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Abstract

Massively parallel reporter assays (MPRAs) have emerged as a popular means for un-
derstanding noncoding variation in a variety of conditions. However, development
of statistical analysis methods has not kept pace with the use of this assay. We present
a linear model framework, mpralm, for the differential analysis of activity measures
from these experiments that we show is calibrated and powerful. We show that it
outperforms statistical tests that are commonly used in the literature, in the first com-
prehensive evaluation of statistical methods on several datasets. We investigate the
theoretical and real-data properties of barcode summarization methods, and show an
unappreciated impact of summarization method for some datasets. Finally, we per-
form a power analysis and show substantial improvements in power by performing
up to 6 replicates per condition, whereas sequencing depth has limited impact; we
recommend to always use at least 4 replicates. These results inform recommenda-
tions for differential analysis, general group comparisons, and power analysis. Our
contributions in investigating the functional dependence of statistical power on sam-
ple sizes and sequencing depth will help MPRA practitioners make informed choices
in study design, and lead to improved inference.
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Introduction

Noncoding regions in the human genome represent the overwhelming majority of ge-
nomic sequence, but their function remains largely uncharacterized. Better understand-
ing of the functional consequences of these regions has the potential to greatly enrich our
understanding of biology.

It is well understood that some noncoding regions are regulatory in nature. It has been
straightforward to experimentally test the regulatory ability of a given DNA sequence
with standard reporter assays, but these assays are low throughout and do not scale to
the testing of large numbers of sequences. Massively parallel reporter assays (MPRA)
have emerged as a high-throughput means of measuring the ability of sequences to drive
expression (White, 2015; Melnikov, Zhang, et al., 2014). These assays build on the tra-
ditional reporter assay framework by coupling each putative regulatory sequence with
several short DNA tags, or barcodes, that are incorporated into the RNA output. These
tags are counted in the RNA reads and the input DNA, and the resulting counts are used
to quantify the activity of a given putative regulatory sequence, typically involving the
ratio of RNA counts to DNA counts (Figure 1).

The applications of MPRA have been diverse, and there have been correspondingly di-
verse methods used in statistical analysis. There are three broad categories of MPRA
applications: characterization studies, saturation mutagenesis, and differential analysis.

Characterization studies examine thousands of different putative regulatory elements
that have a wide variety of sequence features and try to correlate these sequence fea-
tures with measured activity levels (Grossman et al., 2017; Guo et al., 2017; Safra et al.,
2017; Levo et al., 2017; Maricque, Dougherty, and Cohen, 2017; Groff et al., 2016; Ernst
et al., 2016; White, Kwasnieski, et al., 2016; Ferreira et al., 2016; Fiore and Cohen, 2016;
Farley et al., 2015; Kamps-Hughes et al., 2015; Dickel et al., 2014; Kwasnieski, Fiore, et al.,
2014; Mogno, Kwasnieski, and Cohen, 2013; Gisselbrecht et al., 2013; White, Myers, et al.,
2013; Smith et al., 2013). Typical statistical analyses use regression to study the impact of
multiple features simultaneously. They also compare continuous activity measures or cat-
egorized (high/low) activity measures across groups using paired and unpaired t-, rank,
Fisher’s exact, and chi-squared tests.

Saturation mutagenesis studies look at only a few established enhancers and examine
the impact on activity of every possible mutation at each base as well as interactions
between these mutations (Patwardhan, Lee, et al., 2009; Melnikov, Murugan, et al., 2012;
Patwardhan, Hiatt, et al., 2012; Kwasnieski, Mogno, et al., 2012; Kheradpour et al., 2013;
Birnbaum et al., 2014; Zhao et al., 2014). Analyses have uniformly used linear regression
where each position in the enhancer sequence is a predictor.

Differential analysis studies look at thousands of different elements, each of which has
two or more versions. Versions can correspond to allelic versions of a sequence (Ulirsch
et al., 2016; Tewhey et al., 2016; Vockley et al., 2015) or different environmental contexts
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(Inoue et al., 2017), such as different cell or tissue types (Shen et al., 2016). These stud-
ies have compared different sequences versions using paired t-tests, rank sum tests, and
Fisher’s exact test (by pooling counts over biological replicates).

Despite the increasing popularity of this assay, guiding principles for statistical analy-
sis have not been put forth. Researchers still use a large variety of ad hoc methods for
analysis. For example, there has been considerable diversity in the earlier stages of sum-
marization of information over barcodes. Barcodes are viewed as technical replicates of
the regulatory element sequences, and groups have considered numerous methods for
summarizing barcode-level information into one activity measure per enhancer. On top
of this, a large variety of statistical tests are used to make comparisons.

Because counts from sequencing technologies are the main source of data in these experi-
ments, it is natural to think about standard discrete models for count data. However, care-
ful consideration is warranted because the quantities of interest are not the counts them-
selves but rather ratios of counts (RNA/DNA) or some form of input (DNA)-adjusted
counts of output (RNA). Note that both RNA and DNA readouts are stochastic in na-
ture. Recently, a method called QuASAR-MPRA was developed to identify regulatory
sequences that have allele-specific activity (Kalita et al., 2017). This method uses a beta-
binomial model to model RNA counts as a function of DNA counts, and it provides a
means for identifying sequences that show a significant difference in regulatory activity
between two alleles. While it provides a framework for two group comparisons within
MPRAs, QuASAR-MPRA is limited in this regard because experiments might have sev-
eral conditions and involve arbitrary comparisons.

To our knowledge, no method has been developed that provides tools for general pur-
pose differential analysis of activity measures from MPRA. General purpose methods are
ones that can flexibly analyze data from a range of study designs. While it is often of
interest to study the effect of sequence features on the estimated activity levels of MPRA
sequences (using tools such as MPAthic (Ireland and Kinney, 2016)), typically some sort
of differential analysis is needed first to group interesting sequences together. This would
usually involve comparing the activity of each putative regulatory sequence of interest to
a suitable negative control.

We present mpralm, a method for testing for differential activity in MPRA experiments.
Our method uses linear models as opposed to count-based models to identify differential
activity. This approach provides desired analytic flexibility for more complicated exper-
imental designs that necessitate more complex models. It also builds on an established
method that has a solid theoretical and computational framework (Law et al., 2014). We
show that mpralm can be applied to a wide variety of MPRA datasets and has good sta-
tistical properties related to type I error control and power. Furthermore, we examine
proper techniques for combining information over barcodes and provide guidelines for
choosing sample sizes and sequencing depth when considering power. Our method is
open source and freely available in the mpra package for R on the Bioconductor reposi-
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tory: https://bioconductor.org/packages/mpra.

Results

The structure of MPRA data and experiments

MPRA data consists of measuring the activity of some putative regulatory sequences,
henceforth referred to as “elements”. First a plasmid library of oligos is constructed,
where each element is coupled with a number of short DNA tags or barcodes. This plas-
mid library is then transfected into one or more cellular contexts, either as free-floating
plasmids or integrated into the genome (Inoue et al., 2017). Next, RNA output is mea-
sured using RNA sequencing, and DNA output as a proxy for element copy number is
measured using DNA sequencing (occasionally, element copy number is unmeasured),
giving the data structure shown in Figure 1. The log-ratio of RNA to DNA counts is
commonly used as an activity outcome measure.

