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Abstract

Background: Cancer is a complex, multiscale dynamical system, with interactions between tumor cells and
non-cancerous host systems. Therapies act on this combined cancer-host system, sometimes with unexpected
results. Systematic investigation of mechanistic computational models can augment traditional laboratory and
clinical studies, helping identify the factors driving a treatment’s success or failure. However, given the
uncertainties regarding the underlying biology, these multiscale computational models can take many potential
forms, in addition to encompassing high-dimensional parameter spaces. Therefore, the exploration of these
models is computationally challenging. We propose that integrating two existing technologies—one to aid the
construction of multiscale agent-based models, the other developed to enhance model exploration and
optimization—can provide a computational means for high-throughput hypothesis testing, and eventually,
optimization.

Results: In this paper, we introduce a high throughput computing (HTC) framework that integrates a
mechanistic 3-D multicellular simulator (PhysiCell) with an extreme-scale model exploration platform
(EMEWS) to investigate high-dimensional parameter spaces. We show early results in applying
PhysiCell-EMEWS to 3-D cancer immunotherapy and show insights on therapeutic failure. We describe a
generalized PhysiCell-EMEWS workflow for high-throughput cancer hypothesis testing, where hundreds or
thousands of mechanistic simulations are compared against data-driven error metrics to perform hypothesis
optimization.

Conclusions: While key notational and computational challenges remain, mechanistic agent-based models and
high-throughput model exploration environments can be combined to systematically and rapidly explore key
problems in cancer. These high-throughput computational experiments can improve our understanding of the
underlying biology, drive future experiments, and ultimately inform clinical practice.

Keywords: Agent-based model; PhysiCell; cancer; immunotherapy; high throughput computing; EMEWS;
hypothesis testing

Background
Cancer is a complex, dynamical system operating on
many spatial and temporal scales: processes include
molecular interactions (e.g., gene expression and pro-
tein synthesis; nanoseconds to minutes), cell-scale pro-
cesses (e.g., cycle progression and motility; minutes
to hours), tissue-scale processes (e.g., tissue mechan-
ics and biotransport; minutes to days), and organ and
organism-scale processes (e.g., organ failure and clin-
ical progression; weeks, months, and years). Cancer-
host interactions dominate throughout these scales, in-
cluding interactions between tumor cells and the vas-
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culature (hypoxic tumor cells trigger growth of new
blood vessels; new but dysfunctional blood vessels sup-
ply further growth substrates and can promote metas-
tasis), between tumor cells and stromal cells (tumor
cells can prompt tissue remodeling that facilitates tis-
sue invasion), and between tumor cells and the im-
mune system (immune cells can kill tumor cells, but
tumor cells can co-opt inflammation to promote their
survival). See the reviews in [1, 2, 3, 4, 5, 6]. When
designing and evaluating new cancer treatments, it is
imperative to consider the impact on this complex mul-
tiscale cancer-host system.

Cancer-host interactions have been implicated in
the poor (and sometimes surprising) clinical outcomes
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of existing and new treatments. Chemotherapies fail
when molecular-scale processes (e.g., DNA repair fail-
ures, mutations, or epigenetic alterations) cause re-
sistant tumor clones to emerge (multicellular-scale
birth-death processes) which can survive the treatment
[6, 7, 8, 9, 10, 11]. Anti-angiogenic therapies that tar-
get blood vessels were expected to be potent agents
against cancer [12], but disrupting tissue perfusion in-
hibits drug delivery and increases hypoxia, which was
subsequently shown to select for more aggressive tu-
mor phenotypes, including alternative metabolism and
increased tissue invasion [13, 14, 15]. On the other
hand, medications originally developed for osteoporo-
sis (bone loss) were found to reduce the incidence of
bone metastases through unclear mechanisms, but hy-
pothesized to arise from tumor-osteoclast interactions
[16, 17, 18]. Such examples underscore the need to eval-
uate and improve cancer treatments from a cancer-host
systems perspective.

Recent successes of cancer immunotherapies—such
as CAR (chimeric antigen receptor) T-cell treatments
[19, 20]—have brought heightened attention to can-
cer immunology. In some patients, immune cell ther-
apies have been impressively successful, while other
patient populations have demonstrated disappointing
outcomes; this variability of patient response arises in
part from the poorly-understood, complex interactions
between cancer and the immune system [21, 22, 23, 24,
25, 26]. This suggests that better immune therapies
could be designed through systematic investigations
of tumor-immune interactions.

Key elements for systematic and mechanistic
investigation of cancer immunotherapy
Given the complexity and underlying uncertainty re-
garding the biological processes that drive cancer, dy-
namic computational models have been used to rep-
resent various cellular and molecular functions associ-
ated with cancer [27].

