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Assessment of the need for separate test set and
number of medical images necessary for deep
learning: a sub-sampling study

Ariel Rokem, Yue Wu, and Aaron Lee

Abstract—Deep learning algorithms have tremendous potential
utility in the classification of biomedical images. For example,
images acquired with retinal optical coherence tomography
(OCT) can be used to accurately classify patients with adult
macular degeneration (AMD), and distinguish them from healthy
control patients. However, previous research has suggested that
large amounts of data are required in order to train deep learning
algorithms, because of the large number of parameters that need
to be fit. Here, we show that a moderate amount of data (data
from approximately 1,800 patients) may be enough to reach close-
to-maximal performance in the classification of AMD patients
from OCT images. These results suggest that deep learning
algorithms can be trained on moderate amounts of data, provided
that images are relatively homogenous, and the effective number
of parameters is sufficiently small. Furthermore, we demonstrate
that in this application, cross-validation with a separate test set
that is not used in any part of the training does not differ
substantially from cross-validation with a validation data-set used
to determine the optimal stopping point for training.

Index Terms—Opthalmology, Retina, Optical Coherence To-
mography, Macula, Deep learning, Machine Learning

I. INTRODUCTION

EEP learning (DL) algorithms [1] have been tremen-

dously successful at solving a variety of different com-
putational tasks. Although these algorithms were originally
developed to perform computer vision tasks that require the
identification and classification of natural objects in images
[2], they have been more recently successfully applied in
tasks as varied as automated captioning and description of
images and videos [3], [4], automated transcription of spoken
language [5] automated translation [6], and in playing games
such as Go [7] and Poker [8], beating even highly seasoned
players in these games.

A key to the success of these algorithms in image processing
is that they do not require feature engineering of their front-end
filters. Instead, these filters are empirically learned from the
data through a process of training. For example, a network is
trained to identify natural objects by exposing it to labeled ex-
emplars of images containing the classes to be discriminated.
The weights that define the front-end filters, and their pooling
in higher levels are automatically adjusted through gradient
descent. Progress in the implementation of the computation of
the gradients required for this process on graphical processing
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units (GPUs) has been instrumental in enabling use of these
techniques on large and complex data-sets. No less important
have been the discovery of network architectures [9], non-
linearities [10], regularization procedures [11] and initializa-
tion procedures [12] that accelerate and improve learning.
Taken together, these factors have ushered in an era where
training of large DL networks has become practical, and there
is wide-spread interest in applying these algorithms to a variety
of different tasks.

A. Deep Learning in medical imaging

Because DL algorithms were originally developed to per-
form difficult image processing and classification tasks, one of
the compelling avenues for application of DL is in the analysis
of data from medical imaging technologies, and the develop-
ment of computer-assisted diagnostic systems with DL-trained
networks at their core. This type of application is rapidly
becoming more realistic because of the combination of high-
quality biomedical imaging technologies that are becoming
common in clinical practice, and the development of large
data-sets for the training of these networks. These large data-
sets are the result of years of accumulation of electronic
medical records (EMR), data-bases that include both image
data, as well as expert-generated diagnostic labels. Several
recent studies used data from such data-bases in tandem with
DL networks to demonstrate the potential for highly accurate
automated diagnosis of diseases from images of retina [13]
and of skin [14].

In previous work, we demonstrated that a DL algorithm is
capable of accurate diagnosis of age-related macular degener-
ation (AMD) from images of the retina acquired with optical
coherence tomography (OCT) [15]. OCT images are taken at
a high resolution, and provide information about the three-
dimensional structure of the tissue. They routinely collected
during clinical ophthalmological visits, and are normally used
by clinicians to assess the presence of retinal diseases. They
are stored in an EMR, and the combination of the diagnostic
labels available in the EMR database, together with the images
of retinae from both healthy individuals and AMD patients
allowed us to train a DL network with the VGG16 architecture,
previously used for object recognition [16], to distinguish OCT
scans from retinae of patients with AMD from healthy retinae
with an accuracy of 88.98% (ROC AUC of 93.83%, peak
sensitivity 92.64 %, peak specificity 93.69 %).
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B. How many samples do you need?

Previous applications of DL in medical imaging, including
our own work, relied on large data sets, that are not available
for many other technologies, and for diseases that are less
common. A major barrier to the wide-spread application of
DL algorithms in medical imaging is the assumption that these
algorithms only work well when data is extremely abundant,
and that supervised learning can progress using accurate labels
of each image!. Indeed, in our previous work using DL for
OCT image classification, the network was trained with a data-
set of ~100,000 images. Similarly, other studies have used
data-bases with many thousands of patients and up to millions
of individual images.