Since each element is measured across a number of barcodes, one needs to summarize this
data into a single activity measure a for a single element in a single sample. Multiple ap-
proaches have been proposed for this summarization step. We consider two approaches.
First is averaging, where a log-ratio is computed for each barcode, then averaged across
barcodes. This treats the different barcodes as technical replicates. The second approach
is aggregation, where RNA and DNA counts are each summed across barcodes, followed
by formation of a log-ratio. This approach effectively uses the barcodes to simply increase
the sequencing counts for that element.

In our investigation of the characteristics of MPRA data we use a number of datasets
listed in Table 1 (Methods). We have divided them into 3 categories. Two of the categories
are focused on differential analysis: one category on comparing different alleles and one
category on comparing the same element in different conditions (retina vs. cortex and
episomal vs. chromosomal integration). The two allelic studies naturally involve paired
comparisons in that the two elements being compared are always measured together in a
single sample (which is replicated). Finally, we are using two different saturation muta-
genesis experiments.

The variability of MPRA data depends on element copy number

It is well established that count data from RNA sequencing studies exhibit a mean-variance
relationship (McCarthy, Chen, and Smyth, 2012). On the log scale, low counts are more
variable across replicates than high counts, at least partly due to inherent Poisson varia-
tion in the sequencing process (Marioni et al., 2008; Bullard et al., 2010). This relation-
ship has been leveraged in both count-based analysis methods (Robinson, McCarthy,
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Figure 1. Structure of MPRA data. Thousands of putative regulatory elements
can be assayed at a time in an MPRA experiment. Each element is linked to
multiple barcodes. A plasmid library containing these barcoded elements is
transfected into several cell populations (samples). Cellular DNA and RNA can
be isolated and sequenced. The barcodes associated with each putative
regulatory element can be counted to obtain relative abundances of each
element in DNA and RNA. The process of aggregation sums counts over
barcodes for element in each sample. Aggregation is one method for
summarizing barcode level data into element level data.
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Table 1. Datasets

Dataset Description Cell culture Replicates Barcodes

Differential analysis: alleles
Tewhey Study of 39,479 oligos coming from 29,173 variants

to follow up on prior eQTL results.
Large initial oligo pool: 79k. Second pool: 7.5k.

NA12878 (LCL)
NA19239 (LCL)
HepG2

NA12878: 5
NA19239: 3
HepG2: 5

79k pool: ∼73
7.5k pool: ∼350

Ulirsch Study of 2756 variants in strong LD with 75 main
variants to identify loci that affect RBC traits.

K562, K562 with
GATA1 over-expr.

K562: 6
K562+GATA1: 4

14

Differential analysis: conditions
Inoue Comparison of episomal and lentiviral MPRA. HepG2 3 Max: 99.
Shen Study of tissue specificity of cis-regulatory elements

in-vivo in mouse.
Mouse retina and
cerebral cortex

3 ∼8

Saturation mutagenesis
Melnikov Two inducible enhancers:

(1) a synthetic cAMP-regulated enhancer and
(2) the virus-inducible interferon-beta enhancer.
Single-hit scanning alters one base at a time.
Multi-hit sampling alters several bases at a time.

HEK293T Single: 2
Multi: 2

Single: 13
Multi: 1

Kheradpour Study of 2104 wild-type sequences and 3314 variant
sequences containing targeted motif disruptions to
understand base-level effects in motifs.

K562, HepG2 2 10

and Smyth, 2010; Love, Huber, and Anders, 2014) and more recently linear model-based
methods (Law et al., 2014) to, respectively, improve dispersion estimates and to estimate
weights reflecting inherent differences in variability for count observations from different
samples and genes.

Because MPRAs are fundamentally sequencing assays, it is useful to know whether sim-
ilar variance relationships hold in these experiments. Due to the construction of MPRA
measurements, each element is present in a different (random) copy number, and this
copy number ought to impact both background and signal measurements from the el-
ement. We are therefore specifically interested in the functional relationship between
element copy number and the variability of the activity outcome measure. As outcome
measure we use the log-ratio of RNA counts to DNA counts (aggregate estimator), and
we use aggregated DNA counts, averaged across samples, as an estimate of DNA copy
number. We compute empirical standard deviations of the library size-corrected outcome
measure across samples. In Figure 2 we depict this relationship across the previously dis-
cussed publicly available datasets (Table 1). For all datasets, with one exception, there is
higher variation associated with lower copy number. The functional form is reminiscent
of the mean-variance relationship in RNA sequencing data (Law et al., 2014), despite that
we here show variance of a log-ratio of sequencing counts.

Statistical modeling of MPRA data

To model MPRA data we propose to use a simple variant of the voom methodology (Law
et al., 2014), proposed for analysis of RNA sequencing data. This methodology is based
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Figure 2. Variability of MPRA activity measures depends on element copy
number. For multiple publicly available datasets we compute activity measures
of putative regulatory element as the log2 ratio of aggregated RNA counts over
aggregated DNA counts. Each panel shows the relationship between variability
(across samples) of these activity measures and the average log2 DNA levels
(across samples). Depicted is a lowess curve representing the local average
variability. The last plot depicts all lowess curves on the same figure.
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on standard linear models, which are coupled with inverse variance weights representing
the mean-variance relationship inherent in RNA sequencing data. The weights are de-
rived from smoothing an empirical mean-variance plot. Similar to voom, we propose to
use linear models to model log-ratio MPRA data, but we estimate weights by smoothing
the relationship between empirical variance of the log-ratios and log-DNA copy number,
as depicted in Figure 2. This approach has a number of advantages. (1) It is flexible to
different functional forms of the variance-copy number relationship. (2) It allows for a
unified approach to modeling many different types of MPRA design using the power of
design matrices. (3) It allows for borrowing of information across elements using empir-
ical Bayes techniques. (4) It allows for different levels of correlation between elements
using random effects. We call this approach mpralm.

Both edgeR and DESeq2 are popular methods for analysis of RNA-sequencing data rep-
resented as counts. The two methods are both built on negative binomial models, and
both attempt to borrow strength across genes. These methods allow for the inclusion of
an offset. Since the link function for both these methods is the logarithm, including log
DNA as an offset allows for the modeling of log-ratios of RNA to DNA. This makes these
methods readily applicable to the analysis of MPRA data, and they carry many of the
same advantages as mpralm. We comment further on edgeR and DESeq2 below.

The current literature on analysis of MPRA experiments contains many variant methods
(see Introduction). To evaluate mpralm, we compare the method to the following variants
used in the literature: QuASAR-MPRA, t-tests, and Fisher’s exact test. QuASAR-MPRA
is a recently developed method that is targeted for the differential analysis of MPRA data
(Kalita et al., 2017). It specifically addresses a two group differential analysis where the
two groups are elements with two alleles and uses base-calling error rate in the model
formulation. It collapses count information across samples to create three pieces of in-
formation for each element: one count for RNA reads for the reference allele, one count
for RNA reads for the alternate allele, and one proportion that gives the fraction of DNA
reads corresponding to the reference allele. Fisher’s exact test similarly collapses count
information across samples. To test for differential activity, a 2-by-G table is formed with
RNA and DNA designation forming one dimension and condition designation (with G
groups) in the second dimension. The t-test operates on the log ratio outcomes directly;
we use the aggregate estimator to summarize over barcodes. Either a paired or unpaired
t-test is used based on experimental design.