In particular, agent-based modeling [27] is an in-
creasingly common computational modeling method
that can aid in the translation of genetic/molecular/sub-
cellular processes to the multicellular behavior of tu-
mors and the host. Agent-based models (ABMs) can
serve as modes for multiscale dynamic knowledge rep-
resentation [28, 29], with the rules for each model rep-
resenting a particular hypothesis of how the system
may work. As such, they serve a potentially vital role in
aggregating existing biological knowledge, and through
simulation experiments exploring their behavior, can
help establish the boundaries of the set of plausible
hypotheses.

However, the dynamic multiscale models (e.g., ABMs)
needed to approximate the complexity of the overall

system are by their very nature resistant to formal
analysis. Their overall behavior can only be evaluated
by the execution of heuristic methods that require very
large numbers of simulations, a process we term model
exploration (ME). ME is a near-ubiquitous compo-
nent in the development of models and algorithms;
as applied to ABMs, it involves an iterative workflow
where simulation experiments are carried out across a
large range of parameter values (parameter space ex-
ploration) and varying perturbations and initial condi-
tions (model behavior space exploration). Model out-
puts from a set of simulation experiments are eval-
uated against some predetermined metric, which in-
forms the next iteration of simulation experiments.
Advances in high-performance computing can allow
the parallelization of this process, resulting in high-
throughput dynamic knowledge representation and hy-
pothesis evaluation to address a current bottleneck in
the Scientific Cycle [30]. However, we propose that the
ME process itself can be enhanced with a computa-
tional framework for its workflow [31].

In this paper, we formulate the requirements for
a computational experimental system for systematic,
high-throughput hypothesis testing and optimization.
We provide an example of how high-throughput hy-
pothesis testing can be applied to the complex problem
of tumor-immune interactions using a novel framework
that integrates a multiscale mechanistic model devel-
opment platform—PhysiCell [32] and BioFVM [33]—
within a computational ME manager—Extreme Model
Exploration with Swift (EMEWS) [31].

We then present early work on implementing our
proposed high-throughput hypothesis testing and op-
timization framework with PhysiCell and EMEWS.
After an initial 2-D test deployment that explored
the impact of tumor oxygenation, we present a high-
throughput investigation of a 3-D computational
model of the adaptive immune response to tumor cells
from [32]. This work exposed new and counter-intuitive
insights on tumor-immune cell attachment dynamics
and the nonlinear role of immune cell homing on suc-
cessful and unsuccessful tumor suppression. The study
performed over 1.5 years’ worth of computational in-
vestigation in just over two days—a feat that is compu-
tationally infeasible without a framework that merges
mechanistic modeling with efficient model exploration.

We close with a discussion of our ongoing and fu-
ture work to implement the full PhysiCell-EMEWS
framework iterative hypothesis exploration and op-
timization, along with potential applications in de-
veloping synthetic multicellular cancer treatment sys-
tems. We note that both PhysiCell and EMEWS are
free and open source software. PhysiCell is available
at http://PhysiCell.MathCancer.org and EMEWS is
available at http://emews.org.
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Method
3-D cancer immunology model exploration using
PhysiCell-EMEWS
There have been multiple projects utilizing agent-
based/hybrid modeling of tumors and their local envi-
ronments [34, 35, 36, 37]. Review of this work and our
own has led to the following list of key elements needed
to systematically investigate cancer-immune dynamics
across high-dimensional parameter/hypothesis spaces
to identify the factors driving immunotherapy failure
or success:
1 efficient 3-D simulation of diffusive biotransport of

multiple (5 or more) growth substrates and sig-
naling factors on mm3-scale tissues, on a single
compute node (attained via BioFVM [33]);

2 efficient simulation of 3-D multicellular systems
(105 or more cells) that account for basic biome-
chanics, single-cell processes, cell-cell interactions,
and flexible cell-scale hypotheses, on a single com-
pute node (attained via PhysiCell [32]);

3 a mechanistic model of an adaptive immune re-
sponse to a 3-D heterogeneous tumor, on a single
compute node (introduced in [32]);

4 efficient, high-throughput computing frameworks
that can automate hundreds or thousands of
simulations through high-dimensional hypothesis
spaces to efficiently investigate the model behav-
ior by distributing them across HPC/HTC re-
sources (attained via EMEWS [31]); and

5 clear metrics to quantitatively compare simula-
tion behaviors, allowing the formulation of a hy-
pothesis optimization problem (see Proposition:
hypothesis testing as an optimization problem).

Efficient 3-D multi-substrate biotransport with BioFVM
In prior work [33] we developed BioFVM: an open
source framework to simulate biological diffusion of
multiple chemical substrates (a vector ρ) in 3-D, gov-
erned by the vector of partial differential equations
(PDEs)

∂ρ

∂t
= D∇2ρ− λρ+ S(ρ∗ − ρ)−Uρ (1)

+
∑
{cells i}

δ(x− xi)Wi[Si(ρ
∗
i − ρ)−Uiρ].

