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 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and 
implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A 
complete listing of ADNI investigators can be found at: 

 http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 
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Abstract 

Mapping the spatiotemporal dynamics of brain atrophy in the Alzheimer’s disease (AD) aids in discovering 

vulnerable brain networks. Various MRI-derived measures including hippocampal volume loss are commonly used 

as imaging biomarkers of AD progression. Multivariate methods such as independent component analysis (ICA) 

have recently shown promise in revealing more complex patterns of brain atrophy. 

Here, we aimed to extract a data-driven signature of brain atrophy in AD and its heralding risk factor, the mild 

cognitive impairment (MCI) state. Structural brain changes were quantified in 1,892 MRI scans from 1,100 

participants of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) by Tensor-Based Morphometry (TBM). 

Brain morphometry maps of this population were fed into an ICA-based feature extraction algorithm which revealed 

that AD is associated with a characteristic signature of brain degeneration spanning several areas of the limbic 

system. The highest probability of brain atrophy in AD was localized to amygdalae (pICA z-score>22), followed by 

hippocampus (pICA z-score>14), and the mammillary bodies (pICA z-score>9) together with their white-matter 

connections including fimbrial and fornical tracts as a unified MRI endophenotype. This endophenotype performed 

better than the hippocampal volume measure in discriminating both AD and MCI subjects from the cognitively 

normal group, and we evaluated the potential for this feature set to serve as a disease-related endophenotype in a 

whole-genome association study. A protein-altering polymorphism in the synaptic scaffold gene, SHARPIN, affected 

loss of volume in this endophenotype among 8,852,807 whole-genome sequencing-based variants (rs34173062; p 

=2.1×10-10). Other suggestive but subgenome-wide signals mapped to EPHA7 and FRMD4A, two known AD risk 

loci. 

In conclusion, by unsupervised decomposition of brain morphometry maps, we have provided a unified imaging 

endophenotype of AD that closely maps to the brain’s memory center. Observation of bilateral amygdalae as the 

most vulnerable limbic structures spotlights impairment of emotional and memory processing integration in early 

AD. 

Keywords: Alzheimer’s disease, Brain atrophy, Tensor-based morphometry, Independent component analysis, 

endophenotype, genome-wide association study, whole genome sequencing 
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analysis (ICA), Mild cognitive impairment (MCI), Medial temporal circuit (MTC), Single-nucleotide polymorphism 

(SNP), Tensor-based morphometry (TBM) 

Introduction 

Sporadic AD is a multifactorial disease predisposed by a strong (58-79%) genetic contribution1. However, even the 

most compelling genetic risk factor, APOE4, only explains 6% of disease predisposition variance, leaving the 

majority of its polygenic risk component largely unresolved by known loci2. 

An important caveat for discovering association of genetic risk factors with various human diseases is selection of 

optimal outcome measures, or phenotypes, for genome-wide association. Case-control genome-wide association 

studies (GWAS) identify disease risk genes by stratifying the study groups based on clinical diagnoses. Clinical 

diagnoses are simple tools that have been fundamentally devised to translate heterogeneous pathologies into simple 

categorical entities for guiding therapeutic approaches, and represent only the terminal outcomes of the complex 

molecular and cellular derangements of the disease. As a result, when used as the phenotype of interest in genome-

wide research, clinical diagnoses may not give us an ultimately deep insight into the biological pathways of disease 

progression, for instance in the early subclinical stages of brain pathology. 

Using endophenotypes to search for genetic risk factors of the disease process is thought to address this 

shortcoming. Endophenotypes are heritable measures, which are shown to be different in individuals with a disease 

than those without, and are also often disrupted in unaffected siblings of those with the disorder, yet to a lesser 

degree3. In particular, quantitative MRI is a useful modality for biomarker discovery and monitoring brain structure, 

function and connectivity in living humans. It is the primary objective of the emerging field of imaging genetics to 

identify the impact of genetic factors on such neuroimaging biomarkers that potentially inform on pathways of 

disease progression4,5. 