Studies comparing different alleles (Tewhey et al., 2016; Ulirsch et al., 2016), are naturally
paired in the sense that both alleles are measured at the same time in the same sample. We
can model that using mpralm by using a random effect representing the loci. Similarly,
this can be incorporated into t-tests by using paired t-tests. Note that the random effect
approach immediately generalizes to settings where more than two alleles are compared,
unlike both paired t-tests and QuASAR-MPRA.
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Figure 3. Comparison of detection rates and p-value calibration over datasets.
The distribution of p-values for all datasets, including a zoom of the [0, 0.1]
interval for some datasets. Over all datasets, most methods show p-values that
closely follow the classic mixture of uniformly distributed p-values with an
enrichment of low p-values for differential elements. For the datasets which
had barcode level counts (Inoue, Ulirsch, and Shen), we used two types of
estimators of the activity measure (log ratio of RNA/DNA) with mpralm,
shown in light and dark blue. We were not able to run QuASAR on the Shen
mouse dataset.

mpralm is a powerful and well-calibrated method for differential analysis

First, we focus on evaluating the performance of mpralm for differential analysis. We
compare to QuASAR-MPRA, t-tests, and Fisher’s exact test. We use four of the previously
discussed studies, specifically the Tewhey, Inoue, Ulirsch and Shen studies. Two of these
studies (Tewhey, Ulirsch) focuses on comparing the activity of elements with two alleles,
whereas the other two (Inoue, Shen) compare the activity of each element in two different
conditions. For the allelic studies, we use a random effects model for mpralm and paired
t-tests. Both Tewhey et al. (2016) and Ulirsch et al. (2016) compare alleles in different
cellular contexts; we observe similar behavior of all evaluations in all contexts (data not
shown) and have therefore chosen to depict results from one cellular context for both of
these studies. For Tewhey et al. (2016) we depict results both from a large pool of elements
used for initial screening and a smaller, targeted pool.

Figure 3 shows p-value distributions that result from running mpralm, QuASAR-MPRA,
t-tests, and Fisher’s exact test. Across these datasets, all methods except for QuASAR
show a well-behaved p-value distribution; high p-values appear uniformly distributed,
and there is a peak at low p-values. Fisher’s exact test has a very high peak around zero.
We examine mpralm using both an average estimator and an aggregation estimator for
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Figure 4. The impact of permutation strategy on error rate estimation.
Illustrated using the Inoue dataset. (a) Estimating error rates by permuting
sample labels. For this dataset, mpralm appears to very poorly calibrated, with
direction depending on barcode summarization method. The two scatterplots
differ in their range on the y-axis. (b) Estimating error rates by permuting
model residuals. This permutation strategy reveals that mpralm is
well-calibrated using both barcode summarization methods. The two
scatterplots differ in their range on the y-axis.

summarizing across barcodes; this cannot be done for the Tewey dataset where we do not
have access to barcode-level data. We were unable to run QuASAR-MPRA for the Shen
dataset. To fully interpret these p-value distributions, we need to assess error rates.

To estimate empirical type I error rates, we performed permutations. Specifically, we cre-
ated curated null permutations where each permuted sample group was composed of
half of the samples from group 1 and half of the samples from group 2. We performed
up to 100 permutations, if sample size permitted. mpralm is built on limma which uti-
lizes an empirical Bayes step to borrow strength across genes for estimating gene specific
variances. It has recently been shown that permuting sample labels results in inaccurate
estimates of error rates for limma, due to the empirical Bayes step, and that accurate error
rates for a two-group comparison can be obtained by permuting residuals (Jiang, 2017).
We utilize this procedure to estimate error rates for mpralm, and observe a dramatic im-
pact on estimated error rates (Figure 4).

Figure 5 depicts estimated empirical type I error rates (estimated as the median error rate
over the 100 permutations). We observe that Fisher’s exact test has wildly inflated type
I error, presumably because the data is overdispersed. mpralm is well calibrated, t-tests
are conservative and QuASAR-MPRA less so.

To investigate the trade-off between observed power (number of rejected tests) and type
I error rates, we combine these quantities in two ways. In Figure 6 we display the num-
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Figure 6. Number of rejections as a function of observed error rate. To
compare the detection (rejection) rates of the methods fairly, we compare them
at the same observed type I error rates, estimated in Figure 5. The bottom row is
a zoomed-in version of the top row. We see that the t-test and mpralm
consistently have much higher detection rates than Fisher’s exact test and
QuASAR. The t-test has high detection rates at higher error rates, and mpralm
has higher detection rates at low error rates.
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Figure 7. Estimated FDR. For each dataset and method, the false discovery rate
is estimated as a function of the number of rejections. This requires estimation
of the proportion of true null hypotheses (Methods). The bottom row is a
zoomed-in version of the top row.

ber of rejections as a function of observed type I error rates. In this display, we have
essentially used the observed type I rate displayed in Figure 5 to calibrate the nominal
alpha-level. For a fixed error rate, we interpret a high number of rejections to suggest
high power. Both Fisher’s exact test and QuASAR-MPRA show poor performance. T-
tests are surprisingly competitive, especially for error rates greater than 0.1. If we know
the proportion of true null hypotheses π0, we can translate these rates into false discov-
ery rates. This is an unknown quantity, but we estimate it using a method developed by
Phipson (2013) and thereby compute an estimated false discovery rate. In Figure 7 the
estimated false discovery rate (for a given π0) is displayed as a function of the number
of rejections. For the Tewhey study we see great performance for t-tests while mpralm is
best for the Shen study.

In conclusion, we observe that Fisher’s exact test has a high error rate and that QuASAR-
MPRA is underpowered; based on these results we cannot recommend either method.
mpralm and t-tests are both much better than these two tests. However, t-tests should
only be used if the error rates are empirically calibrated as we have done here. mpralm
works well without any calibration.
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edgeR and DESeq2

Above we describe how it is possible to use either edgeR or DESeq2 to fit MPRA data.
Like limma, these methods both borrow information across genes, and we therefore ex-
pect that estimating error rates using permutation of sample labels is subject to the same
issues as we describe above for mpralm. However, unlike mpralm, it is not clear to us at
the time of writing how to correctly estimate error rates, because the formation of residu-
als are different for these count based models.

Comparison of element rankings between methods

The power and error evaluations discussed above, suggest that t-tests are competitive
to mpralm, if type I error calibration is performed. While these are important metrics
to consider when choosing an analysis method, it is also important to consider ranking
quality in high-throughput studies. We observe fairly different rankings between mpralm
and the t-test and examine drivers of these differences in Figure 8. For each dataset, we
find the MPRA elements that appear in the top 200 elements with one method but not the
other. We will call these uniquely top ranking elements, and they range from 24% to 64%
depending on dataset. For these uniquely top ranking elements, we compute the mean
log DNA, log RNA, and log-ratio measures and determine where these fall in the overall
distributions of these quantities. These percentiles are compared between mpralm and
the t-test in the first three rows of Figure 8. For most datasets, DNA, RNA, and log-ratio
activity measures are higher in uniquely top ranking mpralm elements. It is desirable for
top ranking elements to have higher values for all three quantities because higher DNA
levels increase confidence in the activity measure estimation, and higher RNA and log-
ratio values give a stronger indication that a particular MPRA element has regulatory
activity.