Here, D is the vector of diffusion coefficients, λ gives
the decay rates, S and U are vectors of bulk source
and uptake rates, and for each cell i, Si and Ui are
its secretion and uptake rates, Wi is its volume, and
xi is its position. All vector-vector products (e.g., λρ)
are component-wise, ρ∗ denotes a vector of saturation
densities (at which secretion or a source ceases), and
δ is the Dirac delta function.

As detailed in [33], we solve this equation by a
first-order operator splitting: we solve the bulk source
and uptake equations first, followed by the cell-based
sources and uptakes, followed by the diffusion-decay
terms. We use first-order implicit time discretizations
for numerically stable first-order accuracy. When solv-
ing the bulk source/decay term, we have an indepen-
dent vector of linear ordinary differential equations
(ODEs) in each computational voxel of the form:

∂ρ

∂t
= S(ρ∗ − ρ)−Uρ. (2)

Each of these sets of ODEs can be solved with the
standard backwards Euler difference, giving a first-
order accurate, stable solution. We trivially parallelize
the solution by dividing the voxels across the proces-
sor cores with OpenMP: each thread works on a sin-
gle voxel’s set of ODEs. Moreover, we wrote the ODE
solver to work vectorially, with a small set of BLAS
(basic linear algebra subprograms) implemented to re-
duce memory allocation, copy, and deallocation opera-
tions. (We implemented specific BLASes as needed to
keep the framework source small and minimize depen-
dencies to facilitate cross-platform portability across
Windows, Linux, OSX, and other operating systems.)
We solved the cell-centered sources and sinks similarly,
by dividing the solvers across the cells by OpenMP
(one set of ODEs per cell); note that each cell will
act on the substrates in the voxel containing the cell
center, by the Dirac delta formulation.

We solve the diffusion-decay equation by the locally
one-dimensional (LOD) method, which transforms a
single 3-D PDE into a series of three 1-D PDEs (one
PDE with respect to the x derivatives, one for the
y derivatives, and one for the z derivatives) [38, 39].
In any x -, y-, or z -strip, using centered 2nd-order fi-
nite differences for the spatial derivative and back-
ward 1st-order Euler differences yields a tridiagonal
linear system for each substrate’s PDE; because each
PDE has the same form, we have a vector of tridi-
agonal linear systems. In [33], we solved this system
with a vectorized Thomas algorithm [40]: an efficient
O(n) direct linear solver for a single tridiagonal linear
system, which we vectorized by performing all addi-
tion, multiplication, and division operations vectori-
ally (with term-wise vector-vector multiplication and
division). As a further optimization, we took advan-
tage of that fact that D and λ are constant and noted
that the forward sweep stage of the Thomas algorithm
only depends upon D, λ, and the spatial mesh, but
not on the prior or current solution. Thus, we could
pre-compute and cache in memory the forward-sweep
steps in the x-, y-, and z -directions to reduce the pro-
cessing time. We tested on numerous computational
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problems, and found the overall method was first-order
accurate and stable in time, and second-order accurate
in space [33]. Moreover, we found that the computa-
tional speed scaled linearly in the number of PDEs
solved, with a slope much less than one: Simulating 10
PDEs takes approximately 2.6 times more computa-
tional effort than a single PDE, whereas sequentially
solving 10 PDEs requires approximately 10 times more
effort than a single PDE. See further results in [33].

In testing, we have found that this system can sim-
ulate 5-10 diffusing substrates on 1 million computa-
tional voxels (sufficient to simulate 8 mm3 at 20 µm
resolution) on a quad-core desktop workstation with 2
GB of memory; the performance was faster on a single
compute node with greater computational core counts.
This CPU-based algorithm maximizes cross-platform
compatibility, but we anticipate a GPU implementa-
tion would be at least an order of magnitude faster.

Efficient 3-D multicellular simulations with PhysiCell
In [32], we developed a 3-D agent-based modeling
framework by extending BioFVM’s basic agents (dis-
crete cell-like agents with static positions, which
could secrete and consume chemical substrates in the
BioFVM environment) to create extensible software
cell agents. Each cell has an independent, hierarchically-
organized phenotype (the cell’s behavioral state and
parameters) [41, 42]; user-settable function pointers
to define hypotheses on the cell’s phenotype, volume
changes, cell cycling or death, mechanics, orientation,
and motility; and user-customizable data. The cells’
function pointers can be changed at any time in the
simulation, allowing dynamical cell behavior and even
switching between cell types. The overall program flow
progresses as follows. In each time step:

1 Update the chemical diffusing fields by solving the
PDEs above with BioFVM.

2 For each cell, update the phenotype by evaluat-
ing each cell’s custom phenotype function. Also
run the cells’ cell cycle/death models, and volume
update models. This step is parallelized across all
the cells by OpenMP.