To our knowledge, there is only one previous study asking
how many samples are needed in biomedical image classifi-
cation [18]. The authors of this study trained a DL network
to discriminate between six classes of images (brain, neck,
shoulder, etc.) from MRI images. They found that only a few
hundred images are required to reach near-perfect accuracy in
this task using the GooglLeNet network. However, images of
these body parts differ in many respects, and it is not clear
that a much simpler algorithm would perform just as well in
this classification task.

In the present work we focused on a classification task in
which DL algorithms are required to perform more accurately
than traditional image processing methods [19]. We introduce
a resampling procedure to test the size of the sample needed
in order to train a DL network on a biomedical image
classification task, and use this procedure in order to assess
the number of samples needed to train a network to accurately
discriminate between AMD and healthy retinae from OCT.

C. Cross-validation and the importance of a separate test set

To avoid over-fitting, and to provide an objective and
accurate evaluation of the performance of a classification
algorithm, it is common to separate the data into several
different sets: a training set is used to learn the dependencies
between input data and model class labels, and to adjust the
parameters of the model. A validation set is sometimes used
to assess the current state of the model during training. This
is done by feeding a sample or samples from the validation
set through the algorithm, with a fixed set of parameters,
and evaluating the accuracy of the classification with these
parameter values, but without using the results to adjust the
parameters.

Often, an additional data set is set aside as test set. This set
is used once the learning has ended, as a single independent es-
timate of the endpoint of learning. While using an independent
data set completely guards against the danger of over-fitting, it
also might introduce the danger of variability in the estimate
of error, especially with a relatively small size of the test set
[20].

1“As of 2016, a rough rule of thumb is that a supervised deep learning
algorithm will generally achieve acceptable performance with around 5,000
labeled examples per category, and will match or exceed human performance
when trained with a dataset containing at least 10 million labeled examples.”
[17], page 20

In cross-validation, different parts of the data might serve
separately as training and validation data sets [21]. For ex-
ample, in k-fold cross-validation training is repeated several
times, where in each iteration through the procedure, a portion
of N/k samples from the data are designated as a validation
set, and the remaining data is used for training. After k
repetitions of this procedure, all the data has been used up as
validation data. This means that a full set of errors on the entire
data-set has been computed. This procedure is sometimes used
for comparative evaluation of different models, and for model
selection (by comparing cross-validation errors for two or
more models) [22].

While this procedure is comprehensive, and potentially
reduces variability of the estimates, it is also computationally
demanding. For this reason, training of DL algorithms usually
uses the strategy of training on a sub-set of the data and then
using other sub-sets for evaluation and testing. Furthermore,
given the large amounts of data that are often available for
training and evaluation, the final test step is often omitted in
applications of DL. For example, in their highly influential
paper on image classification from the ImageNet dataset,
Krizhevsky et al. [23] comment that: “In the remainder of
this paragraph, we use validation and test error rates inter-
changeably because in our experience they do not differ by
more than 0.1%”.

The resampling scheme introduced here also presents an
opportunity to evaluate whether this statement generalizes well
to situations in which data is much less abundant. Therefore,
a second aim of the present paper is to assess the use of a
separate test in cross-validation of a DL network.

II. METHODS

This study was approved by the Institutional Review Board
of the University of Washington (UW) and adhered to the
tenets of the Declaration of Helsinki and the Health Insurance
Portability and Accountability Act.

A. Optical Coherence Tomography Imaging and Electronic
Medical Record Extraction

Macular OCT scans were acquired in the course of clinical
care, using a Heidelberg Spectralis OCT scanner (Heidelberg
Engineering, Heidelberg, Germany). High-resolution images
of the retinal cross-section were obtained using a 61-line
raster scan. All of the images from the period 2006 to 2016
were extracted using an automated extraction tool from the
instrument imaging database. The images were linked by
patient medical record number and dates to the clinical data
stored in EPIC. Specifically, all clinical diagnoses and the
dates of every clinical encounter, macular laser procedure,
and intravitreal injection were extracted from the EPIC Clarity
tables.