In the last two rows of Figure 8, we compare effect sizes and variability measures (residual
standard deviations). The t-test uniformly shows lower variability but also lower effect
sizes for its uniquely top ranking elements. This follows experience from gene-expression
studies where standard t-tests tends to underestimate the variance and thereby exhibit t-
statistics which are too large, leading to false positives. In MPRA studies, as with most
other high-throughput studies, it is typically more useful to have elements with high
effect sizes at the top of the list. Such elements are able to picked out in mpralm due to its
information sharing and weighting framework.

mpralm enables modeling for complex comparisons

While many comparisons of interest in MPRA studies can be posed as a two group com-
parison (e.g. major allele vs. minor allele), more complicated experimental designs are
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Figure 8. Distribution of quantities related to statistical inference in top
ranked elements with mpralm and t-test. MPRA elements that appear in the
top 200 elements with one method but not the other are examined here. For
these uniquely top ranking elements, the DNA, RNA, and log-ratio percentiles
are shown in the first three rows. The effect sizes (difference in mean log-ratios)
and residual standard deviations are shown in the last two rows. Overall,
uniquely top ranking elements for the t-test tend to have lower log-ratio activity
measures, effect sizes, and residual standard deviations.

14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/196394doi: bioRxiv preprint 

https://doi.org/10.1101/196394
http://creativecommons.org/licenses/by/4.0/


also of interest. For example, in the allelic study conducted by Ulirsch et al. (2016), puta-
tive biallelic enhancer sequences are compared in two cellular contexts. The first is a stan-
dard culture of K562 cells, and the second is a K562 culture that induces over-expression
of GATA1 for a more terminally-differentiated phenotype. A straightforward question is
whether an allele’s effect on enhancer activity differs between cellular contexts. Let yeia
be the enhancer activity measure (log ratio of RNA over DNA counts) for element e, in
sample i for allele a. Let x1eia be a binary indicator of the mutant allele. Let x2eia be a
binary indicator of the GATA1 over-expression condition. Then the following model

Yeia = β0e + β1ex1eia + β2ex2eia + β3ex1eiax2eia + bi + εeia

is a linear mixed effects model for activity measures, where bi is a random effect that
induces correlation between the two alleles measured within the same sample. We can
perform inference on the β3e parameters to determine differential allelic effects. Such a
model is easy to fit within the mpralm framework, since our framework supports model
specifications by general design matrices. In contrast, this question cannot be formulated
in the QuASAR, t-test, and Fisher’s exact test frameworks.

Accuracy of activity measures and power of differential analysis depends on summa-
rization technique over barcodes

MPRA data initially contain count information at the barcode level, but we typically de-
sire information summarized at the element level for the analysis stage. We examine the
theoretical properties of two summarization methods: averaging and aggregation. Un-
der the assumption that DNA and RNA counts follow a count distribution with a mean-
variance relationship, we first show that averaging results in activity estimates with more
bias. Second, we show that despite this increased bias, mpralm has higher power with
averaging than with aggregation.

Let Rb and Db denote the RNA and DNA count, respectively, for barcode b = 1, . . . , B
for a putative regulatory element in a given sample. We suppress the dependency of
these counts on sample and element. Typically, B is approximately 10 to 15 (for examples,
see Table 1). We assume that Rb has mean µr and variance krµr and that Db has mean
µd and variance kdµd. Typically the constants kd and kr are greater than 1, modeling
overdispersion. Negative binomial models are a particular case with k = 1 + φµ, where
φ is an overdispersion parameter. Also let Nd and Nr indicate the library size for DNA
and RNA, respectively, in a given sample. Let pd and pr indicate the fraction of reads
mapping to element e for DNA and RNA, respectively, in a given sample so that µr =
Nr pr and µd = Nd pd. Let a be the true activity measure for element e defined as a :=
log(pr/pd). When performing total count normalization, the RNA and DNA counts are
typically scaled to a common library size L.
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One commonly used estimator of a is an average of barcode-specific log activity measures
(which we call the average estimator):

âAV =
1
B

B

∑
b=1

log
(

RbL/Nr + 1
DbL/Nd + 1

)
Using a second order Taylor expansion (Methods), it can be shown that this estimator has
bias approximately equal to

biasAV ≈ 1
2

(
kd
µd

− kr

µr

)
=

1
2

(
kd

Nd pd
− kr

Nr pr

)
Another estimator of a first aggregates counts over barcodes (which we call the aggregate
estimator):

âAGG = log

(
1 + (L/Nr)∑B

b=1 Rb

1 + (L/Nd)∑B
b=1 Db

)

Using an analogous Taylor series argument, we can show that this estimator has bias
approximately equal to

biasAGG ≈ 1
B

biasAV

The aggregate estimator has considerably less bias than the average estimator for most
MPRA experiments because most experiments use at least 10 barcodes per element. Bias
magnitude depends on count levels and the true activity measure a. Further, the direction
of bias depends on the relative variability of RNA and DNA counts. Similar Taylor series
arguments show that the variance of the two estimators is approximately the same.

The choice of estimator can impact the estimated log fold-changes (changes in activity) in
a differential analysis. In Figure 9 we compare the log fold-changes inferred using the two
different estimators. For the Inoue dataset, these effect sizes are very similar, but there are
larger differences for the Ulirsch and Shen datasets.

The choice of aggregation technique affects power in a differential analysis. In the last
three columns of Figures 3, 5, 6, and 7, we compare aggregation to averaging using
our mpralm method. Despite the increased bias of the average estimator, it appears to
be more powerful than the aggregation estimator. The two estimators have similar type I
error rates (Figure 5) but the average estimator results in greater detection rates (Figure 3).
We see that when compared at the same observed type I error rates, the average estimator
has greater detections (Figure 6). The average estimator also tends to have smaller false
discovery rate.
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Figure 9. Comparison of the average and aggregate estimators For the three
datasets containing barcode-level information, we compare the effect sizes (log
fold changes in activity levels) resulting from use of the aggregate and average
estimators. The y = x line is shown in red.

Recommendations for sequencing depth and sample size

To aid in the design of future MPRA experiments, we used the above mathematical model
of MPRA to inform power calculations. Power curves are displayed in Figure 10. We
observe that the variance of the aggregate estimator depends only minimally on the true
unknown activity measure, but is greatly impacted by sequencing depth. Since the impact
of activity measure on variance is minimal, we only need to consider power for a log fold-
change (effect size) where we fix one of the two true activity measures to be 0.8. We chose
0.8 as estimated activity measures tend to be around 0.8 in many datasets (Figure 11). We
use a nominal type I error rate of 0.05 that has been Bonferroni adjusted for 5000 tests
to obtain conservative power estimates. We also use ten barcodes per element as this is
typical of many studies.

Our model suggests different impacts of sample size, and a marked impact of increasing
the number of replicates, especially between 2 and 6 samples. From Figure 11, we can see
that large effect sizes (effect sizes of 1 or greater) are typical for top ranking elements in
many MPRA studies. Our model suggests that in this situation it is advisable to do 4 or
more replicates per group.

