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Abstract 

High rates of comorbidity, shared risk, and overlapping therapeutic mechanisms have led 

psychopathology research towards transdiagnostic dimensional investigations of clustered 

symptoms.  One influential framework accounts for these transdiagnostic phenomena through a 

single general factor, sometimes referred to as the ‘p’ factor, associated with risk for all common 

forms of mental illness.  Here we build on past research identifying unique structural neural 

correlates of the p factor by conducting a data-driven analysis of connectome wide intrinsic 

functional connectivity.  We demonstrate that higher p factor scores and associated risk for 

common mental illness maps onto hyper-connectivity between visual association cortex and both 

frontoparietal and default mode networks.  These results provide initial evidence that the broad 

risk for common forms of mental illness is associated with patterns of inefficient connectome wide 

intrinsic connectivity supporting executive control and self-referential processes, which are often 

impaired across categorical disorders. 
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Emerging research has identified a general factor of psychopathology that accounts for shared risk 

among internalizing, externalizing, and thought disorders across diverse samples1,2.  Moreover, 

this general psychopathology or ‘p’ factor3 provides a framework for explaining the high rates of 

comorbidity as well as the shared genetic variance among categorical mental disorders4,5.  As such, 

the p factor represents a potentially useful avenue for better understanding the shared and unique 

etiology of common mental illness.  However, the biological mechanisms through which the p 

factor confers general risk for psychopathology remain unclear.  Identifying such mechanisms is 

necessary for effectively leveraging the p factor to derive novel targets for clinical intervention 

and prevention. 

 Clinical neuroscience has begun to adapt transdiagnostic methodologies to accelerate the 

search for common neurobiological abnormalities across disorders6.  For example, a recent large 

meta-analysis of six categorical disorders reported a shared pattern of reduced gray matter volume 

in a distributed network supporting attention and cognitive control7.  In addition, we have recently 

examined the structural neural correlates of the p factor specifically8.  In our work, higher p factor 

scores and thus risk for common mental illness was associated with reduced gray matter volumes 

in the occipital lobes and neocerebellum.  Furthermore, higher p factor scores were associated with 

reduced fractional anisotropy in pontine pathways linking the neocerebellum with the thalamus 

and prefrontal cortex.  Our observed patterns along with those of the recent meta-analysis suggest 

that higher p factor scores contribute to broad risk for common forms of mental illness through 

alterations in networks critical for feed-forward monitoring of information processing and 

executive control.  However, the putative functional consequences of these observed structural 

associations have not yet been examined. 
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 Resting-state functional connectivity has emerged as a powerful tool in clinical 

neuroscience because it can be readily administered across patient populations9,10, demonstrates 

trait-like stability11 as well as moderate heritability12,13, and represents a powerful probe of the 

intrinsic architecture of neural networks that play a primary role in shaping task-based network 

activity and associated behaviors14.  In addition, altered intrinsic functional connectivity within the 

default mode network (DMN), and frontoparietal network (FPN), both of which are linked to 

higher order cognition, have been broadly linked to psychopathology across categorical 

disorders15–17.  Thus, resting-state measures of intrinsic network connectivity represent one avenue 

for extending the structural associations of the p factor to variability in functional neural dynamics 

representing mechanisms through which risk may emerge. 

 Here, we investigate intrinsic functional connectivity correlates of the p factor in a 

volunteer sample of 614 university students from the Duke Neurogenetics Study.  While our 

previous research in this sample identified discrete structural correlates of the p factor in the 

occipital lobes, neocerebellum, and pons, we opted for a whole-brain exploratory analysis of 

intrinsic connectivity to better capture possible functional differences beyond these regions and 

impose minimal assumptions about the nature of p factor associations in the brain.  Thus, we 

performed a Connectome-Wide Association Study (CWAS)18 of the p factor, a data driven method 

for identifying resting-state seeds whose whole brain connectivity are associated with the p factor 

in the absence of a priori assumptions about brain regions or networks. 

 

Results 

Demographics.  From the 614 participants who completed two resting-state scans, 605 had data 

that survived quality control procedures.  Of these, 336 were women, and the mean age was 
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20.23±1.19 years old.  Scores for the p factor ranged from 76.71to 191.96 with a mean of 99.80, 

sd of 15.39. 

