
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6 Discussion

In the present study we aimed to investigate whether the average network signal of a neuronal
poulation can be described by a neural mass signal when the underlying neuronal population
is inhomogeneous. Our main findings are: (1) for a fully connected neuronal network there is
a threshold for network size above which the neural mass model is capable of describing the
average network signal; (2) By decreasing the connection density in the neuronal network we
observed that for any topological configuration, there is a critical density below which there is a
discrepancy between the average network signal and the neural mass signal accompanied with
lower PLV values between neurons in the neuronal network; (3) this change in behaviour of the
average network signals was abrupt.

Firstly, we found that there is threshold for network size, 300 neurons, above which the neural
mass model is still a good description of the average network signal. We reproduced this finding
with both neural mass models. These present findings are in accordance with the concept of a
mean-field description, which is only valid when the number of elements in a system becomes
large. However, even for large network sizes, the neural mass model has difficulty in capturing
higher frequency components of the average network signal. When the number of neurons in the
fully connected neuronal network increased, the firing rate also increased, leading to higher fre-
quency components in the average network signal. However, fully connected neuronal networks
are often used in computational studies (Borgers et al. 2005; Deco et al. 2013; Nakagawa et al.
2013), but do not resemble realistic neurobiological networks often characterized by sparsity of
connections.

In our second analyses we found that if connections in neuronal network become too sparse
there was discrepancy between the average network signal and the neural mass model. There
was a critical density for all topological configurations, albeit these densities differed for the
different topological configurations as for random network topology this density was around 5%
in contrast to regular networks where this was 90% for a given network size. As this discrepancy
between the average network signal and neural mass around this critical density coincided with
a drop in PLV, we interpret these findings in the following way: synchronization of neurons in
a neuronal network is a prerequisite for a valid mean-field description by a neural mass model.
In all our simulations we obtained significantly different power spectral densities when we also
found low PLV values. This can be understood by the notion that a decrease of synchronization
between neurons in the neuronal network leads to a loss of simultaneous firing in the neuronal
network and the influence of noise for the behavior of individual neurons becomes relatively
larger. This leads to higher contribution of higher frequency components in the average net-
work signal which cannot be captured by the neural mass model. Our interpretation for a
requirement of a minimum amount of synchronization also explains why the density threshold
for random networks was much lower than for regular networks since it is well-known that
random networks are much easier to synchronize than regular networks (Barahona and Pecora
2002). Our hypothesis was further underpinned by the finding that for a larger random network
the critical density was a few percent lower. This can be explained by the fact that synchroniz-
ability of a network scales with network size (Belykh et al. 2005).

The neural mass models had especially difficulty in describing high frequency components of the
average network signal, especially when there was a drop in synchronization between neurons
in the neuronal network. This can be understood by the notion that neural mass models can be
considered as low-pass filters whose qualities are determined by the time constants (τ and τsyn).
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Changing these parameters will lead to a change in slope of the power density spectra of the
neural mass models. However, the range for which these time constants make physiologically
sense is limited and therefore this restricts possible parameter values.
In the present study we used two neural mass models derived from the same LIF model, but
based on different assumptions. In the first neural mass model we assumed that time scales of
the membrane potential and synaptic activity were of the same order and that driving currents

g
(α)
j (Vj − V (α)

syn ) could be considered constant. This is based on the idea that fluctuations of the
membrane potential around a reference value are small (Rodrigues et al. 2010). In the second
neural mass model we questioned the assumption that driving currents should be considered
constant and instead assumed that the time scale of the membrane potential was smaller than
the time scale of synaptic activity. This led to an extra force term in Eq. 5. During our sim-
ulations we observed that the behaviour of both neural mass models was highly similar when
we compared them to the average network signals, probably indicating that fluctuations of this
extra force in the second neural mass model were negligible. Another assumption in both neural
mass models was that communication between neurons was instantaneous and we ignored delays
involved in action potential propagation and in the time course of neurotransmitter transport
in synaptic clefts. The impact of delays was beyond the scope of the present paper and needs
to be analysed in future studies.