B. Patient and Image Selection

A normal patient was defined as having no retinal In-
ternational Classification of Diseases, 9th Revision (ICD-9)
diagnosis and better than 20/30 vision in both eyes during the
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entirety of their recorded clinical history at UW. An AMD
patient was defined as having an ICD-9 diagnosis of AMD
(codes 362.50, 362.51, and 362.52) by a retina specialist, at
least 1 intravitreal injection in either eye, and worse than 20/30
vision in the better-seeing eye. Patients with other macular
pathology by ICD-9 code were excluded. These parameters
were chosen a priori to ensure that macular pathology was
most likely present in both eyes in the AMD patients and
absent in both eyes in the normal patients. Consecutive images
of patients meeting these criteria were included, and no images
were excluded due to image quality. Labels from the EMR
were then linked to the OCT macular images, and the data
were stripped of all protected health identifiers.

As most of the macular pathology is concentrated in the
foveal region, the decision was made a priori to select the
central 11 images from each macular OCT set, and each
image was then treated independently, and labeled as either
normal or AMD. The images were histogram equalized and the
resolution down-sampled to 192 by 124 pixels to accommodate
RAM limitations.

C. Deep Learning Classification Model

A modified version of the VGG16 convolutional neural
network [16] was implemented using Caffe [24]. This network
was originally designed to classify categories in natural images
and was adapted here to classify healthy and AMD retinae.
Weights were initialized using the Xavier algorithm [12].
Training was then performed using multiple iterations, each
with a batch size of 100 images. ADAM optimization [25]
was used with a starting learning rate of 2 x 10~7 and the
momentum parameters set to 0.9 and 0.99. The loss of the
model was recorded at each training iteration, and cross-
validation with a separate validation set was conducted every
250 iterations. The training was stopped when the loss of the
model decreased and the accuracy of the validation set also
decreased (indicating that the model was in the over-fitting
regime).

D. Sub-sampling experiments

At the outset of the experiments, a random subset of 10% of
the images were segregated at the patient level into a separate
test set of images. These would be used to test the performance
of the DL network at the end of training. The remaining
90% of the images were then segregated into 11 replicates of
random subsets of 4%, 8%, 16%, 32%, 64%, and 100% of the
available images. Within each subset, the images were again
subdivided into 75% for training and 25% for validation. Care
was taken to ensure that the validation set and the training set
contained images from a mutually exclusive group of patients
(ie, no single patient contributed images to both the training
and validation sets). The order of images of the training set
was then randomized in each replication condition.

Each replication condition was then trained for a total of
75,000 iterations and the maximal validation accuracy was
recorded. The weights at the time of the maximal validation
accuracy was used to assess the performance of the network
against the held-out test set.

TABLE I
AVERAGE IMAGE COUNTS FOR EACH SUBSET CONDITION
. . Training Validation
Subset Percentage )l AMD  Normal  AMD
1% 1355 1,338 398 374
8% 2637 2,503 837 815
16% 5983 5457 1,575 1,659
32% 10376 10256 3,609 3,565
64% 22,692 20,574 7247 7,059
100% 36,515 32204 12,028 10,762

ITI. RESULTS
A. Data and subsampling

More than 2.6 million optical coherence tomography (OCT)
images were extracted from the imaging database and linked
to clinical data from the electronica medical records (EMR).
A total of 48,312 normal OCT scans and 52,690 AMD scans
met the inclusion criteria for use in the training set. At the
outset, a test set was set aside comprising of 9,493 images, to
be used only for evaluation of the training procedure once it
is done.

To test the effect of sample size on accuracy of classification
with a DL network, random subsets of 4%, 8%, 16%, 32%,
64%, and 100% were created from the full dataset, and
training was conducted using these different subset sizes. The
breakdown in the number of images in each subset is described
in Table 1.

B. Learning with different size subsamples

To assess the robustness of the results to the random
selection of specific images, random subsamples of each one
of these proportions were drawn from the full data-set 11
times. Training of the DL network in each repetition was
allowed to progress for 75,000 iterations. Learning curves,
recording validation accuracy during training are shown in
Figure 1.

C. Test accuracy as a function of subsample size

For each training run, the weights from the training history
with the maximal validation accuracy were stored. The model
was then assessed with these weights against the held out test
set, yielding 11 test accuracy estimates for each proportion,
as seen in Figure 2. As expected, test accuracy increased with
sample size, reaching its maximal value at subsamples of 100
% (~86 % accuracy).