Various measures of brain atrophy are commonly used in AD research, including loss of hippocampal volume6, 

reduced thickness of entorhinal cortex7 and expansion of lateral ventricles8. MRI-derived features, such as volume of 

subcortical structures have also been used in imaging genetic studies9-11. In contrast to these a priori measures, an 
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unbiased whole-brain search is expected to provide complementary insight into unexpected patterns of genotype-

phenotype linkage in various neuropsychiatric disorders. However, this new approach comes at high computational 

and methodological costs, since iterating statistical tests across the combined and high-dimensional space of the 

genome and neuroimage poses significant technical challenges12, but offers critical insight into unseen disease 

mechanisms. 

Reportedly, network-specific degenerative forces underpin selective vulnerability of brain circuits in various 

neuropsychiatric disorders and dementias13. Extracting these complex patterns from 3D brain morphometry maps 

may provide us with promising endophenotypes for monitoring disease progression and its genetic modifiers14. 

Here, we aimed to extract the most representative spatial fingerprint of brain atrophy in AD through a brain-wide 

approach. We quantified voxelwise maps of brain volume and atrophy by processing MRI data of the ADNI cohort, 

and subsequently decomposed brain atrophy sources by an unbiased, whole-brain computational search using spatial 

ICA. This analysis revealed a characteristic signature of brain atrophy in AD that connected several structures of the 

limbic system and their white-matter tracts with a network-like topology in 3D. Whole-genome sequencing variants 

were used in conjunction with this new endophenotype, which showed that a missense variant in the postsynaptic 

scaffold protein SHARPIN significantly (p=2.1×1010) correlated with the derived measure of limbic system integrity 

across the study population. Our findings show the promise of data-driven endophenotypes as sensitive disease 

markers and reveal that bilateral amygdalae are probably the most vulnerable structures of the limbic system in early 

AD and MCI. 

Results 

Tensor-based morphometry shows spatial patterns of brain atrophy in aging and 

cognitive decline that map to known anatomical networks 

The ADNI participants in this work included 1,100 individuals (age: 74.5±7.1y) with baseline T1-weighted 

structural brain MRI scans. Cognitive status of participants included normal, MCI and probable AD subjects based 

on NINCDS/ADRDA criteria (Table 1). Among these individuals, longitudinal MRI data was also available in a 
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subpopulation of 1,039 subjects who underwent follow-up scans at 1.07±0.08 year (n=1,009 subjects) and/or 

2.07±0.11 year intervals (n=883 subjects). 

Table 1. Cognitive status of the study population 

 NL MCI AD Total 

Cross-sectional 383 456 361 1,100 (491 women) 

Longitudinal 269 422 348 1,039 (457 women) 

NL: Cognitively normal; MCI: Mild cognitive impairment; AD: Alzheimer’s 
disease 

 

We used Tensor-Based Morphometry (TBM) to track localized brain volume changes at MRI voxel resolution15 

which also formed the basis of subsequent multivariate analyses in this work (Figure S1). Jacobian determinant 

maps were produced by this analysis, which are 3D scalar fields encoding cross-sectional brain volume differences 

in each study subject (i.e. regional brain shrinkage or expansion) in relation to the average study brain template16. 

For those study subjects who underwent serial MRI scans, a longitudinal TBM workflow was implemented to track 

brain atrophy in course of disease progression using symmetric alignment of baseline and follow-up MRIs17,18. 

Subtle anatomical changes across the inter-scan intervals were calculated, resulting in production of longitudinal 

Jacobian maps which encoded voxelwise dynamics of brain atrophy progression in each study subject (Fig. 1 and 

supplementary methods). 
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Figure 1. Jacobian maps of brain atrophy. Average longitudinal Jacobian maps of the study diagnosis groups

MCI: Mild cognitive impairment; AD: Alzheimer’s disease. 