The present study has implications for future model studies that try to elucidate biophysi-
cal mechanisms of disturbed oscillatory activity in neurodegenerative disorders. If the system
of interest is large enough and not too sparse one can use neural mass models without concern
that the neural mass model will not be a good description of the mean-field. However, when
one is modelling relatively small networks and there is an indication of loss of connections be-
tween neurons, one should first check if the neurons in the underlying neuronal network are
synchronized. An exception for this rule is when one is interested in alpha band activity, as
we demonstrated that neural mass models were robust for this frequency range. Importantly,
neural masses are generally considered to simulate activity from cortical columns. A corti-
cal column consists of approximately 60.000-90.000 neurons/mm3 with a connection density of
11.05 · 108/mm3 (Huttenlocher 1979; Boucsein et al. 2011). Note that this connection density
may be around the critical threshold for networks with random network topology.

To conclude, we have used two mappings between a LIF-neuron and reduced neural mass
models. Average network signals based on activity of LIF-networks can be described by neural
mass models if the neurons in the network synchronize. Caution is needed when modelling neu-
rodegenerative diseases since it is not a priori certain that synchrony is unaltered by the disease.
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7 Appendix

7.1 Appendix A: A network of leaky integrate-and-fire neurons

We consider a population of N LIF neurons. Every neuron is described in terms of the dynamics
of its membrane potential Vj with j = 1, ..., N and with time-dependent synaptic conductances.

The latter alter due to incoming spikes. Conductances are denoted as g
(α)
jk , i.e. every neuron j

can be connected up to N other neurons by its synapses k with k = 1, ..., N . We discriminate the
type of synapse by superscript α, e.g. for excitatory and inhibitory synapses we use α ∈ {E, I}.
We assume that Vj obeys the stochastic dynamics

dVj = −1

τ

(Vj − Vmem +
∑
α

g
(α)
jk

g0
(Vj − V (α)

syn )− Jext,j
C

 dt+ σ
√

2τdWj (8)

with fixed resting state potential Vmem and reversal potentials V
(α)
syn . g0 is the leak conductance

that is considered constant and τ is the membrane time constant. Both constants are assumed to
be identical for all neurons. The membrane time constant τ is related by τ = C

g0
to the capacitor

and membrane conductance constant g0 and τ . A
(α)
jk is the adjacency matrix describing whether

neuron k targets neuron j

A
(α)
jk =

{
1 if neuron k targets neuron j
0 otherwise

(9)

Jext,j may be some external current on neuron j. Every neuron j is under influence of zero-
centered, δ correlated, Gaussian white noise Wj with unit variance, i.e. that is E[Wj = 0 and
E[Wj(t)Wj(t

′
)] = δjkδ(t − t

′
) where δkl is the Kroneckers delta function and δ(t − t′) refers to

Diracs delta-function. The noise strength σ is considered identical for all neurons − see Table 1
for values of all constants (Yger et al. 2011).The corresponding conductances can be described
by

dg
(α)
jk = − 1

τ (α)

[
g

(α)
jk − g

(α)
0

{∑
m

A
(α)
jk δ(t− tk,m) +

∑
m

δ(t− t(α)
ext,j,k,m)

}]
dt. (10)

g
(α)
0 ∈ {g(E)

0 , g
(I)
0 } are constants related to the maximal conductance that may serve to discrim-

inate between excitatory and inhibitory neurons. tk,m is the time of the m− th spike of neuron
k and, furthermore, synapsej, k, α may also receive external input in the form of spikes at times

t
(α)
ext,j,k,m. τ (α) determines the rise and decay of synaptic activity which is in general different for

inhibitory and excitatory neurons. Fortunately, we can simplify Eqs. (8 & 10) when defining

the total activity of the α-synapse of neuron j as gj =
∑N

k=1A
(α)
jk g

(α)
jk . Multiplying Eq. 10 with

A
(α)
jk and summation over k yields for neuron js total synapse dynamics

dg
(α)
j = − 1

τ (α)

[
g

(α)
j − g(α)

0

{∑
m

A
(α)
jk δ(t− tk,m) +

∑
m

δ(t− t(α)
ext,j,k,m)

}]
dt. (11)

because A
(α)
jk is nilpotent, i.e. A

(α)
jk A

(α)
jk = A

(α)
jk . For the sake of legibility we introduce abbrevi-

ations for the incoming firing rates, namely
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φ
(α)
int,j =

N∑
k=1

∑
m

A
(α)
jk δ(t− tk,m) and φ

(α)
ext,j =

N∑
k=1

∑
m

A
(α)
jk δ(t− text,j,k,m). (12)

with which Eq. 11 can be rewritten as

dg
(α)
j = − 1

τ (α)

[
g

(α)
j − g(α)

0

(
φ

(α)
int,j + φ

(α)
ext,j

)]
dt. (13)