Discussion

The field of MPRA data analysis has been fragmented and consists of a large collection of
study-specific ad-hoc methods. Our objective in this work has been to provide a unified
framework for the analysis of MPRA data. Our contributions can be divided into three ar-
eas. First, we have investigated techniques for summarizing information over barcodes.
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In the literature, these choices have always been made without justification and have
varied considerably between studies. Second, we have developed a linear model frame-
work, mpralm, for powerful and well-calibrated differential analysis. To our knowledge,
this is the second manuscript evaluating for statistical analysis in MPRA studies. The first
manuscript proposed the QuASAR-MPRA method (Kalita et al., 2017), which we show to
have worse performance than mpralm. In our comparisons, we provide the largest and
most comprehensive comparison of analysis methods so far; earlier work used only a
single dataset for comparisons. Third, we have analyzed the impact of sequencing depth
and number of replicates on power. To our knowledge, this is the first mathematically-
based power analysis investigation, and we expect that this information to be useful in
the design of future MPRA studies.

The activity of a regulatory element can be quantified with the log ratio of RNA counts to
DNA counts. In the literature, groups have generally taken two approaches to summa-
rizing barcode information to obtain one such activity measure per element per sample.
One approach is to add RNA and DNA counts from all barcodes to effectively increase
sequencing depth for an element. This is termed the aggregate estimator. Another ap-
proach is to compute the log ratio measure for each barcode and use an average of these
measures as the activity score for an element. This is termed the average estimator, and
we have shown that although it is more biased than the aggregate estimator, it seems to
lead to greater power in differential analysis. However, because of this bias, we do cau-
tion against the use of the average estimator when comparing activity scores in enhancer
groups (often defined by sequence features).

In addition to barcode summarization recommendations, we have proposed a linear model
framework, mpralm, for the differential analysis of MPRA data. Our evaluations show
that it is well calibrated in terms of type I error rates and p-value distributions. We also
see that it is as or more powerful than existing methods being used in the literature. In
particular, it seems to be more powerful than existing methods in terms of false discov-
ery rate for top ranking elements, which are quite often the ones prioritized for more
intensive follow-up experimentation.

Surprisingly, in our evaluations, t-tests perform well from the point of view of error rates.
We caution that this performance depends on addressing their poorly calibrated error
rates using permutations. Doing this is critical to obtaining useful results for this method.
Furthermore, we observe a substantial difference in ranking between t-tests and mpralm,
and we believe the top ranked elements using mpralm exhibit better properties compared
to the top ranked elements by t-tests.

Linear models come with analytic flexibility that is necessary to handle diverse MPRA
designs. Paired designs involving alleles, for example, are easily handled with linear
mixed effects models due to computational tractability. The studies we have analyzed
here only consider two alleles per locus. It is possible to have more than two alleles at a
locus, and such a situation cannot be addressed with paired t-tests, but is easily analyzed
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using mpralm. This is important because we believe such studies will eventually become
routine for understanding results from genome-wide association studies.

While we have focused on characterizing the mpralm linear model framework for dif-
ferential analysis, it is possible to include variance weights in the multi-variate models
used in saturation mutagenesis and characterization studies. We expect that modeling
the copy number-variance relationship will improve the performance of these models.

For power, we find a substantial impact of increasing the sample size even a little (from
2 to 6 per group). This is an important observation because many MPRA studies use 2 or
3 replicates per group, and our results suggest that power can be substantially increased
with even a modest increase in sample size. We caution that using less than 4 replicates
leads to a substantial loss in power.

In short, the tools and ideas set forth here will aid in making rigorous conclusions from a
large variety of future MPRA studies.

Methods

Data

See Table 1. Dataset labels used in figures are accompanied by short descriptions below.

Melnikov: Study of the base-level impact of mutations in two inducible enhancers in
humans (Melnikov, Murugan, et al., 2012): a synthetic cAMP-regulated enhancer (CRE)
and a virus-inducible interferon-beta enhancer (IFNB). We do not look at the IFNB data
because it contains only one sample. We consider 3 datasets: Melnikov: CRE, single-hit,
induced state: Synthetic cAMP-regulated enhancer, single-hit scanning, induced state.
Melnikov: CRE, multi-hit, uninduced state: Synthetic cAMP-regulated enhancer, multi-
hit sampling, uninduced state. Melnikov: CRE, multi-hit, induced state: Synthetic
cAMP-regulated enhancer, multi-hit sampling, induced state.

Kheradpour: Study of the base-level impact of mutations in various motifs (Kheradpour
et al., 2013). Transfection into HepG2 and K562 cells.

Tewhey: Study of allelic effects in eQTLs (Tewhey et al., 2016). Transfection into two
lymphoblastoid cell lines (NA12878 and NA19239) as well as HepG2. In addition two
pools of plasmids are considered: a large screening pool and a smaller, targeted pool,
designed based on the results of the large pool. We use data from both the large and the
targeted pool in NA12878.

Inoue: chromosomal vs. episomal: Comparison of episomal and chromosomally-integrated
constructs (Inoue et al., 2017). This study uses a wild-type and mutant integrase to
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study the activity of a fixed set of putative regulatory elements in an episomal and a
chromosomally-integrated setting, respectively.

Ulirsch: Study of allelic effects in GWAS to understand red blood cell traits (Ulirsch et al.,
2016). Transfection into K562 cells as well as K562 with GATA1 overexpressed. We use
the data from K562.

Shen: mouse retina vs. cortex: Comparison of cis-regulatory elements in-vivo in mouse
retina and cerebral cortex (Shen et al., 2016). Candidate CREs that tile targeted regions
are assayed in-vivo in these two mouse tissues with adeno-associated virus delivery.

Count preprocessing

We use total count normalization to account for differences in library size for both DNA
and RNA. Specifically, each count in a sample is divided by that sample’s library size and
scaled so that the library size in all samples is the same. We perform minimal filtering
on the counts to remove elements from the analysis that have low counts across all sam-
ples. Specifically, we require that DNA counts must be at least 10 in all samples to avoid
instability of the log-ratio activity measures. We also remove elements in which these
log-ratios are identical across all samples. This is necessary for sensible differential anal-
ysis. In practice, log-ratios are only identical across all samples if RNA counts are zero
across all samples. Both steps also improve the estimation of the copy number-variance
relationship used in subsequent modeling by removing clear outliers.

Estimating the copy number-variance relationship

After preprocessing the first step is to estimate the copy number-variance relationship
that will allow for the estimation of element-specific reliability weights. These weights are
ultimately used in element-specific weighted regressions. The square root of the standard
deviation of the log-ratios over samples are taken as a function of average log DNA levels
over samples, and this relationship is fit with a lowess curve. Predicted variances are
inverted to form observation-level precision weights.

Modeling

Once the observation-specific weights are calculated, the log-ratios and weights are used
in the voom analysis pipeline. If, as in allele-specific activity studies, the different versions
of the elements being compared are correlated due to being measured in the same sam-
ple, a mixed model is fit for each element using the duplicateCorrelation module
available within the limma Bioconductor package (Smyth, Michaud, and Scott, 2005).
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Running mpralm, QuASAR, t-test, Fisher’s exact test

For all methods except for QuASAR, DNA and RNA counts were first corrected for li-
brary size with total count normalization. By default, we did not normalize counts before
input to QuASAR to accord with sample code provided online and with description pro-
vided in the manuscript. These results are shown in this document. We also investigated
the impact of performing total count normalization and found nearly identical results
(not shown).

For the t-test we computed the aggregate estimator of the log-ratio as the outcome mea-
sure.

For Fisher’s exact test, we summed DNA and RNA counts in the two conditions to form
a 2-by-2 table as input to the procedure.

For QuASAR-MPRA, we summed RNA counts in each condition to get one reference
condition count and one alternative condition count per element. We also summed DNA
counts in all samples and in the reference condition to get one DNA proportion for each
element. These were direct inputs to the method.