 

Spatial patterns of regional brain volume differences and atrophy rates in AD 

By slightly modifying the ICA-based source-based morphometry approach, we extracted multivariate features in the

Jacobian morphometry maps to identify reproducible and independent sources of brain atrophy19. To this aim, cross-

sectional (1,068,867 voxels × 1,100 subjects) and longitudinal (1,068,867 voxels × 1,039 subjects) Jacobian maps

were spatially decomposed into 1,348 independent sources of brain volume change and atrophy by probabilistic
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ICA20. These data-driven 3D sources inform on brain areas with correlated patterns of volumetric variability and

atrophy across the population, and most of them localized to known anatomical structures (Fig. 2). 

 

Figure 2: Spatially-independent components of brain morphometry in the study population. A number of

cross-sectional brain volume sources decomposed by ICA are shown. Components spanned the whole extent of the

brain, including white-matter areas (a), cortical gyri and sulci (b), as well as subcortical structures and the limbic

system (c). Other features were also captured by ICA, including periventricular white matter lesions (d). 

We aimed to determine which subset of these imaging features best represented the spatial impact of AD on brain

structure. To this aim, all of the 1,348 components were used together as predictor variables in regression models to

discriminate AD patients from cognitively normal subjects, after correcting for the confounding effects of age and

sex. L1-regularization (LASSO) was used to include as few predictor components as possible and simplify the

model21. This analysis showed that AD patients could be predicted by reduced volume in 26 ICA components using
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cross-sectional MRI data, or 30 ICA components using longitudinal MRI data, with respective classification

accuracies of 86% and 87% (Fig 3 and S3). 

Figure 3. AD-predicting brain volume and atrophy sources: For visualization of the AD-specific brain

components, their cross-correlation matrices were constructed and reordered to bring spatially-correlated elements

close to the diagonal. Hierarchical clustering was then used to group the components into similar clusters. Cluster-

wise ICA z-score maps are depicted in right (red-yellow: atrophy, blue: expansion). The strongest AD discriminator
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in both phases was the medial temporal circuit (MTC), which is plotted as the yellow diagonal element in both 

matrices. 

The AD-predicting components in cross-sectional phase of the study clustered to brain regions spanning: precuneus, 

occipital lobes and pulvinar (Fig. 3A); hippocampus, amygdala, parahippocampal gyrus, fornix, mammillary bodies, 

and uncinate fasciculus (Fig. 3B); as well as lateral temporal lobes and the cerebellum (Fig. 3C). The AD-predicting 

components in longitudinal phase of the study clustered to: precuneus, cuneus and occipitoparietal lobes (Fig. 3D); 

thalamus, temporal lobes and its association areas (Figure 3E); medial temporal lobes, uncinate fasciculus and 

connections to the orbitofrontal cortex (Fig. 3F); as well as insula, basal ganglia and cerebellum (Fig. 3G). Overall, 

both cross-sectional and longitudinal neuroimaging of AD revealed a strongly reproducible focus of brain atrophy in 

the medial temporal lobe and its white-matter connections to the limbic system, with a secondary impact observed in 

parietal lobes, precuneus, cuneus, subcortical grey, and thalamus. 

The memory limbic system is the most vulnerable focus of brain degeneration in AD 

and MCI: a unified endophenotype of early disease impact 

Of the 1,348 spatially-independent components of brain volume and atrophy decomposed by 29 rounds of ICA, the 

most prominent imaging predictor of AD was a unique spatial source which obtained the top odds-ratio rank in both 

cross-sectional and longitudinal phases in discriminating AD from cognitively-normal subjects. This atrophy source 

spanned voxels of bilateral amygdalae, hippocampi, entorhinal cortex, insula, mammillary bodies, and fornical tracts 

with a connected and network-like topology in 3D (Fig. 4 and supplementary video). The maximal focus of atrophy 

impact within this component mapped to amygdalae, and further extended to other nodes of the memory limbic 

system in a bilaterally-symmetric probability gradient. This atrophy source, which will be referred to as the medial 

temporal circuit (MTC) in this manuscript, almost identically (r2>0.94) replicated across five independent ICA runs, 

reflecting the strong share of variance between its voxels. MTC was also the most consistent predictor of subjects 

with MCI, as it obtained the top odds-ratio rank in discriminating MCI subjects from the cognitively normal group 