 

Multi-dimensional matrix regression.  Of the 1015 ROIs investigated, multi-dimensional matrix 

regression (MDMR) analysis revealed four regions with whole-brain connectivity patterns 

significantly associated with p factor scores: left lingual gyrus, right middle occipital gyrus, and 

two adjacent parcels of the left middle occipital gyrus (figure 1). 

 

Follow-up intrinsic connectivity analyses.  The follow-up connectivity analyses of each seed 

identified through MDMR revealed the primary network associations for each seed as well as their 

pattern of whole-brain connectivity associated with p factor scores.  These analyses showed 

striking convergence across MDMR selected ROIs wherein the mean whole-brain pattern of 

connectivity for each seed showed subtle variation, but largely outlined the canonical resting-state 

visual processing network19.  The connectivity of each ROI with visual and somatosensory regions 

decreased with increasing p factor scores, while the connectivity between each ROI and 

transmodal association regions20 increased with increasing p scores (figure 2). 

 Further analyses were conducted to better characterize the above consistent patterns of p 

factor associations with the intrinsic connectivity of all seeds by averaging the independent whole-

brain connectivity maps.  The resulting average z-scores were summarized for each of the 7 Yeo 

networks21 to quantify their respective contribution to the associations with p factor scores (figure 

3).  These analyses revealed the DMN and FPN as the major networks for which intrinsic 

functional connectivity was positively correlated with p factor scores.  In contrast, a more modest 
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but notable negative correlation was observed between p factor scores and the intrinsic functional 

connectivity between the visual association cortex and somatomotor network. 

 

Discussion 

Here, we provide a novel extension of prior structural neural correlates of the p factor to the 

intrinsic architecture of the whole-brain functional connectome.  Our unconstrained connectome 

wide MDMR analysis revealed a circumscribed relationship between p factor scores and the 

whole-brain intrinsic connectivity of nodes in visual association cortex, which is consistent with 

our earlier work finding a negative correlation between p factor scores and gray matter volume in 

the occipital cortex8.  Further investigation of the patterns of intrinsic connectivity driving this 

relationship primarily implicated hyper-connectivity between visual association cortex and 

heteromodal frontoparietal and default mode networks.  While the visual association cortex and 

the heteromodal default mode and frontoparietal networks represent opposite ends of the sensory 

processing hierarchy,20 their dynamic interactions have been shown to be an important component 

of successful goal-directed behavior22–24. 

 The frontoparietal network in particular has been linked to the core cognitive faculty of 

executive control,14,25,26 which contributes to mental health and general well-being by shaping 

successful goal directed behavior27. Fittingly, disrupted FPN activity has been linked to 

psychopathology across categorical disorders including schizophrenia28, depression,29 and bipolar 

disorder30.  Building off of this body of research, an emerging theory suggests that the relative 

integrity of the FPN and associated executive control mechanisms are fundamental for the capacity 

to self-regulate, manage symptoms, and succeed in treatment across disorders.15.  Our current 

findings are consistent with this framework by demonstrating that higher p factor scores regardless 
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of diagnosis are associated with relative hyper-connectivity of the FPN with the visual association 

cortex. 

Regulation and suppression of incoming sensory information is an important component 

of goal directed behavior and has been linked to functional connectivity between the FPN and 

visual association cortex31,32.  Although speculative, our finding may indicate more effortful or 

less efficient integration of bottom-up sensory information with attentional demands and executive 

control processes in those at higher risk for mental illness.  This pattern is further consistent with 

our earlier structural analyses linking higher p factor scores with lower structural integrity of 

cerebello-thalamo-cerebro-cortical circuits supporting feed-forward executive control and 

monitoring of goal-directed behaviors8. 