3 Serially process the cached lists of cells that must
divide, and cells that must be removed (due to
death). Separating this from step 2 preserved
memory coherence.

4 For each cell, evaluate the mechanics and motil-
ity functions to calculate the cells’ velocities. This
step can be parallelized by OpenMP because the
cell velocities are based upon relative positions.

5 For each cell, update the positions (using the
second-order Adams-Bashforth discretization) us-
ing the pre-computed velocities. This step is also
parallelized by OpenMP.

6 Update time.
The cell velocity functions (adapted from [35]) re-

quires computing n-1 pairwise cell-cell mechanical in-
teractions for all n cells, giving O(n2) computational
performance—this would be prohibitive beyond 103 or
104 cells. However, biological cells have finite inter-
action distances, so we created an interaction testing
data structure that placed each cell’s memory address
in a Cartesian mesh, and limited cell-cell mechanical
interaction testing to the nearest interaction voxels.
This reduced the computational effort to O(n). Physi-
Cell uses separate time step sizes for biotransport (∆t
∼ 0.01 min), cell mechanics (∆t ∼ 0.1 min), and cell
processes (∆t ∼ 6 min) to take advantage of the mul-
tiple time scales. See [32] for further details.

Extreme-scale Model Exploration with Swift (EMEWS)
While detailed modeling approaches like PhysiCell al-
low higher fidelity representation of molecular, cellu-
lar, and tissue dynamics in cancer, they present sub-
stantial challenges. These challenges center on deal-
ing with the large parameter spaces of these models
and the highly nonlinear relationship between ABM
input parameters and model outputs due to multiple
feedback loops and emergent behaviors. Since their
complexity limits the use of formal analytical ap-
proaches, the calibration and interpretation of com-
plex ABMs often requires heuristic model exploration
approaches that adaptively evaluate large numbers of
simulations. These approaches often involve complex
iterative workflows driven by sophisticated ME algo-
rithms, such as genetic algorithms [43] or active learn-
ing [44, 45], which adaptively refine model parameters
through the analysis of recently generated simulation
results and launch new simulations.

The Extreme-scale Model Exploration with Swift
(EMEWS) framework [31] is built on the the general-
purpose parallel scripting language Swift/T [46], and
is used to generate dynamic, highly concurrent simu-
lation workflows for guiding ABM exploration in high-
dimensional parameter spaces. EMEWS enables the
direct integration of external ME algorithms to con-
trol and coordinate the running and evaluation of large
numbers of simulations via iterative HPC workflows.
The general-purpose nature of the underlying Swift/T
workflow engine allows the supplementing of the work-
flows with additional analysis and post-processing as
well.

EMEWS enables the user to plug in both ME al-
gorithms and scientific applications, such as PhysiCell
ABMs. The ME algorithm can be expressed in Python
or R, utilizing high-level queue-like interfaces with
two implementations: EQ/Py and EQ/R (EMEWS
Queues for Python and R). The scientific applica-
tion can be implemented as an external application

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 12, 2018. ; https://doi.org/10.1101/196709doi: bioRxiv preprint 

https://doi.org/10.1101/196709
http://creativecommons.org/licenses/by/4.0/


Ozik et al. Page 5 of 13

called through the shell, in-memory libraries accessed
directly by Swift (for faster invocation), or Python, R,
Julia, C, C++, Fortran, Tcl and JVM language ap-
plications. Thus, researchers in various fields who may
not be parallel programming experts can simply ap-
ply existing ME algorithms to their existing scientific
applications and run large-scale computational exper-
iments without explicit parallel programming. A key
feature of this approach is that neither the ME algo-
rithm nor the scientific application is modified to fit
the framework.

Mechanistic 3-D model of adaptive immune response to
heterogeneous tumors
Heterogeneous tumor

In [32], we developed an initial model of an adap-
tive immune response to a heterogeneous tumor. In
the model, each cell exchanges cell-cell adhesive and
“repulsive” forces, and enters the cell cycle at a rate
that increases with oxygen availability. Each cell con-
sumes oxygen, which diffuses from the simulation’s
boundary voxels, leading to the formation of hypoxic
gradients. Where oxygenation drops to very low lev-
els, tumor cells become necrotic and slowly lose vol-
ume. To model heterogeneity, each cancer cell has a
normally distributed mutant “oncoprotein” expression
0 ≤ p ≤ 2 (with mean 1, standard deviation 0.3). Cells
with greater expression of p are modeled as entering
the cell cycle more rapidly. See [32] for more details
and references.