in cross-sectional MRI, and second in longitudinal MRI (Fig. 4). Of note, MTC was significantly, but only 

moderately correlated with the hippocampal volume parameter (r2=0.65, p<10-15). 
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Evaluating the statistical power of this new endophenotype for AD discrimination is subject to circularity and may 

be inflated, but this is not the case for discriminating the independent MCI group. Compared to the widely-used 

hippocampal volume parameter, we observed higher power for atrophy in the MTC endophenotype in group-wise 

discrimination of MCI individuals from the cognitively normal group (MTC t-statistic=4.4, p=1.2×10-5 vs. 

hippocampal t-statistic=3.2, p=0.002). For completeness, AD discrimination suggested a higher discriminatory 

power compared to hippocampal volume, as expected (MTC t-statistic=16.8, p<10-15 vs. hippocampal t-statistic=4.4, 

p=1.1×10-5). 
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Figure 4. Contribution of brain atrophy components in predicting AD or MCI diagnoses. Each bar represents a

brain morphometry component which either predicted MCI subjects (left plots) and/or AD patients (right plots) from

cognitively normal subjects in group discriminative regression models. Bar lengths encode regression betas (log-

odds ratios) reflecting importance of each component in diagnosis prediction. Logistic regressions in cross-sectional

(top) and longitudinal (bottom) neuroimaging both replicated the MTC atrophy endophenotype as the most

consistent predictor of AD and MCI, which is plotted as red bars. Spatial map of this component is previewed in

right (ICA z-score; red-yellow: atrophy, blue: expansion) and 3D rendered in supplementary video. 
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The MRI endophenotype of medial temporal circuit degeneration is correlated with 

cognitive decline in aging humans 

Cognitive performance of participants, as measured by ADAS-cog, was significantly correlated with the MTC 

endophenotype at its baseline volume in AD (p=5.4×10-8) and MCI (p=9.6×10-7), adjusting for age and sex 

confounds. Similarly, longitudinal atrophy rate of MTC showed significant associations with ADAS-cog in AD 

(p=0.04) and MCI subjects (p=0.002) adjusted for age and sex confounds. Older age (p=2.6×10-5) and female sex 

(p=7.5×10-5) were significantly associated with faster atrophy in this ICA endophenotype. Compared to the 

cognitively-normal group, the annual atrophy rate in the MTC was increased by 2.1-fold in MCI and 5.1-fold in AD 

patients. 

APOE4 is correlated with degeneration of bilateral amygdalae and the MTC 

endophenotype 

Dosage of the APOE4 allele was significantly correlated with smaller baseline volume (p=0.006) and faster atrophy 

rate (p=5.0×10-4) in the MTC endophenotype, respectively explaining 1.0% and 1.8% of its variance in AD patients. 

To further elucidate the brain-wide impact of APOE4, we conducted a standard non-parametric voxelwise search22, 

which showed that longitudinal brain atrophy is modified by APOE4 dosage in temporal lobes of AD patients. 

Intriguingly, the APOE4 influence in cross-sectional morphometry was only significant in bilateral amygdalar 

voxels, suggesting maximal statistical power for observing a significant effect in these structures. 

Common genetic variants modify limbic volume in late life 

Observation of the MTC component as the signature of brain atrophy in AD compelled us to study its role as a data-

driven endophenotype of limbic integrity in unbiased imaging genetics. Whole-genome sequencing data were 

available at an average depth of 30-40x coverage in 808 ADNI participants23, encompassing 40,631,363 single-

nucleotide polymorphisms (SNPs). We searched for common variants which were correlated with baseline MTC 

volume in all study diagnosis groups with mean age (±SD) of 74.0±7.1 years, including 226 normal, 402 MCI and 

180 AD subjects, and 363 of whom were women. The top variant observed, rs34173062, changes an amino acid in 
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the synaptic protein SHARPIN and survived the genome-wide Bonferroni correction (p=2.1×10-10, Table 2 and Fig. 