By substitution of gj =
∑N

k=1A
(α)
jk g

(α)
jk into Eq. 8, this reduces the membrane potential Vj into

dVj = −1

τ

[
(Vj − Vmem +

∑
α

g
(α)
j

g0
(Vj − V (α)

syn )− Jext,j
C

]
dt+ σ

√
2τdWj . (14)

Finally, the capacitor is charged until the membrane potential Vj reaches a threshold, after
which spikes are emitted and at which we define

tk,m : {Vj ≥ Vthres} → {Vi = Vreset for ti,m ≤ t ≤ tmi + ∆trefract} (15)

Threshold and reset potential, Vthres and Vreset, respectively, as well as the refractory time
∆trefract, are considered identical for all neurons.

7.2 Appendix B: Derivation of the neural mass models

For the macro-scale we derive two neural mass models. Aim is to find the dynamics of the
expectation value of the mean membrane potential

V = E

 1

N

N∑
j=1

Vj

 =
1

N

N∑
j=1

E [Vj ] (16)

We define the expectation value of the mean synaptic conductivity as

g(α) = E

 1

N

N∑
j=1

g(α)

 =
1

N

N∑
j=1

E
[
g(α)

]
(17)

Here we assumed that E
[
d
dt

∑
j fj(t)

]
= d

dtE
[∑

j fj(t)
]

holds for all considered functions fj = Vj

and fj = g
(α)
j . If we now combine Eqs. 14, 16 and 17 we obtain an equation describing the

dynamics of the mean membrane potential V

[
τ
d

dt
+ 1

]
V = Vmem − E

∑
α

1

N

N∑
j=1

g
(α)
j

g0

(
Vj − V (α)

syn

)+
Jext
C

. (18)
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where we assumed that Jext = N−1
∑N

j=1 Jext,j is deterministic. Similarly, we can derive the
mean dynamics of the synpatic conductance if we define the expectation value of spiking be-
haviour

φ
(α)
int = E

 1

N

N∑
j=1

φNint,j

 =
1

N

N∑
j=1

E
[
φNint,j

]
and (19)

φ
(α)
ext = E

 1

N

N∑
j=1

φNext,j

 =
1

N

N∑
j=1

E
[
φNint,j

]
(20)

such that for we obtain an equation for the mean synaptic conductance by

[
τ (α) d

dt
+ 1

]
dg(α) = g

(α)
0

(
φ

(α)
int + φ

(α)
ext

)
. (21)

Aim of that follows is to substitute g
(α)
j in the equation for the mean membrane potential (Eq.

18). From here we follow two separate approaches to derive neural mass models.

Neural mass derivation 1
In this derivation we followan approach by Rodrigues and co-workers where it is assumed that

driving forces gj(Vj − V (α)
syn ) for all channels are constant (Moreno-Bote and Parga, 2005; Ro-

drigues et al., 2010). This is based on the assumption that fluctuations of these driving forces
are small. Therefore, we ise a general, finite value for V̂ . This leads to a mean-field approxima-

tion (Vj − V (α)
syn ) ≈ (V̂ − V (α)

syn ) . Now the mean mebrane potential’s dynamics (Eq. 18) reduces
to

[
τ
d

dt
+ 1

]
≈ Vmem − E

∑
(α)

1

N

N∑
j=1

g
(α)
j

g0

(
V̂ − V (α)

syn

)+
Jext
C

(22)

= Vmem −
∑
α

E

[
1
N

N∑
j=1

g
(α)
j

]
g0

(
V̂ − V (α)

syn

)
+
Jext
C

(23)

= Vmem −
∑
α

g
(α)
j

g0

(
V̂ − V (α)

syn

)
+
Jext
C

(24)

We further assume that the time scals of the mean membrane potantial and synaptic activity
are of the same order irrespective of their type (Destexhe and Sejnowski, 2001; Gerstner and
Kistler, 2002; Rodrigues et al., 2010). That is ∀ : τ (α) ≈ τsyn. This leads to

[
τsyn

d

dt
+ 1

]
g(α) =

[
τ (α) d

dt
+ 1

]
g(α) = g

(α)
0

(
φ

(α)
int + φ

(α)
ext

)
(25)

Note that the only difference between excitatory neurons/synapses is given through V
(α)
syn and
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g
(α)
0 . We further assumed that the external current to be constant by which

[
τsyn

d
dt + 1

]
Jext =

Jext holds. Then, combining Eqs. 24 and 25 yields

[
τ
d

dt
+ 1

] [
τsyn

d

dt
+ 1

]
V = Vmem−E

∑
α

1

N

N∑
j=1

g
(α)
j

g0

(
φ

(α)
int,j + φ

(α)
ext,j

)(
V̂ − V (α)

syn

)+
Jext
C

.