Though accuracy is far from chance even with only 4 % of
the data (~73% correct) it does increase precipitously between
4% and 64% of the data. However, it reaches close-to-maximal
accuracy already at a proportion 16 - 32% of the total data-set.
To quantify the amount of data needed to reach 95% of the
maximal accuracy, we fit a two-parameter logistic function
to the accuracy values across repetitions and sub-sample
proportions (orange line in figure 2), fixing the saturation point
of the function to be equal to the mean accuracy at subsamples
of 100 % of the data. Inverting this function, we find that 95%
of the maximal accuracy (approximately 82% accuracy) can
already be achieved with 20% of the data (dashed lines in 2).
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Fig. 1. Learning curves for each subset size (percent). In each sub-plot,

validation accuracy is plotted against number of training iterations. Each of
the repetitions is plotted in light blue, and the average across repetitions is
plotted in dark blue. Maximal validation accuracy in each course of training
is plotted as a light blue point.
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Fig. 2. Accuracy on held out test set. Weights from the highest validation
accuracy during training were used to test accuracy on a held out test set.
Dark blue points are the means across 11 repetitions, with dark blue standard
deviation error bars. Orange line: a logistic curve model was fit to all of
the repetitions and sub-samples. According to this model, 95% of maximal
accuracy (~82 % accuracy) can be achieved with 20.84% of the data (dashed
lines).

D. What explains variability between repetitions?

Variability of test accuracy also diminished substantially
with subsample size. Differences in variability in the com-
parisons across different proportions. These differences in
variability could reflect two different factors: the first is the
subsample size, and the other is the degree of overlap between
different subsamples. For example, for 100 % subsamples,
variability reflects only the random initial conditions of the
network, because all subsamples of 100 % are identical.
Similarly, the overlap between different subsets in higher
proportions is likely to be larger than in smaller proportions.
To evaluate the effect of this overlap, we conducted a separate
experiment in which a single subset from 4% group was used,
and training was repeated 11 times using the same set of
images, to control for this effect. The learning curves from
this protocol are are shown in Figure 3B, together with the
learning curves from random subsamples (Figure 3B). The
learning curves have similar variance as when random subsets
are used and the maximal validation accuracy (Figure 3 C)
does not differ between these protocols. This indicates that
variability in test-set accuracy mostly relates to the size of
the subsample, rather than to the amount of overlap between
different subsets.

E. The importance of a separate test set

To assess the importance of the separate test set, we
computed the difference between the maximum validation
accuracy and test set accuracy (Figure 4). We find that though
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Fig. 3. Learning curves of 4% subset. A: Random 4% subsets of the whole
dataset chosen in each course of learning. B: Replications of the same 4%
susample were repeated in each course of training. C: The average maximal
validation accuracies (across the 11 courses of training) are plotted for random
(left) and fixed (subsets) of 4% each, with standard deviation error bars

variability in this difference decreases with larger sample size,
there is no indication that this difference is larger for smaller
sample sizes. In addition, there seems to be no overall bias
indicating that the accuracy is systematically higher for the
validation set, relative to the test set. This indicates that in
the training protocol that we used, there was probably only
minimal overfitting, or none at all.

IV. CONCLUSION

The application of DL in biomedical imaging is a promising
avenue in current research. Future developments in this field
may lead to accurate computer-assisted diagnosis systems with
DL networks at their core. However, a major impediment
to these developments is the assumption that DL requires
very large data-sets that are not available for many types of
nascent imaging technologies, or in the case of diseases that
are relatively uncommon.

In the present work, we investigated the feasibility of DL
with relatively small sample sizes. We focused on a prototype
of computer-assisted diagnosis system that can accurately
discriminate optical coherence tomography (OCT) images
from retinae of patients with age-related macular degeneration
AMD, relative to OCT images from the retinae of healthy
controls.

A. How many images do we need to discriminate AMD from
healthy retina?

We found that training a DL network to perform at a
high level of accuracy does not require millions of images.
Instead, close-to-maximal performance is achieved with as few
as approximately 20,000 images. Furthermore, the moderate
increase in accuracy from 64% to 100% of the data suggests
that further increase in data size would not result in much
higher accuracy. This suggests that ~87% accuracy is as
high as possible with these data and this DL algorithm. This
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4 /g
e B et
16 A
32 /
64 .
100 .

Test-set accuracy (proportion correct)

0.5 0.6 0.7 0.8 0.9 1.0
Validation accuracy (proportion correct)

Fig. 4. Difference between validation and test accuracy. Each light colored
point represents a single course of training. The abscissa represents the
maximal validation accuracy achieved during this course of training, while the
ordinate represents the accuracy of the network in performing the classification
on a separate test set, using the same weights that resulted in maximal
validation accuracy. Solid colored points each represent the mean across 11
courses of training for each size subset, with standard deviation error bars.
Dashed line indicates equality.

limit on performance may be related to data quality; the
partial accuracy of the labels in the EMR: these data are
heterogeneous and ultimately depends on clinical decisions
made by human observers, as well as the limited signal-to-
noise ratio of the images in capturing the image features that
are diagnostic. However, we do expect further performance
improvements to come from more elaborate algorithms that
incorporate additional information, or make better use of the
information in the images, rather than only from more or better
data.