5). RegulomeDB suggests that this polymorphism likely affects transcription factor binding by mapping to known 

binding motifs and matching DNase hypersensitivity footprint24. Another top SNP, rs3778470 (p=1.5×10-7), is an 

intronic variant in EPHA7, coding for an Ephrin receptor with roles in axon guidance and dendritic spine 

development. Upon follow-up analyses, we found this variant regulated hippocampal expression of EPHA7 in the 

UKBEC database of normal human brains25, and the atrophy-increasing allele decreased hippocampal expression of 

this gene (p=0.03). Another polymorphism, rs28439901, maps to FRMD4A, a gene previously shown to modify AD 

risk26. Another hit, rs149101079, maps to an open-reading frame coding for VEST-1, a protein-coding transcript of 

unknown function which is selectively expressed in brain and hippocampus (supplementary figure S5). This 

polymorphism is also suggestively correlated with amygdalar volume in large-scale ENIGMA-2 meta-analysis of 

30,717 humans (p=0.03, supplementary figure S5). 

Figure 5. Manhattan and quantile-quantile plot of medial temporal circuit GWAS. A common non-

synonymous variant in the SHARPIN gene passed the genome-wide threshold. 
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Figure 6. Regional association Plot of the SHARPIN locus and correlation of hit SNP with voxel-wise brain

volume. The voxel-wise correlation map was calculated by FSL Randomise using 50,000 permutations. Blue:

uncorrected p<0.05; red-yellow: corrected p<0.05. 

Table 2. GWAS results 

SNP Chr Positiona A1 A2b Freq βc Gened p-value 

rs56112946 3 197077194 C T 0.03 -0.15 - 3.1×10-7 

rs3778470 6 94075684 G A 0.12 -0.15 
EPHA7 
(intronic) 

1.5×10-7 

rs149101079 8 69347181 G A 0.04 -0.15 C8orf34 3.1×10-7 

rs34173062 8 145158607 G A 0.10 -0.19 
SHARPIN 
(missense) 

2.1×10-10 

rs28439901 10 14494941 G A 0.08 -0.15 
FRMD4A 
(intronic) 

3.2×10-7 
a hg19 
b effect 
c calculated for variance-normalized phenotype; negative: more atrophy  
d Ensembl 81 coordinates 

Discussions 

ICA reveals limbic atrophy as the dominant MRI endophenotype of AD 

Our blind ICA approach identified a unified measure of brain degeneration in AD by combining atrophy of several

structures engaged in memory mechanisms. In contrast to hippocampal volumetry which is a hypothesis-driven

segmentation technique, source-based morphometry can model hidden atrophy patterns with “soft” boundaries and

spatial overlap, since contribution of each brain voxel is weighted by taking into account the data covariance
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structure within each atrophy source. As a result, the robust share of variance observed in the atrophy of amygdala, 

hippocampus and the mammillary bodies together with their interconnecting white mater tracts indicates that this 

unified endophenotype may reveal the higher-order pattern of brain circuit vulnerability in AD. Importantly, 

although the ICA endophenotype fully embraced bilateral hippocampi, it was only modestly correlated with this 

commonly used AD endophenotype (r2=0.65) due to broad inclusion of other vulnerable memory-related structures. 

The higher discriminatory power of the new endophenotype in predicting MCI, which is an established risk factor 

for future AD conversion, may show added information of data-driven endophenotypes in monitoring early brain 

changes in prodromal disease compared to hippocampal volumetry. 

The ICA probability map of limbic atrophy clearly demonstrated that bilateral amygdalae are the most vulnerable 

foci of brain degeneration in AD and MCI. In line, the most consistent effect of the APOE4 allele was also observed 

in bilateral amygdalar voxels. Atrophy and functional dysconnectivity of amygdala have been recently shown by 

ROI studies of early AD27,28. In close association with hippocampus, amygdala functionally integrates emotional and 

memory processing mechanisms. Amygdala is specifically engaged in processing of stimuli with emotional 

valence29, and early emotional processing impairment is an emerging topic in AD research30,31. 