(26)

We further ignored the reset-rule and the presence of a refractory period, incorporated in the
initial LIF equations, as we assume that the most important characteristics that need to be
captured are sub-threshold post-synaptic potentials of neurons in the neuronal population. By
inspection we find that our first neural mass model is identical to the widely known neural mass
model of Freeman (Freeman, 1975)

[
d2

dt2
+ (α+ β)

d

dt
+ αβ

]
V = J (27)

when substituting α = τ−1, β = τ−1
syn and P = (ττsyn)−1 in the RHS of Eq. 27.

Neural mass derivation 2
Since we are not entirely certain about the validity of all assumptions made in the first neural

mass derivation, especially the assumption that the driving forces gj(Vj − V (α)
syn ) are constant,

we search for an alternative derivation. Now we start again with the equation describing the
dynamics of V , Eq. 18.

[
τ
d

dt
+ 1

]
V = Vmem − E

∑
α

1

N

N∑
j=1

g
(α)
j

g0

(
Vj − V (α)

syn

)+
Jext
C

. (28)

We now assume that the synaptic time scales of the excitatory and inhibitory conductances for
individual neurons are again in the same order of magnitude. This indicates that we can write

[
τsyn

d

dt
+ 1

]
g(α) ≈

[
τ (α) d

dt
+ 1

]
g(α) = g

(α)
0

(
φ

(α)
int,j + φ

(α)
ext,j

)
. (29)

If we now multiply Eq. 28 by the LHS of Eq. 29 then we can write

[
τsyn

d

dt
+ 1

] [
τ
d

dt
+ 1

]
V = Vmem−

∑
α

1

N

N∑
j=1

E

[[
τsyn

d

dt
+ 1

]
g

(α)
j

g0

(
Vj − V (α)

syn

)]
+
Jext
C

(30)

Subsequently, by using the product rule for differentiation this leads to
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[
τsyn

d

dt
+ 1

] [
τ
d

dt
+ 1

]
V = Vmem −

∑
α

1

N

N∑
j=1

E

[[
τsyn

d

dt
+ 1

]
g

(α)
j

g0

(
Vj − V (α)

syn

)]

−
∑
α

1

N

N∑
j=1

E

[
τsyn

g
(α)
j

g0

dVj
dt

]
+
Jext
C

.

(31)

Furthermore, by substituting the RHS of Eq. 29 in Eq. 31 we obtain

[
τsyn

d

dt
+ 1

] [
τ
d

dt
+ 1

]
V = Vmem −

∑
α

1

N

N∑
j=1

E
[
g

(α)
0

(
φ

(α)
int,j + φ

(α)
ext,j

)(
Vj − V (α)

syn

)]

−
∑
α

1

N

N∑
j=1

E

[
τsyn

g
(α)
j

g0

dVj
dt

]
+
Jext
C

.

(32)

Next we assume the firing rates to be deterministic. This allows for a mean-field approxi-

mation such that 1
N

∑N
j=1 E

[(
φ

(α)
int,j + φ

(α)
ext,j

)(
Vj − V (α)

syn

)]
=
(
φ

(α)
int + φ

(α)
ext

)(
V − V (α)

syn

)
can be

replaced in the first term of RHS of Eq. 32. To treat the final term of Eq. 32 we compare
the time scale of the membrane potential vis-a-vis with the synaptic conductivity. If the first is
considered to be much smaller than the latter, meaning that the membrane potential instantly
follows changes at the synapse, the dynamics of the membrane potential can be eliminated
adiabatically that might be formalized as

∣∣∣∣dVjdt /Vj
∣∣∣∣�

∣∣∣∣∣dg
(α)
j

dt

/
g

(α)
j

∣∣∣∣∣ =⇒
∣∣∣∣g(α)
j

dVj
dt

∣∣∣∣�
∣∣∣∣∣dg

(α)
j

dt
Vj

∣∣∣∣∣ . (33)

This allows for reducing Eq. 32 to

[
τ
d

dt
+ 1

]
V = Vmem − E

∑
α

1

N

N∑
j=1

g
(α)
j

g0

(
φ

(α)
int,j + φ

(α)
ext,j

)(
V − V (α)

syn

)+
Jext
C

. (34)

which gives us the equation for the second neural mass model. Qualitative difference to Eq.