 In addition to the frontoparietal network, our analyses implicate hyper-connectivity 

between the visual association cortex and default mode network as a function of higher p factor 

scores.  The default mode network has been generally linked to introspective thought, 

autobiographical memory, and future oriented thought33.  Interestingly, DMN activity is 

suppressed in attention demanding tasks33,34 and altered DMN activity has been broadly observed 

across categorical psychiatric disorders16,35.  Visual association cortex connectivity with the DMN 

has been suggested to be important in the suppression of internally generated distracting 

information31.  Against this background, our observed association between higher p factor scores 

and hyper-connectivity between the DMN and visual association cortex suggests that broad risk 

for mental illness may be related to more effortful or less efficient regulation of internally 

generated thoughts and information that could have functional consequences in the context of 

competing attentional demands between internal generated thought and incoming sensory 

information. 
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 While providing initial evidence that broad risk for all forms of common mental illness is 

manifest as alterations in the intrinsic connectivity of functional neural networks, our analyses 

were exploratory by design and replication is needed.  Given prior research implicating the 

frontoparietal and default mode networks across categorical disorders, we focused our above 

discussion on the potential relevance of intrinsic connectivity between visual association cortex 

and these networks in the emergence of broad risk for mental illness.  While the intrinsic 

connectivity of these networks also exhibited an outsized influence on the association with p factor 

scores, variation between visual association cortex and other resting-state networks contributed as 

well, albeit more modestly (figure 3).  MDMR uses information from all whole-brain connections 

in selecting seeds, and the inferential significance comes from the aggregate of connections rather 

than any one in particular.  Thus, formally testing the relative contributions of different networks 

is not typically conducted.  While we think future studies of the p factor will benefit from using 

our observations of intrinsic connectivity between visual association cortex and both DMN and 

FPN as an a priori starting point, the potential relevance of other networks should not be ignored 

until the patterns reported herein are replicated. 

 Additional limitations, which can be addressed in future research, include the relatively 

limited range of psychopathology, especially severe forms including psychosis, represented in our 

volunteer sample of young adults.  Future research should extend our analyses to more diverse 

populations including individuals with severe mental illness.  Our current analyses were also 

limited to the intrinsic connectivity of nodes within the cerebrum as our resting-state fMRI 

acquisition protocol did not afford full coverage of the cerebellum, including the neocerebellar 

subregion identified in our earlier structural analyses.  Thus, we are unable to determine the 

relationship between p factor scores and the intrinsic functional connectivity of the cerebellum.  
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We anticipate that current state-of-the-art multiband image acquisition protocols will routinely 

allow for full coverage of the cerebellum and, subsequently, direct analyses of how its intrinsic 

connectivity scales as a function of p factor scores.  The observational nature of our study 

represents another limitation as we cannot establish causal links between p factor scores and 

intrinsic connectivity.  Longitudinal designs may better address causality and temporal order of 

these phenomena.  Future research employing transcranial magnetic stimulation, closed-loop 

fMRI, and intervention designs can further map causal relationships. 

These limitations notwithstanding, our current work provides initial evidence for unique 

connectome wide functional signatures of the p factor.  Consistent with emerging transdiagnostic 

and dimensional research into the neural basis of psychopathology7,8,36, our analyses reveal that 

increased broad risk for all common forms of mental illness is associated with higher intrinsic 

connectivity between visual association cortex and both frontoparietal and default mode networks.  

Such hyper-connectivity suggests that increased risk for psychopathology may be manifest as 

greater effortful or less efficient executive control as well as poor regulation of self-referential 

information processing.  These patterns place alterations of the functional connectome squarely in 

the middle of converging theories of network dysfunction in psychopathology, further suggesting 

the p factor as a promising tool in clinical neuroscience. 

 

Online Methods 

Participants.  Data were available from 614 university students who successfully completed the 

Duke Neurogenetics Study (DNS).  All participants provided informed consent in accordance with 

the Duke University Medical Center Institutional Review Board guidelines before participation.  

All participants were in good general health and free of the following study conditions: (1) medical 
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diagnoses of cancer, stroke, head injury with loss of consciousness, untreated migraine headaches, 

diabetes requiring insulin treatment, chronic kidney or liver disease; (2) use of psychotropic, 

glucocorticoid or hypolipidemic medication; and (3) conditions affecting cerebral blood flow and 

metabolism (e.g., hypertension). 