Our cluster analysis revealed that AD is associated with a secondary focus of atrophy in precuneus, cuneus and 

associated parieto-occipital lobes, structures which represent the major nodes of the default mode network. 

Correlation analysis showed that this posterior focus of brain atrophy was statistically uncorrelated with limbic 

degeneration, and our preliminary findings indicate that it is more prominent in earlier-onset AD cases and heralds a 

more aggressive clinical course. 

Our study is not without limitation. While the primary objective of this work was identifying a sensitive imaging 

endophenotype of AD for application in imaging genetics, a whole genome-sequencing-based association of a single 

cohort of N<1000, cannot, on its own, track the true genetic architecture of brain degeneration. Nevertheless, we 

believe that some of our genetic findings are noteworthy, and could benefit from a replication attempt. The top 

GWAS variant of our study is a common amino acid-changing SNP in the SHARPIN gene coding for a SHANK 

scaffold protein that interfaces the postsynaptic density and neurotransmitter receptors with the synaptic actin 

cytoskeleton32. This variant is not genotyped or tagged by most of the genotyping chips used in the previous studies 
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of AD, and its risk allele has a substantially high frequency in the 1000GP cohort (MAF=~0.03-0.15). A sub-

genome-wide intronic variant of brain atrophy mapped to EPHA7, a novel AD risk gene33,34 that engages in neurite 

guidance and synaptic function35. FRMD4A, another subgenome-wide signal of our study, is a known risk locus for 

sporadic AD26. Taken together, these preliminary findings suggest that genome-wide association of disease-specific 

imaging endophenotypes may enlighten molecular pathways of disease predisposition. 

In conclusion, we provide a data-driven MRI measure for early degeneration of the limbic system in AD that may 

aid in prognostic stratification of early cognitive decline in aging and prove useful in future clinical trials. 
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Supplementary methods 

ADNI participants 

Imaging, whole-genome sequencing and clinical data used in preparation of this manuscript were obtained from the 

ADNI database (adni.loni.usc.edu). ADNI is a multi-center initiative led by principal investigator Michael W. 

Weiner, MD, VA Medical Center and University of California, San Francisco, and enrolls subjects with normal 

cognition, MCI and AD (supplementary section). ADNI protocols are described in detail elsewhere 

(http://www.adni-info.org/pdfs/adni_protocol_9_19_08.pdf). Normal individuals have MMSE scores between 24-

30, CDR of zero, non-depressed, non-demented and with no sign of cognitive impairment. Mild cognitive 

impairment subjects have MMSE scores between 24-30, memory complaint with objective memory loss measured 

by education-adjusted scores on Wechsler Memory Scale-Revised (WMS-R) logical memory II, a CDR of 0.5 and 

absence of significant impairment in other cognitive domains and absence of dementia. Alzheimer’s disease cohort 

had MMSE score between 20 and 26, CDR of 0.5 or 1.0 and fulfilment of NINCDS/ADRDA criteria for probable 

Alzheimer’s disease. ADNI is a longitudinal study and subjects are continuously assessed for cognitive changes, and 

may possess different diagnosis labels at different study sessions. To elucidate mild and earliest changes in course of 

AD and MCI, we considered the “worst” diagnosis label of each subject across all clinical sessions to stratify the 

cohort into three diagnosis groups (AD, MCI, NL). Therefore, AD and MCI subgroups of this study are expected to 

suffer milder disease than previous ADNI works on average. 

MRI preprocessing and construction of common study template 

Structural MRI was performed using GE, Philips or Siemens scanners. Structural T1-weigthed MRI volumes of the 

ADNI subjects were preprocessed for gradient non-uniformity and intensity inhomogeneity by the ADNI imaging 

core using gradient unwrapping, B1 field and N3 bias correction algorithms36. All volumes were recursively 

registered to an average study space using ANTS (buildtemplateparallel script) and a minimum-deformation 

template was created37. 