26 is that Eq. 34 contains an extra parametric forcing term
(
φ

(α)
int + φ

(α)
ext

)
V− which does no

longer agree with Freemans model.
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7.3 Appendix C: Algorithms used in simulations

Data: N,Nex, Nin, k, Iext
Result: dV, dgI , dgE , V, gE , gI , spikes
set parameters (Vthresh, Vreset, τ, τ

I , τE , time-step = 0.1ms)
make Adj(N, k)
→ Adjex 80% of connections
→ Adjin 20% of connections
for t = 1s to 50s do

if t<20ms then
Iext = 20nA;

end
neurons just spiked = V >Vthresh → no. inactive neurons;
neurons not spiked 6= neurons just spiked → no. active neurons;
update dV (active neurons) (Eq.1);
update dgE (Eq. 2);
update dgI (Eq. 2);
update gE , gI ← feedforward Euler;

update V ← feedforward Euler +
√

∆tW ;

end
V >Vthresh → spikes;
mean(V ) → V̄ ;
mean(spikes) → 〈spikes〉;

Algorithm 1: Simulation of a LIF network

Data: V, V̄
Result: ks-stat
filter(V̄ , chebyshev) → V̄filter;
filter(V , chebyshev) → Vfilter;
zscore(V̄ ) → V̄Z ;
zscore(V ) → VZ ;
pwelch(V̄Z) → spectrumV̄ CIV̄ ;
pwelch(VZ)→ spectrumV CIV ;
kstest(spectrumV , spectrumV̄ ) → ks-stat;

Algorithm 2: Comparison of spectra between average network signals (V̄ ) and neural mass
signals V
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Table 1: Constants used in simulations.
τ Membrane time constant 20 ms

Vmem Resting state potential -60 mV

V
(E)
syn Reversal potential for excitatory synapses 0 mV

V
(I)
syn Reversal potential for inhibotory synapses -80 mV

Vthres Threshold potential -50 mV
Vreset Reset potential -60 mV

g0 Leak conductance 10 nS
gE0 Excitatory synaptic conductance 3 nS
gI0 Excitatory synaptic conductance 50 nS

∆trefract Refractory period 5 ms
σ Noise strength 0.6 mV

τ (E) Excitatory synaptic time constant 5 ms

τ (I) Inhibitory synaptic time constant 10 ms
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Figure 1: Effect of network size. Simulations were done for fully connected LIF-networks,
starting with 10000 neurons down to 100 neurons. For each network size we estimated the
average network signal, example shown for 1000 neurons (A). We calculated neural mass activity
for both neural mass models with the mean spike train of the LIF-network as input, example
shown for neural mass model 1 with 1000 neurons (B). The Kolmogorov-test statistic was used
to compare the power spectral densities of the average network signals with signals from neural
mass model 1 (C) and neural mass model 2 (D) for networks with increasing number of neurons.
We further show conditions where neural mass models are capable (F and H) and not capable
(E and G) of describing the average network signal. In each of these plots the power spectral
densities with confidence intervals (red and green lines) of the average network signal (normal
lines) and the neural mass signals (dashed lines) are plotted for a given frequency range, for
100 neurons (F and H) and 2000 neurons (E and G). Figure E and F correspond to neural mass
model 1 and G and H to neural mass model 2.
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Figure 2: Effect of network density. Simulations were done for regular, small-world and random
networks given a network size of 10000 neurons. For each network configuration we decreased
the density of connections and the Kolomogorov-Smirnov test statistic was used to compare the
power spectral densities of the average network signals with the first neural mass model (ABC).
For each network configuration we computed the mean PLV between neurons in the neuronal
network. We plotted this mean PLV (with standard error) as a function of density (DEF) for
each network configuration. Note the critical thresholds for density for mean PLV values and
the Kolomogorov-Smirnov test statistic for each network configuration.
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Figure 3: Power spectral densities. Elaboration of the simulations shown in figure 2. We have
plotted the power spectral densities with confidence intervals (green and red lines) of the average
network signal (normal lines) and neural mass model 1 (dashed lines) before (ACE) and after
the critical thresholds (BDF) (see Figure 2 for explanation). This was done for each network
configuration, regular network (AB), small-world network (CD) and a random network (DF).
Note that before the threshold there is mostly overlap found for the alpha band range, except
for the small world network, where this extents to the beta band. After the threshold there is
a large overlap between the average network signal and the neural mass model.
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