 

Clinical Diagnosis.  Current and lifetime DSM-IV Axis I disorder or select Axis II disorders 

(antisocial personality disorder and borderline personality disorder), was assessed with the 

electronic Mini International Neuropsychiatric Interview37 and Structured Clinical Interview for 

the DSM-IV subtests38 respectively.  Importantly, neither current nor lifetime diagnosis were 

exclusion criterion, as the DNS seeks to establish broad variability in multiple behavioral 

phenotypes related to psychopathology.  Allowing for a broad spectrum of symptoms is 

particularly critical for accurately deriving p factor scores.  Nevertheless, no participants, 

regardless of diagnosis, were taking any psychoactive medication during or at least 14 days prior 

to their participation.  Of the 605 participants with data included in our analyses, 133 individuals 

had at least one DSM-IV diagnosis, including 76 with alcohol use disorders, 24 with non-alcohol 

substance use disorders, 33 with major depression disorder, 26 with bipolar disorder, 7 with panic 

disorder (no agoraphobia), 9 with panic disorder including agoraphobia, 4 with social anxiety 

disorder, 8 with generalized anxiety disorder, 10 with obsessive compulsive disorder, and 7 with 

eating disorders. 

 

Derivation of p factor scores.  In previous work8, our group replicated the p factor  in the DNS 

using confirmatory factor analysis of self-report and diagnostic interview measures of 

internalizing, externalizing, and thought disorder symptoms.  These p factor scores were extracted 
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using the standard regression method from those analyses, and standardized to a mean of 100 (SD 

= 15), with higher scores indicating a greater propensity to experience all forms of psychiatric 

symptoms.  The current analyses were conducted in a subsample of 614 subjects of the original 

1246 participants for whom there was resting-state fMRI data. 

 

Image acquisition.  Each participant was scanned using one of two identical research-dedicated 

GE MR750 3 T scanners equipped with high-power high-duty-cycle 50-mT/m gradients at 200 

T/m/s slew rate, and an eight-channel head coil for parallel imaging at high bandwidth up to 1MHz 

at the Duke-UNC Brain Imaging and Analysis Center.  A semi-automated high-order shimming 

program was used to ensure global field homogeneity.  A series of 34 interleaved axial functional 

slices aligned with the anterior commissure-posterior commissure plane were acquired for full-

brain coverage using an inverse-spiral pulse sequence to reduce susceptibility artifacts (TR/TE/flip 

angle=2000 ms/30 ms/60; FOV=240mm; 3.75×3.75×4mm voxels; interslice skip=0).  Four initial 

radiofrequency excitations were performed (and discarded) to achieve steady-state equilibrium.  

For each participant, 2 back-to-back 4-minute 16-second resting state functional MRI scans were 

acquired.  Participants were instructed to remain awake, with their eyes open during each resting 

state scan.  To allow for spatial registration of each participant's data T1-weighted images were 

obtained using a 3D Ax FSPGR BRAVO with the following parameters: TR = 8.148 ms; TE = 

3.22 ms; 162 axial slices; flip angle, 12°; FOV, 240 mm; matrix =256×256; slice thickness = 1 

mm with no gap; and total scan time = 4 min and 13 s. 

 

Image Processing.  Anatomical images for each subject were skull-stripped, intensity-normalized, 

and nonlinearly warped to a study-specific average template in the standard stereotactic space of 
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the Montreal Neurological Institute template using the ANTs SyN registration algorithm39,40.  Time 

series images for each subject were despiked, slice-time-corrected, realigned to the first volume in 

the time series to correct for head motion using AFNI tools41, coregistered to the anatomical image 

using FSL’s Boundary Based Registration42, spatially normalized into MNI space using the non-

linear ANTs SyN warp from the anatomical image, resampled to 2mm isotropic voxels, and 

smoothed to minimize noise and residual difference in gyral anatomy with a Gaussian filter set at 

6-mm full-width at half-maximum.  All transformations were concatenated so that a single 

interpolation was performed.  