Permutation tests

We performed null permutation experiments to estimate empirical type I error rates (de-
noted by α) at different nominal levels. Specifically, we created permuted sample groups
that each were composed half of group 1 samples and half of group 2 samples. For exam-
ple, in a six versus six comparison, we would select three samples from group 1 and three
samples from group 2 to be in the first comparison group. The remaining samples would
be in the second comparison group. In this way, we expect no differences in activity mea-
sures between the comparison groups. We performed 100 permutations for each dataset
if sample sizes permitted. For mpralm only, we mean-centered the log ratio outcomes
within comparison groups and permuted the resulting residuals (Jiang, 2017).

Estimation of π0

The proportion of truly null hypotheses for each dataset was estimated using the “lfdr”
method in the propTrueNull function within limma (Phipson, 2013). This proportion
was estimated for mpralm, t-test, and QuASAR, and the median of these estimates was
used as the estimate for π0 for that dataset. Fisher’s exact test was excluded from this
estimate because it gave an estimate of π0 that was considerably smaller than the other
methods, and which was dubious in light of its uncontrolled type I error rate. These π0
estimates are used in the FDR calculations of Figures 7.

22

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/196394doi: bioRxiv preprint 

https://doi.org/10.1101/196394
http://creativecommons.org/licenses/by/4.0/


Bias and variance of estimators

We use Taylor series arguments to approximate the bias and variance of the aggregate
and average estimators. The following summarizes our parametric assumptions:

E[Rb] = µr = Nr pr Var(Rb) = krµr

E[Db] = µd = Nd pd Var(Db) = kdµd

We suppress the dependency of these parameters on sample and element. Library sizes
are given by N. The fraction of reads coming from a given element is given by p. Dis-
persion parameters are given by k. The common library size resulting from total count
normalization is given by L. The true activity measure of a given element is given by
a := log(pr/pd).

Average estimator

The “average estimator” of a is an average of barcode-specific log activity measures and
is written as:

âAV =
1
B

B

∑
b=1

log
(

RbL/Nr + 1
DbL/Nd + 1

)
The second-order Taylor expansion of the function

f (Rb, Db) = log(RbL/Nr + 1)− log(DbL/Nd + 1)

about the point (E[Rb], E[Db]) = (µr, µd) is:

log
(

RbL/Nr + 1
DbL/Nd + 1

)
≈ log (µrL/Nr + 1)− log (µdL/Nd + 1)

+ (Rb − µr)
L/Nr

µrL/Nr + 1
− (Db − µd)

L/Nd
µdL/Nd + 1

− (L/Nr)2

2(µrL/Nr + 1)2 (Rb − µr)
2 +

(L/Nd)
2

2(µdL/Nd + 1)2 (Db − µd)
2

We use the expansion above to approximate the expectation of the average estimator:
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E
[

âAV
]
≈ log

(
µrL/Nr + 1
µdL/Nd + 1

)
+

(L/Nd)
2kdµd

2(µdL/Nd + 1)2 − (L/Nr)2krµr

2(µrL/Nr + 1)2

≈ log
(

pr

pd

)
+

kd
2µd

− kr

2µr

= a +
kd

2µd
− kr

2µr

We can also approximate the variance under the assumption that the barcode-specific
log-ratios are uncorrelated:

Var(âAV) =
1
B

Var
(

log
(

RbL/Nr + 1
DbL/Nd + 1

))
≈ (L/Nr)2krµr

B(µrL/Nr + 1)2 +
(L/Nd)

2kdµd
B(µdL/Nd + 1)2 − 2(L/Nr)(L/Nd)Cov(Rb, Db)

B(µrL/Nr + 1)(µdL/Nd + 1)

Aggregate estimator

The “aggregate estimator” of a first aggregates counts over barcodes and is written as:

âAGG = log

(
1 + (L/Nr)∑B

b=1 Rb

1 + (L/Nd)∑B
b=1 Db

)
= log

(
1 + (L/Nr)RAGG

1 + (L/Nd)DAGG

)
The second-order Taylor expansion of the function

f (RAGG, DAGG) = log((L/Nr)RAGG + 1)− log((L/Nd)DAGG + 1)

about the point (E[RAGG], E[DAGG]) = (Bµr, Bµd) is:

log
(

1 + (L/Nr)RAGG

1 + (L/Nd)DAGG

)
≈ log (BµrL/Nr + 1)− log (BµdL/Nd + 1)

+ (RAGG − Bµr)
L/Nr

BµrL/Nr + 1
− (DAGG − Bµd)

L/Nd
BµdL/Nd + 1

− (L/Nr)2

2(BµrL/Nr + 1)2 (RAGG − Bµr)
2 +

(L/Nd)
2

2(BµdL/Nd + 1)2 (DAGG − Bµd)
2
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We use the expansion above to approximate the expectation:

E
[

âAGG
]
≈ log

(
BµrL/Nr + 1
BµdL/Nd + 1

)
+

Bkdµd(L/Nd)
2

2(BµdL/Nd + 1)2 − Bkrµr(L/Nr)2

2(BµrL/Nr + 1)2

≈ log
(

pr

pd

)
+

kd
2Bµd

− kr

2Bµr

= a +
kd

2Bµd
− kr

2Bµr

We can also approximate the variance:

Var(âAGG) ≈
(L/Nr)2Bkrµr

(BµrL/Nr + 1)2 +
(L/Nd)

2Bkdµd
(BµdL/Nd + 1)2 − 2(L/Nr)(L/Nd)Cov(RAGG, DAGG)

(BµrL/Nr + 1)(BµdL/Nd + 1)
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Kirkpatrick, B. Göttgens, B. G. Bruneau, A. Visel, and L. A. Pennacchio (2014). “Function-
based identification of mammalian enhancers using site-specific integration”. Nature
Methods 11, pp. 566–571. DOI: 10.1038/nmeth.2886.

Ernst, J., A. Melnikov, X. Zhang, L. Wang, P. Rogov, T. S. Mikkelsen, and M. Kellis (2016).
“Genome-scale high-resolution mapping of activating and repressive nucleotides in
regulatory regions”. Nature Biotechnology. 34, pp. 1180–1190. DOI: 10.1038/nbt.3678.

Farley, E. K., K. M. Olson, W. Zhang, A. J. Brandt, D. S. Rokhsar, and M. S. Levine (2015).
“Suboptimization of developmental enhancers”. Science 350, pp. 325–328. DOI: 10 .
1126/science.aac6948.

Ferreira, L. M. R., T. B. Meissner, T. S. Mikkelsen, W. Mallard, C. W. O’Donnell, T. Tilburgs,
H. A. B. Gomes, R. Camahort, R. I. Sherwood, D. K. Gifford, J. L. Rinn, C. A. Cowan,
and J. L. Strominger (2016). “A distant trophoblast-specific enhancer controls HLA-G
expression at the maternal-fetal interface”. PNAS 113, pp. 5364–5369. DOI: 10.1073/
pnas.1602886113.

Fiore, C. and B. A. Cohen (2016). “Interactions between pluripotency factors specify cis-
regulation in embryonic stem cells”. Genome Research 26, pp. 778–786. DOI: 10.1101/
gr.200733.115.