Longitudinal atrophy estimation 
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Brain-skull cropping 

Pre-processed T1-weighted volumes of subjects who underwent serial MRI scans were used for longitudinal 

morphometry. FLIRT38 with 12 degrees of freedom was used to linearly transform a dilated mask in the common 

space of the study template into each subject’s native MRI space and obtain “cleaned” volumes in all subjects, 

which included brain and adjacent skull. This common stripping was performed to ensure that the most informative 

structures would be conserved for driving registration of serial MRI timepoints39, and anatomical inconsistencies 

(e.g. soft tissue changes) would be eliminated. 

Halfway space registration and longitudinal brain atrophy estimation 

Basic steps of our longitudinal TBM workflow have been extensively validated before17,40. Cleaned T1-weighted 

volumes of each subject at timepoints1,2 and timepoints1,3 were separately registered to halfway spaces (t1,2-half, t1,3-

half) using 9 degree-of-freedom FLIRT with normalized-correlation cost function and FSL midtrans utility. Halfway 

space registration prevents bias stemming from arbitrary selection of an MRI timepoint as source or target in 

registration, and has been implemented in statistical neuroimage analysis software, e.g. SIENA41. Nine degree-of-

freedom registration removes global brain volume factor and has been shown to be comparable to phantom-based 

correction in ADNI42. In the halfway space, differential MRI bias correction43 was performed on source and 

destination imaging volumes using BtkDifferentialBiasCorrection, part of Biomechanical toolkit44. The calculated 

bias-correcting fields were transformed to native MRI spaces. This round of halfway space registration was used to 

calculate an identical skull-striping mask using logical AND for similar cropping of source and destination MRI 

volumes. After obtaining bias-corrected and identically-masked images in native scan spaces, another iteration of 

halfway space registration was carried out using the same methods. Final transformation matrices were subsequently 

converted to ITK format using c3d_affine_tool (www.itksnap.org45), and used to initialize a non-linear registration 

of source and destination timepoints by SyN. Parameters of longitudinal SyN registration included histogram 

matching, a course-to-fine resolution scheme with 20×10 gradient descent iterations, gradient step size of 0.25, an 

update field variance of 3, a total field variance of 0.5,and a cross-correlation metric with a search radius of 4 

voxels. 

Independent Component Analysis 
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In the cross-sectional phase of study, fifteen ICA runs at a broad range of dimensions, spanning 8, 12, 16, 20, 24, 28, 

32, 40, 48, 56, 64, 72, 80, 88 and 96 were used to decompose Jacobian maps into independent sources. Each 

resulting ICA component is represented by a spatial map which is a 3D imaging feature common across the study 

population, together with a mixing profile vector which linearly reflects the subject-specific brain volume parameter 

in the corresponding 3D source. 

In order to annualize subject-wise atrophy rate estimates as reflected in the columns of the ICA mixing matrix, these 

values were centered on the absolute amount of brain atrophy in each component by spatial regression (fsl_glm) 

using the model: 

[(1-M)/V](1 × n voxels)=R(1 × n components) × C(n components × n voxels) + ε 

In which M and V denote one-dimensional-collapsed versions of 3D voxelwise Jacobian mean and variance across 

the study population, C denotes the matrix of spatially-independent components decomposed by ICA, and R is the 

vector of component-wise centering values to be calculated (i.e. regression betas). 

Validating linearity of the atrophy rate estimates 

Linear evolution of brain atrophy in temporal domain with a non-significant intercept at timepoint zero is a sign of 

biological plausibility in longitudinal TBM40. For validating our TBM workflow, the ICA-derived atrophy estimates 

were linearly regressed against the inter-scan interval duration in study diagnosis groups. Regression intercepts at 

baseline timepoint were not significantly different from zero in the cognitively normal (p=0.9), MCI (p=0.2) or AD 

subjects (p=0.7). To identify the impact of interscan interval duration on atrophy rate estimates, annualized atrophy 

rate parameters across interval1→2 were regressed against interval1→3 to seek their linear association. All regression 

models in the study diagnosis groups showed non-significant intercepts, as well as slopes acceptably near unity 

(Normal:1.07, mild cognitive impairment:0.97, Alzheimer’s disease:1.07, Fig. S2), indicating that our workflow 

provides linear atrophy estimates across the two-year timespan of this study. 