Immunogenicity and immune response

As a simplified model of MHC (major histocompati-
bility complex: a surface complex that presents a “sig-
nature” sampling of fragments of the cell’s peptides,
allowing immune cells to learn to recognize the body’s
own cells [47, 48]), we assume cells with greater p ex-
pression are more immunogenic: more likely to present
abnormal peptides on MHC and be recognized as tar-
gets for immune attack. All tumor cells secrete an im-
munostimulatory factor that diffuses through the do-
main. (Even in situ tumors are known to prompt im-
mune cell homing [49].) Immune cells perform biased
random migration (chemotaxis) along gradients of this
factor, test for collision with cells, and form tight ad-
hesions with any cells that are found.

For any time interval [t, t + ∆t] while an immune
cell i is attached to another cell j, the immune cell at-
tempts to induce apoptosis (programmed cell death)
with probability ripj∆t, where ri is the immune cell’s
killing rate for a normal immunogenicity (p = 1), and

pj is the jth cell’s oncoprotein expression; this models
activation of a death receptor, such as FAS. For more

background biology and references, see [32]. If an im-
mune cell triggers apoptosis, it detaches and continues
its search for new immunogenic targets. Otherwise, it
remains attached, but with a similar stochastic process
to regulate how long it remains attached.

Sample 3-D simulation
In [32], we simulated this problem in 3D for an ini-
tial cell population of approximately 18,000 cells in a
∼ 5 mm3 domain on a quad-core desktop workstation.
At the simulation start, tumor cells are very hetero-
geneously distributed; see the first frame in Figure 1,
where the tumor cells are shaded by p expression from
blue (p ≤ 0.5) to yellow (p ≥ 1.5). By two weeks (Fig-
ure 1, third frame), the tumor has grown by an order
of magnitude (from ∼104 to 105 cells), there is clear
selection for the cells with the most p (the tumor is vis-
ibly more yellow), oxygen transport limits have lead to
the formation of a necrotic core (brown central region),
and the initial spherical symmetry has been lost due to
the formation of clonal foci (larger, more homogeneous
yellow regions).

At this point, we introduced 7500 immune cells
(red) and applied the immune response model. By
later simulation times (16 and 21 days in Figure
1), we observed that the immune cells continue mi-
grating along the chemical gradient until reaching
the center where the gradient is approximately flat.
Due to the particular choice of motility parame-
ters for the immune cells, they become temporar-
ily trapped in the center, allowing tumor cells to
evade therapy and re-establish the tumor. A high-
resolution video of this simulation can be viewed at
https://www.youtube.com/watch?v=nJ2urSm4ilU.

Proposition: hypothesis testing as an optimization
problem
We posit that the application of an integrated frame-
work where the PhysiCell model is deployed within
the EMEWS framework can be used to take advan-
tage of EMEWS’s more advanced ME capabilities to
inform hypothesis exploration as a function of parame-
ter space search (e.g., via active learning) and hypoth-
esis optimization (e.g., via genetic algorithms). As an
example, we describe the following set of parameters
that represent a space of possible interactions govern-
ing tumor-immune interactions, and how that space
could be explored:
1 A family of cell behavior hypotheses and con-

straints on their parameter values. For example:
(a) immune cells can exhibit any combination of

random motility, chemotaxis towards tumor
cells, or chemotaxis away from other immune
cells
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(b) attached immune cells can secrete immunoin-
hibitory or immunostimulatory factors

(c) tumor cells can secrete immunoinhibitory
factors, but at a cost to cellular energy avail-
able for proliferation

(d) the microenvironment can have variable far-
field oxygenation values.

2 A mechanistic computational model for simulat-
ing the cancer-host system under the hypotheses.
For example:
(a) We implement the additional diffusion equa-

tions in BioFVM.
(b) We implement the prior tumor cell immuno-

genicity model, and add a basic model of cell
metabolism (e.g., as in [50]) with extra en-
ergy cost for secreting the immunoinhibitory
factor.

(c) We implement the prior immune cell adap-
tive response model but vary the cell motility
according the specific hypotheses for migra-
tion bias along the various chemical gradi-
ents, the level of randomness, and we vary
decrease the migration speed, adhesion rate,
and cell killing rate under immunoinhibition.

3 A set of target system behaviors and/or validation
data. For example:
(a) We seek hypotheses that result in emergence

of immune-resistant tumors.
4 A model error metric to compare models and as-

sess their match to target behavior. For example:
(a) For a set of hypotheses, we quantify the num-

ber of tumor cells after 48 hours of immune
attack, the secretion level of the immunoin-
hibitory factor, and the mean immunogenic-
ity (mutant oncoprotein).

Given these user inputs, the proposed PhysiCell-
EMEWS system would distribute simulations across
the hypothesis space (each running independently on
its own compute node, where they are optimized). For
succinctness, we refer to a point in the hypothesis
space as a single simulation ruleset . Because these
models are stochastic, EMEWS will initialize multiple
simulations for each ruleset. EMEWS then collects the
simulation outputs, evaluates the user-supplied metric
against the target model behavior, and either reports
the best hypothesis ruleset (if only one iteration is al-
lowed), or repeats the process to refine the current best
hypothesis ruleset (e.g., by a genetic algorithm). Each
iteration is a high-throughput hypothesis test.
And the overall iteration is hypothesis optimiza-
tion. See Figure 2.