Gisselbrecht, S. S., L. A. Barrera, M. Porsch, A. Aboukhalil, P. W. Estep 3rd, A. Vedenko,
A. Palagi, Y. Kim, X. Zhu, B. W. Busser, C. E. Gamble, A. Iagovitina, A. Singhania, A. M.
Michelson, and M. L. Bulyk (2013). “Highly parallel assays of tissue-specific enhancers
in whole Drosophila embryos”. Nature Methods 10, pp. 774–780. DOI: 10.1038/nmeth.
2558.

Groff, A. F., D. B. Sanchez-Gomez, M. M. L. Soruco, C. Gerhardinger, A. R. Barutcu, E. Li,
L. Elcavage, O. Plana, L. V. Sanchez, J. C. Lee, M. Sauvageau, and J. L. Rinn (2016). “In
Vivo Characterization of Linc-p21 Reveals Functional cis-Regulatory DNA Elements”.
Cell Reports 16, pp. 2178–2186. DOI: 10.1016/j.celrep.2016.07.050.

Grossman, S. R., X. Zhang, L. Wang, J. Engreitz, A. Melnikov, P. Rogov, R. Tewhey, A.
Isakova, B. Deplancke, B. E. Bernstein, T. S. Mikkelsen, and E. S. Lander (2017). “Sys-
tematic dissection of genomic features determining transcription factor binding and
enhancer function”. PNAS 114, E1291–E1300. DOI: 10.1073/pnas.1621150114.

26

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/196394doi: bioRxiv preprint 

http://dx.doi.org/10.1371/journal.pgen.1004592
http://dx.doi.org/10.1371/journal.pgen.1004592
http://dx.doi.org/10.1186/1471-2105-11-94
http://dx.doi.org/10.1038/nmeth.2886
http://dx.doi.org/10.1038/nbt.3678
http://dx.doi.org/10.1126/science.aac6948
http://dx.doi.org/10.1126/science.aac6948
http://dx.doi.org/10.1073/pnas.1602886113
http://dx.doi.org/10.1073/pnas.1602886113
http://dx.doi.org/10.1101/gr.200733.115
http://dx.doi.org/10.1101/gr.200733.115
http://dx.doi.org/10.1038/nmeth.2558
http://dx.doi.org/10.1038/nmeth.2558
http://dx.doi.org/10.1016/j.celrep.2016.07.050
http://dx.doi.org/10.1073/pnas.1621150114
https://doi.org/10.1101/196394
http://creativecommons.org/licenses/by/4.0/


Guo, C., I. C. McDowell, M. Nodzenski, D. M. Scholtens, A. S. Allen, W. L. Lowe, and
T. E. Reddy (2017). “Transversions have larger regulatory effects than transitions”. BMC
Genomics 18, p. 394. DOI: 10.1186/s12864-017-3785-4.

Inoue, F., M. Kircher, B. Martin, G. M. Cooper, D. M. Witten, M. T. McManus, N. Ahi-
tuv, and J. Shendure (2017). “A systematic comparison reveals substantial differences
in chromosomal versus episomal encoding of enhancer activity”. Genome Research 27,
pp. 38–52. DOI: 10.1101/gr.212092.116.

Ireland, W. T. and J. B. Kinney (2016). “MPAthic: quantitative modeling of sequence-
function relationships for massively parallel assays”. bioRxiv, p. 054676. DOI: 10.1101/
054676.

Jiang, D. (2017). “Adjustment Procedure to Permutation Tests in Epigenomic Differential
Analysis”. PhD thesis. Johns Hopkins Bloomberg School of Public Health.

Kalita, C. A., G. A. Moyerbrailean, C. Brown, X. Wen, F. Luca, and R. Pique-Regi (2017).
“QuASAR-MPRA: Accurate allele-specific analysis for massively parallel reporter as-
says”. Bioinformatics. DOI: 10.1093/bioinformatics/btx598.

Kamps-Hughes, N., J. L. Preston, M. A. Randel, and E. A. Johnson (2015). “Genome-wide
identification of hypoxia-induced enhancer regions”. PeerJ 3, e1527. DOI: 10.7717/
peerj.1527.

Kheradpour, P., J. Ernst, A. Melnikov, P. Rogov, L. Wang, X. Zhang, J. Alston, T. S. Mikkelsen,
and M. Kellis (2013). “Systematic dissection of regulatory motifs in 2000 predicted hu-
man enhancers using a massively parallel reporter assay”. Genome Research 23, pp. 800–
811. DOI: 10.1101/gr.144899.112.

Kwasnieski, J. C., C. Fiore, H. G. Chaudhari, and B. A. Cohen (2014). “High-throughput
functional testing of ENCODE segmentation predictions”. Genome Research 24, pp. 1595–
1602. DOI: 10.1101/gr.173518.114.

Kwasnieski, J. C., I. Mogno, C. A. Myers, J. C. Corbo, and B. A. Cohen (2012). “Com-
plex effects of nucleotide variants in a mammalian cis-regulatory element”. PNAS 109,
pp. 19498–19503. DOI: 10.1073/pnas.1210678109.

Law, C. W., Y. Chen, W. Shi, and G. K. Smyth (2014). “voom: Precision weights unlock
linear model analysis tools for RNA-seq read counts”. Genome Biology 15, R29. DOI:
10.1186/gb-2014-15-2-r29.

Levo, M., T. Avnit-Sagi, M. Lotan-Pompan, Y. Kalma, A. Weinberger, Z. Yakhini, and E.
Segal (2017). “Systematic Investigation of Transcription Factor Activity in the Context
of Chromatin Using Massively Parallel Binding and Expression Assays”. Mol. Cell 65,
604–617.e6. DOI: 10.1016/j.molcel.2017.01.007.

Love, M. I., W. Huber, and S. Anders (2014). “Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2”. Genome Biology 15, p. 550. DOI: 10.1186/
s13059-014-0550-8.

Maricque, B. B., J. Dougherty, and B. A. Cohen (2017). “A genome-integrated massively
parallel reporter assay reveals DNA sequence determinants of cis-regulatory activity in
neural cells”. Nucleic Acids Research 45, e16–e16. DOI: 10.1093/nar/gkw942.

27

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/196394doi: bioRxiv preprint 

http://dx.doi.org/10.1186/s12864-017-3785-4
http://dx.doi.org/10.1101/gr.212092.116
http://dx.doi.org/10.1101/054676
http://dx.doi.org/10.1101/054676
http://dx.doi.org/10.1093/bioinformatics/btx598
http://dx.doi.org/10.7717/peerj.1527
http://dx.doi.org/10.7717/peerj.1527
http://dx.doi.org/10.1101/gr.144899.112
http://dx.doi.org/10.1101/gr.173518.114
http://dx.doi.org/10.1073/pnas.1210678109
http://dx.doi.org/10.1186/gb-2014-15-2-r29
http://dx.doi.org/10.1016/j.molcel.2017.01.007
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1093/nar/gkw942
https://doi.org/10.1101/196394
http://creativecommons.org/licenses/by/4.0/


Marioni, J. C., C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad (2008). “RNA-seq: an
assessment of technical reproducibility and comparison with gene expression arrays”.
Genome Research 18, pp. 1509–1517. DOI: 10.1101/gr.079558.108.

McCarthy, D. J., Y. Chen, and G. K. Smyth (2012). “Differential expression analysis of
multifactor RNA-Seq experiments with respect to biological variation”. Nucleic Acids
Research 40, pp. 4288–4297. DOI: 10.1093/nar/gks042.