The relatively small number of images required to train
a DL network on this classification task is surprising given
the VGG16 network has as many as 138M parameters [9].
Indeed, previous literature using similar networks (e.g. [2],
[16]) used many millions of training samples to reach high
accuracy. The discrepancy between our findings and the pre-
vious literature may stem from the differences between the
use-case we present here, and the common use-cass for DL
in previous literature. The assumption that many items from
each class are required and that many millions of separate
images are needed to train DL algorithms stems from the
object classification literature mentioned in the introduction,
but object classification in natural images addresses several
challenges that are not typical in the classification of medical
images, and particularly clinical images from OCT. Primary
to these challenges is the variance in pose and orientation of
natural objects within photographic images, which leads to
large variance in the appearance of these objects. To capture
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all the variations of a category (e.g., ’dog’), a DL network
would have to be exposed to many thousands of exemplars
of this category, generalizing not over all the angles from
which this category could be captured, but also all the sub-
categories of this category (e.g., 'malamut’ or *poodle’). This
variance in input is much more limited in biomedical images,
such as OCT. In OCT images, the retina is always oriented
in exactly the same direction, with the macula (the center of
the retina) usually located in roughly the same part of the
image. This reduces the complexity of training substantially,
and we hypothesized that it might affect the data requirements
for learning on data such as these.

Nevertheless, given the two-alternative classification task
performed here, this finding is roughly consistent with the
rule of thumb described by [17](*... 5,000 labeled exemplars
per category...”). The sub-sampling method introduced here
provides a protocol for researchers that are interested in asking
whether they have enough data to apply DL to their biomedical
image data.

Note that because there are 11 images used in each OCT
volume, the ~20,000 images represent approximately 1800
volumes of data, or 900 patients per group. This number
of patients is well within range for many traditional random
controlled trials and other clinical studies. This suggests that
de novo training of DL networks could be integrated into many
studies that are testing new imaging technologies, or that are
studying less common disorders.

B. Other strategies

There are currently two major alternative strategies to use
for cases where data is limited. Data augmentation syntheti-
cally increases the sample size by performing transformations
on the data [26]. This works well as long as the transforma-
tions performed to do not destroy the information necessary for
classification, but introduce variability against which the DL
network should develop tolerance. For clinical imaging data,
examples of such transformations might be rigid translations
and rotations of the image features.

The other strategy one might use when faced with limited
data is transfer learning. This strategy is based on the observa-
tion that DL algorithms trained for different image processing
tasks often learn very similar first-stage filters [27]. Therefore,
in this approach learning begins with one (larger) data set. This
dataset may share only some limited similarity to the datasets
that are ultimately of interest, but this phase of learning allows
the network to converge on good enough front-end filters.
Once learning in this phase has converged, this network is
then retrained on the dataset of interest. While this approach is
promising, it is not clear what its limitations are, and whether
it would work well for specific biomedical image processing
tasks.

Both of these approaches are powerful complements to
datasets that are not large enough, but even before employing
these strategies, practitioners might want to assess whether the
amount of data that they already have might be sufficient to
accurately learn the classification task at hand.

C. Do we need a separate test set?

Variance between different courses of training increased
substantially with reduced sample sizes. This variance is not
due to sampling of different individual items — both average
accuracy and variance in accuracy between repetitions do not
change substantially when the same items are repeatedly used
in different subsamples.

Given the limit on test-set accuracy, one might expect that
cross-validation on a separate test-set would be crucial, and
that results in the test-set might differ substantially from the
best performance on a validation set [28]. Nevertheless, we
found no systematic difference in accuracy assessment on
a separate test set relative to assessment of accuracy on a
validation set that is repeatedly used during training. This
finding is consistent with previous anecdotal evidence that has
been mentioned in the literature [23].

Both of these findings may arise from the large number
of parameters that are fit through the DL algorithm. The
learning procedure may thus converge to different solutions
based on initial conditions. When data is small, this may result
in divergent solutions, that depend on the randomly generated
initial conditions of the network. For larger networks, this
implies that overfitting is not induced through repeated use
of a validation data-set in accuracy assessments. However,
further research would be needed to assess the limits of this
conclusion and to merit its broad application.
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