Time-series images for each participant were furthered processed to limit the influence of 

motion and other artifacts.  Voxel-wise signal intensities were scaled to yield a time series mean 

of 100 for each voxel.  Motion regressors were created using each subject’s 6 motion correction 

parameters (3 rotation and 3 translation) and their first derivatives43,44 yielding 12 motion 

regressors.  White matter (WM) and cerebrospinal fluid (CSF) nuisance regressors were created 

using CompCorr45.  Images were bandpass filtered to retain frequencies between .008 and .1 Hz, 

and volumes exceeding 0.25mm frame-wise displacement or 1.55 standardized DVARS46,47 were 

censored.  Nuisance regression, bandpass filtering and censoring for each time series was 

performed in a single processing step using AFNI’s 3dTproject. Participants were excluded if they 

had less than 185 TRs left after censoring (resulting in inadequate degrees of freedom to perform 

nuisance regressions), resulting in a final sample of 605 subjects.  

 

CWAS.  To make the analysis computationally tractable, time-series were extracted from a 

parcellated atlas instead of using voxelwise data.  We used the Lausanne atlas parcellated into 

1015 equally sized regions through the program easy_lausanne 
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(github.com/mattcieslak/easy_lausanne).  Time-series data for each subject were then processed 

using CWAS.  Described extensively elsewhere18, CWAS consists of 3 processing steps.  First, 

beginning with a single ROI time-series, seed-based connectivity analysis is conducted to generate 

a whole-brain functional connectivity map for each participant.  Second, the average distance (1 

minus the Pearson correlation) between each pair of participant’s functional connectivity maps is 

computed, resulting in a distance matrix encoding the multivariate similarity between each 

participant’s connectivity map.  Finally, multi-dimensional matrix regression (MDMR) is used to 

generate a pseudo-F statistic quantifying the strength of the association between the phenotype of 

interest, here p factor scores, and the distance matrix created in the second step.  The advantage of 

MDMR is allowing covariates to be entered into the regression and utilizing non-parametric 

permutation to generate p-values for each ROI.  These three steps are repeated for each of the 1015 

ROIs, resulting in a whole-brain map that represents the association between p factor scores and 

whole-brain connectivity at each ROI.  CWAS was performed to identify seed regions with whole-

brain patterns of connectivity are related to p factor scores.  Participant sex was included as a 

covariate, and 500,000 permutations were performed to generate p-values.  To minimize false 

positives across the 1,015 ROIs, a false discovery rate48 (FDR) correction was applied. 

 

Seed-based analyses.  MDMR identifies a set of ROIs with patterns of whole-brain connectivity 

associated with p factor scores.  However, it is still unclear how the connectivity of these ROIs 

relates to the scores.  Previous research using CWAS18,36,49 has demonstrated the utility of using 

traditional seed-based connectivity follow-up analyses to better understand the networks and brain 

regions that drive the associations discovered through MDMR.  Similar analyses were performed 

here for each ROI identified via MDMR.  Seed-based connectivity maps were created and 
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correlations were converted to Z statistics via the Fischer R to Z transform.  Whole-brain 

correlations between these connectivity values and p factor scores were calculated, including sex 

as a covariate.  Importantly, these follow-up analyses do not represent independent statistical tests 

as they were performed posthoc to the family wise error controlled MDMR findings.  Accordingly, 

these followup analyses maps are not thresholded to visualize all information that was relevant to 

the MDMR step.  
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Figure 1.  Data driven multi-dimensional matrix regression (MDMR) analysis revealed four 

regions with whole-brain connectivity patterns significantly associated with p factor scores: two 

adjacent parcels of the left middle occipital gyrus (left panel), left lingual gyrus (middle panel), 

and right middle occipital gyrus (right panel).  These four clusters are projected onto a surface 

volume for visualization. 
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Figure 2.  Follow-up connectivity analyses of the four seeds identified through MDMR revealed 

a highly-conserved pattern of altered connectivity between visual association cortex and both 

frontoparietal and default mode networks as a function of p factor scores. All results were projected 

from the volume onto a surface to aid visualization. Left panel: MDMR derived seed regions.  

Middle panel: average intrinsic connectivity for each seed.  Right panel: connectome wide intrinsic 

connectivity patterns for each seed as a function of p factor scores. 
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Figure 3.  Mean pattern of intrinsic connectivity as a function of p factor scores across the networks 

associated with each of the four MDMR-derived seeds in visual association cortex (left panel).  

The relative contributions of seven canonical intrinsic cerebral networks21 to this mean pattern of 

connectivity (right panel). 
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