The output is a set of hypotheses H that lead to the
desired cell behaviors. For example, in hypoxic con-
ditions, we may see less selection for the immunoin-
hibitory secreting cells due to limited nutrients, unless

the cells are under attack by many immune cells. This
hypothesis could then be tested experimentally. If the
hypothesis does not hold experimentally, we would re-
fine the computational model (e.g., focusing more on
hypoxic cell metabolic and motile adaptations.)

Results
We now demonstrate the first steps in implementing
and testing the PhysiCell-EMEWS hypothesis opti-
mization system: we conduct a single iteration of ME
on a 2-D hypoxic cancer study, and then we test the 3-
D cancer-immune model on a high-throughput study
that reduced over a year of continumous computing
time to just 2 days.

Test deployment of PhysiCell within EMEWS
The initial example of integrating PhysiCell with
EMEWS involved examination of the effect of hypoxic
conditions on tumor growth. This involved the de-
velopment of a fast 2-D tumor simulator that could
simulate 48 hours of oxygen-limited tumor growth in
1-2 minutes. The framework integration proceeded as
in the Proposition: hypothesis testing as an optimiza-
tion problem above. To work through user-supplied
elements:
1 Oxygenation conditions could vary from com-

pletely anoxic (0 mmHg) to typical values of well-
oxygenated breast tissue (60 mmHg; see [33, 51]).
The initial cell population could vary from 1 to
2000 cells.

2 PhysiCell was used to create a program that could
read these two hypothesis parameters at the com-
mand line, initialize the simulation, and run to 48
hours without user input.

3 The target behavior was to maximize live cell frac-
tion.

4 The model metric was the live cell fraction after
48 hours.

We implemented a parameter sweep of PhysiCell us-
ing EMEWS, with the following oxygenation values:

0, 2.5, 5, 8, 10, 15, 38 or 60 mmHg

and the following initial cell counts:

1, 10, 100, 1000, 2000

EMEWS saved the model outputs in separate direc-
tories, facilitating subsequent postprocessing analysis
and visualization. We plot a 2-D array of the final sim-
ulation images in Figure 3 and the final live cell counts
in Figure 4 (top). As expected, increasing the initial
cell count always increases the final cell count (and
overall tumor size) 48 hours later, but for any fixed
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oxygenation condition, this also leads to greater preva-
lence of necrosis, and a nonmonotonic effect on final
live cell fraction (Figure 4 (bottom)).

In Figure 4 (bottom), we plot the final live cell frac-
tion as a function of the initial cell count, for each
fixed oxygenation condition. For low oxygenation con-
ditions (0, 2.5 mmHg), almost all cells are dead at 48
hours regardless of cell seeding choices. For intermedi-
ate oxygenation conditions (5 to 38 mmHg), the effect
is nonmonotonic: for small initial cell populations (1
or 10 cells), stochastic apoptosis effects can sometimes
leave a smaller final live fraction than a larger cell pop-
ulation; this highlights the importance of testing mul-
tiple simulation replicates for stochastic models. Past
100 initial cells, the stochastic effects are reduced, and
increasing the initial cell count results in a lower final
live fraction (due to oxygen depletion by the larger cell
population and the emergence of a necrotic core). In
particular, for these simulations increasing from 1000
to 2000 cells decreased the final live cell fraction. This
behavior was not observed for high oxygenation (60
mmHg): no portions of the tumor ever drop below the
necrotic threshold. Moreover, this simulated cell line
has saturating proliferation above 38 mmHg pO2 (tis-
sue physioxia [51] and so for sufficiently high initial
oxygenation, the entire tumor stays about this thresh-
old where there is no oxygen constraint to growth.

Large-scale cancer immunology investigation
In [32], we performed a single 3-D cancer-immune sim-
ulation as detailed above in Sample 3-D simulation.
As discussed in [32], the simulation revealed that im-
mune cell homing and tumor-immune interactions are
highly non-intuitive, and that immune cell motility pa-
rameters play a critical role in the success or failure of
the immune response. Had the immune cell “homing”
been weaker (i.e., more random, less biased along the
chemical gradient), there would have been more mix-
ing between the immune and tumor cells, leading to
more cell-cell interactions, a greater probability of tu-
mor cell killing, and a greater effective response. Thus,
a broader investigation of the immune cell motility
model was warranted.