Melnikov, A., A. Murugan, X. Zhang, T. Tesileanu, L. Wang, P. Rogov, S. Feizi, A. Gnirke,
C. G. Callan Jr, J. B. Kinney, M. Kellis, E. S. Lander, and T. S. Mikkelsen (2012). “System-
atic dissection and optimization of inducible enhancers in human cells using a mas-
sively parallel reporter assay”. Nature Biotechnology 30, pp. 271–277. DOI: 10.1038/
nbt.2137.

Melnikov, A., X. Zhang, P. Rogov, L. Wang, and T. S. Mikkelsen (2014). “Massively parallel
reporter assays in cultured mammalian cells”. J. Vis. Exp. DOI: 10.3791/51719.

Mogno, I., J. C. Kwasnieski, and B. A. Cohen (2013). “Massively parallel synthetic pro-
moter assays reveal the in vivo effects of binding site variants”. Genome Research 23,
pp. 1908–1915. DOI: 10.1101/gr.157891.113.

Patwardhan, R. P., J. B. Hiatt, D. M. Witten, M. J. Kim, R. P. Smith, D. May, C. Lee, J. M. An-
drie, S.-I. Lee, G. M. Cooper, N. Ahituv, L. A. Pennacchio, and J. Shendure (2012). “Mas-
sively parallel functional dissection of mammalian enhancers in vivo”. Nature Biotech-
nology 30, pp. 265–270. DOI: 10.1038/nbt.2136.

Patwardhan, R. P., C. Lee, O. Litvin, D. L. Young, D. Pe’er, and J. Shendure (2009). “High-
resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis”.
Nature Biotechnology 27, pp. 1173–1175. DOI: 10.1038/nbt.1589.

Phipson, B. (2013). “Empirical bayes modelling of expression profiles and their associa-
tions”. PhD thesis.

Robinson, M. D., D. J. McCarthy, and G. K. Smyth (2010). “edgeR: a Bioconductor package
for differential expression analysis of digital gene expression data”. Bioinformatics 26,
pp. 139–140. DOI: 10.1093/bioinformatics/btp616.

Safra, M., R. Nir, D. Farouq, I. Vainberg Slutskin, and S. Schwartz (2017). “TRUB1 is the
predominant pseudouridine synthase acting on mammalian mRNA via a predictable
and conserved code”. Genome Research 27, pp. 393–406. DOI: 10.1101/gr.207613.
116.

Shen, S. Q., C. A. Myers, A. E. O. Hughes, L. C. Byrne, J. G. Flannery, and J. C. Corbo
(2016). “Massively parallel cis-regulatory analysis in the mammalian central nervous
system”. Genome Research 26, pp. 238–255. DOI: 10.1101/gr.193789.115.

Smith, R. P., L. Taher, R. P. Patwardhan, M. J. Kim, F. Inoue, J. Shendure, I. Ovcharenko,
and N. Ahituv (2013). “Massively parallel decoding of mammalian regulatory sequences
supports a flexible organizational model”. Nature Genetics 45, pp. 1021–1028. DOI: 10.
1038/ng.2713.

Smyth, G. K., J. Michaud, and H. S. Scott (2005). “Use of within-array replicate spots for as-
sessing differential expression in microarray experiments”. Bioinformatics 21, pp. 2067–
2075. DOI: 10.1093/bioinformatics/bti270.

28

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/196394doi: bioRxiv preprint 

http://dx.doi.org/10.1101/gr.079558.108
http://dx.doi.org/10.1093/nar/gks042
http://dx.doi.org/10.1038/nbt.2137
http://dx.doi.org/10.1038/nbt.2137
http://dx.doi.org/10.3791/51719
http://dx.doi.org/10.1101/gr.157891.113
http://dx.doi.org/10.1038/nbt.2136
http://dx.doi.org/10.1038/nbt.1589
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1101/gr.207613.116
http://dx.doi.org/10.1101/gr.207613.116
http://dx.doi.org/10.1101/gr.193789.115
http://dx.doi.org/10.1038/ng.2713
http://dx.doi.org/10.1038/ng.2713
http://dx.doi.org/10.1093/bioinformatics/bti270
https://doi.org/10.1101/196394
http://creativecommons.org/licenses/by/4.0/


Tewhey, R., D. Kotliar, D. S. Park, B. Liu, S. Winnicki, S. K. Reilly, K. G. Andersen, T. S.
Mikkelsen, E. S. Lander, S. F. Schaffner, and P. C. Sabeti (2016). “Direct Identification
of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter Assay”.
Cell 165.6, pp. 1519–1529. DOI: 10.1016/j.cell.2016.04.027.

Ulirsch, J. C., S. K. Nandakumar, L. Wang, F. C. Giani, X. Zhang, P. Rogov, A. Melnikov,
P. McDonel, R. Do, T. S. Mikkelsen, and V. G. Sankaran (2016). “Systematic Functional
Dissection of Common Genetic Variation Affecting Red Blood Cell Traits”. Cell 165,
pp. 1530–1545. DOI: 10.1016/j.cell.2016.04.048.

Vockley, C. M., C. Guo, W. H. Majoros, M. Nodzenski, D. M. Scholtens, M. G. Hayes, W. L.
Lowe Jr, and T. E. Reddy (2015). “Massively parallel quantification of the regulatory ef-
fects of noncoding genetic variation in a human cohort”. Genome Research 25, pp. 1206–
1214. DOI: 10.1101/gr.190090.115.

White, M. A. (2015). “Understanding how cis-regulatory function is encoded in DNA
sequence using massively parallel reporter assays and designed sequences”. Genomics
106, pp. 165–170. DOI: 10.1016/j.ygeno.2015.06.003.

White, M. A., J. C. Kwasnieski, C. A. Myers, S. Q. Shen, J. C. Corbo, and B. A. Cohen (2016).
“A Simple Grammar Defines Activating and Repressing cis-Regulatory Elements in
Photoreceptors”. Cell Reports 5, pp. 1247–1254. DOI: 10.1016/j.celrep.2016.09.
066.

White, M. A., C. A. Myers, J. C. Corbo, and B. A. Cohen (2013). “Massively parallel
in vivo enhancer assay reveals that highly local features determine the cis-regulatory
function of ChIP-seq peaks”. PNAS 110.29, pp. 11952–11957. DOI: 10.1073/pnas.
1307449110.

Zhao, W., J. L. Pollack, D. P. Blagev, N. Zaitlen, M. T. McManus, and D. J. Erle (2014).
“Massively parallel functional annotation of 3’ untranslated regions”. Nature Biotech-
nology 32, pp. 387–391. DOI: 10.1038/nbt.2851.

29

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/196394doi: bioRxiv preprint 

http://dx.doi.org/10.1016/j.cell.2016.04.027
http://dx.doi.org/10.1016/j.cell.2016.04.048
http://dx.doi.org/10.1101/gr.190090.115
http://dx.doi.org/10.1016/j.ygeno.2015.06.003
http://dx.doi.org/10.1016/j.celrep.2016.09.066
http://dx.doi.org/10.1016/j.celrep.2016.09.066
http://dx.doi.org/10.1073/pnas.1307449110
http://dx.doi.org/10.1073/pnas.1307449110
http://dx.doi.org/10.1038/nbt.2851
https://doi.org/10.1101/196394
http://creativecommons.org/licenses/by/4.0/