Genome-wide association methods 
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Whole-genome sequencing was performed by a non-CLIA laboratory at Illumina46. DNA samples were sequenced 

on Illumina HiSeq2000 systems using paired end read with length of 100 bp at 30-40x read depth. Short read data 

were mapped to Human Genome build 19 by the proprietary Illumina variant caller CASAVA and single-nucleotide 

polymorphisms (SNPs) were called, resulting in a total of 40,631,363 variants.  We considered SNP calls passing a 

minimum phred quality score of 30 (>99% accuracy) and read depths between a minimum of 10 and maximum of 

threefold average chromosomal depth, minor allele frequency of >0.01 in cross-sectional and >0.03 in longitudinal 

cohorts, Hardy-Weinberg disequilibrium p-value of >10-6 and SNP call rate of >0.9. The sequence-called SNPs were 

validated with the microarray-based genotyping results showing 99.8 ± 0.1% concordance rate. 

The first three axes of population stratification were extracted by Eigenstrat (https://github.com/DReichLab/EIG47). 

Genome-wide association study of the MRI endophenotype was conducted by Plink48. Several confounding 

variables were used as covariates in the linear regression model, including age, gender, dummy covariates encoding 

diagnosis groups (AD, MCI, cognitively normal), three principal axes of population structure, MRI pulse sequence 

(MP-RAGE vs. SPGR), and the APOE4 allele dosage. 
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Supplementary Figures 

 

Figure S1: Outline of Study methods. T1-weighted MRIs were used to identify structural brain changes in cross-
sectional and longitudinal studies. ICA decomposed 1,348 spatial sources of brain atrophy, among which the medial
temporal circuit (MTC) was replicated as the top imaging predictor of AD and MCI and subsequently brought to
GWAS. 
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Figure S2: Linearity of atrophy rates estimated by ICA. Annualized atrophy rate scatter plots of longitudinal
MRI across timepoint1→3 (baseline and year-2) against timepoint1→2 (baseline and year-1) in cognitively normal
(plot A), MCI (plot B) and AD (plot C) subjects. Regression lines (red) and the ground truth identity line (green)
are shown which disclose minimal bias. 
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Figure S3. L1-regularized logistic regression models for diagnosis prediction. Leave-one-out cross-validation
results for discriminating AD or MCI subjects from the cognitively normal group using ICA components. a) All of
the 684 brain atrophy components in the cross-sectional study phase were used as regression predictors for diagnosis
discrimination. Increased L1 regularization parameter (lambda values, x-axis: bottom) shrinks the regression model
and results in inclusion of fewer predictor components (x-axis: top). Separate regression models were implemented
to discriminate AD (left) or MCI subjects (right) from the cognitively normal group. b) A similar regression model
was implemented in longitudinal neuroimaging using 664 components to discriminate AD (left) or MCI subjects
(right) from the normal population. While AD prediction was possible with good accuracy by as few as five ICA
components, the MCI discrimination model did not perform at a comparable accuracy. 
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Figure S4. Voxelwise atrophy impacts of the APOE4 allele. Correlation maps of the APOE4 dosage in cross-
sectional (a) and longitudinal (b) brain morphometry. The most consistent impact was observed in bilateral
amygdalar areas (Blue: uncorrected p<0.05, Red-yellow: corrected p<0.05). 
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Figure S5. C8orf34 locus. Regional association plot of the C8orf34 locus in ENIGMA-2 meta-analysis (top, 
https://www.enigma-brain.org/enigmavis/visualizer/visualizer) and tissue expression profile of C8orf34 in 
FANTOM5 database (bottom, shown as short sequence reads per million, https://www.proteinatlas.org). 
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Supplementary Video 

 

3D volume rendering of the medial temporal ICA component. The z-score map of this component is demonstrated at 
incremental z-thresholds. The highest probability of brain atrophy is observed in bilateral amygdalae, further 
extending to hippocampus, their white-matter connections to fornix and other structures of the limbic system. 
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