Defining the simulation investigation
We identified the following three model parameters as
initial targets for study:
1 Immune cell attachment rate rA: If an im-

mune cell is in physical contact with a tumor
cell, this parameter gives the rate at which they
form an adhesive attachment. In any time interval
[t, t+ ∆t], the probability of adhering is rA∆t. In
[32], we set rA = 0.2 min−1, giving a mean time
to attachment of 5 min.

Study values: 0.033 min−1, 0.2 min−1, 1.0 min−1

2 Immune cell attachment lifetime TA: An at-
tached immune cell that has not successfully trig-
gered tumor cell apoptosis will maintain its at-
tachment for a mean time of TA. In any time
interval [t, t + ∆t], the probability of detachment
is ∆t/TA. In [32], we set TA = 60 min.

Study values: 15 min, 60 min, 120 min
3 Migration bias b: Unadhered immune cells

choose a motility direction d

d =
(1− b)u + b ∇c

||∇c||∣∣∣∣∣∣(1− b)u + b ∇c
||∇c||

∣∣∣∣∣∣ , (3)

where c is the immunostimulatory chemokine and
u is a randomly oriented unit vector. Thus, b = 0
represents pure Brownian motion, and b = 1 rep-
resents deterministic chemotaxis along ∇c; see
[32]. We used a default bias b = 0.5.

Study values: 0.25, 0.50, 0.75
For each of these three parameters, we seek to inves-
tigate low, medium and high parameter values, giv-
ing a total of 33 parameter combinations. Because the
PhysiCell model is stochastic, we seek 5-10 simulations
per parameter set, for a total of 135 to 270 simula-
tions. The single sample simulation required approx-
imately 2 days on a four-year-old desktop worksta-
tion, including time to save simulation outputs once
every three simulated minutes. Thus, our simulation
study—performed on a single desktop workstation—
would require 270 to 540 days of continuous compute
time. Prior to PhysiCell-EMEWS, such a simulation
study would be computationally prohibitive.

Computational implementation
The parameter sweep implementation was generated
using the EMEWS sweep template [52] which allows
a user to create an EMEWS project customized for a
parameter sweep from the command line. (Additional
templates exist for creating ME projects that utilize R
or Python ME algorithms.) The project consists of a
standard directory structure for organizing model in-
put, output, model launch scripts, and workflow code.
The workflow code, implemented in Swift/T, takes as
input a text file that explicitly defines all the param-
eter sets over which to sweep, one parameter set per
line. The workflow iterates over each line in the file
in parallel and launches a model for each parameter
set, taking advantage of the available concurrency. For
example, given n available processes, n models will be
run concurrrently. The workflow code can potentially
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modify the parameter sets, for example, generating ad-
ditional experimental trials by creating multiple new
sets from an existing set through the addition of ran-
dom seeds. The workflow itself is launched from a bash
script which contains place holder values for HPC ma-
chine configuration (e.g., queue type, walltime, and
so forth), and the parameter input file path. Models
and scientific applications such as PhysiCell models
are run as Swift/T app invocations. An app invoca-
tion calls out to the external shell to run a bash script
that then launches the model. The model launch bash
script provided by the EMEWS sweep template takes
as arguments the parameter line and a unique direc-
tory in which to run the model. The script then runs
the model in this directory, passing it the parameter
line. It is also possible to run an application as an in-
memory Swift/T extension.

For the experiments in this study, the parameter file
contained 270 parameter sets. Each parameter set cor-
responded to a single model running in its own sand-
boxed directory. The experiments were performed on
the Cray XE6 Beagle at the University of Chicago,
hosted at Argonne National Laboratory. Beagle has
728 nodes, each with 2 AMD Operton 6300 proces-
sors, each having 16 cores, for a total of 32 cores per
node; the system thus has 23,296 cores in all. Each
node has 64 GB of RAM. Each model was run on a
single node, allowing for maximal use of the available
threads and the full workflow utilized 272 nodes. 270
were used for model runs, providing complete concur-
rency while the remaining 2 were used for workflow
execution. The workflow completed in 51 hours for a
total of 1632 core hours.

Simulation results and clinical insights
Using PhysiCell-EMEWS, we initiated 270 simulations
of 14 days of growth, followed by a week of immune
response: 27 biophysical parameter sets, each with 10
random seeds. Because frequent data saves would sig-
nificantly slow the simulations due to networked file
I/O[32], we only saved the final simulation output for
each run, along with SVG visualizations of the z = 0
cross-section at intermediate times. Of the 270 re-
quested simulations, 231 were completed in approxi-
mately 2 days; see the Discussion for the runs that did
not complete.

For each biophysical parameter set, we computed the
mean number of live tumor cells remaining at 21 days
for the 5-to-10 completed simulation replicates. In Fig-
ure 5, we fix the attachment rate at rA = 0.2 min−1

and plot a heat map of this simulation metric versus
the migration bias b (horizontal axis) and attachment
time TA (vertical axis)—along with representative tu-
mor cross-sections (i, ii, iii, and iv)—at the final sim-
ulation time (21 days). Each shaded square represents

the mean live tumor cell count for the n simulation
replicates (labeled on each square) for a particular pa-
rameter set, shaded from deep blue (lowest cell count;
most effective response) to bright yellow (highest cell
count; least effective response).

For all values of TA, decreasing the migration bias
(and thus decreasing homing along the immunostimu-
latory gradient) dramatically improved the immune re-
sponse. This result was slightly non-intuitive, as it sug-
gests that the efficiency and precision of chemotaxis, if
maximized, leads to an “overshoot” phenomenon that
actually works against the goal of increasing tumor-
immune cell mixing, an important factor in the ability
to kill tumor cells noted in [32]. Alternatively, for any
fixed migration bias b, increasing the attachment life-
time also improved the immune response as would be
expected, although increases beyond 60 minutes were
only marginally helpful. However, these results demon-
strate the need to account for different axes of affect
in any attempt to optimize towards a particular goal
(e.g., a therapeutic design goal of maximizing tumor-
immune cell mixing to increase tumor cell killing).

In Figure 6, we show a heat map for the mean live
tumor cell count at 21 days versus migration bias b
(horizontal axis) and the attachment rate rA (vertical
axis). For all values of b, increasing the attachment
rate improved the response, although the improve-
ment beyond 0.2 min−1 was marginal. Interestingly,
for a fixed attachment rate rA, the impact of b was
non-monotonic. Either decreasing b (to promote ran-
dom tumor-immune mixing) or increasing b (to allow
more directed cell migration) would improve the im-
mune response over the initial value of 0.5. This again
highlights the nonlinear nature of tumor-immune in-
teractions, and the need for high-throughput investiga-
tion of mechanistic 3-D models to systematically probe
these dynamics and identify trade-offs that need to be
accounted for when designing putative therapies.

In Figure 7, we show a heat map for the mean
live tumor cell count at 21 days versus the attach-
ment rate rA (horizontal axis) and the attachment
lifetime TA (vertical axis), with b = 0.5. For all at-
tachment lifetimes TA, increasing the attachment rate
improved the immune response, as expected. However,
for higher attachment rates rA, there was an inter-
esting trend towards bimodal optima when examin-
ing the impact of the attachment lifetime: increasing
the attachment lifetime from the medium (1 hour)
to high (2 hour) value improved the treatment re-
sponse, possibly by increasing the likelihood of a suc-
cessful apoptosis event for any tumor-immune cell-cell
attachment. However, decreasing the attachment life-
time from medium (1 hour) to short (15 minutes)
also improved the response, likely by increasing the
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number of tumor-immune cell-cell attachments. This
demonstrates that the highly nonlinear dynamics of
the cancer-immune interactions can admit many po-
tential therapeutic strategies, some of which may be
non-intuitive. Additional simulations are planned to
determine whether this is an artifact of low replicate
numbers, or represents an actual non-normal distribu-
tion in the dynamic range of these parameters.

Discussion
Despite the prototyping nature of these simulation
experiments, we believe that there are important in-
sights that can be gained by these results. Most signif-
icant is substantiation of the general belief that multi-
dimensional, nonlinear systems can lead to some non-
intuitive results. In the context of cancer immunology,
we found that reducing chemotactic efficiency (reduc-
ing attraction bias) can actually be beneficial in terms
of achieving an intermediate goal (tumor-immune cell
mixing) that improves the functional output (tumor
suppression). Additionally, these results, while qualita-
tive in nature, suggest that many immunotherapy de-
sign parameters have thresholds values, beyond which
further refinements give little or no clinical benefit.

The identification of seeming thresholds for thera-
peutic parameters such as attachment duration and
rate suggests that higher resolution models may be
used to identify boundary conditions for future wet
lab experimental investigations, which in turn can be
used to refine the computational models in exactly the
type of iterative workflow envisioned in Figure 2. At
some point, the results from this workflow will aid in
“pre-screening” potential research spending priorities
away from target goals where further improvements
(i.e., to speed up the attachment rate or increase the
attachment lifetime) would not improve the immune
response. In cases of non-monotonic system behavior
(e.g., where either high or low migration bias can lead
to treatment success, whereas intermediate migration
bias yields a poorer outcome), high-throughput model
investigations may be all the more critical to identify-
ing robust treatment designs with more reliable patient
outcome.

While the current model yielded fresh insights on
cancer-immune interactions, further refinements are
needed to unlock its full potential. In future work,
we plan to integrate and explore other key features of
the immune system, such as inflammatory responses,
cross-talk between different immune cell types, and
molecular-level mechanisms for MHC function and
immune-mediated cancer cell apoptosis [53, 47, 48, 21].
The models also need extension to directly model new
treatments such as the role of PD-1 and PD-L1 in CAR

T-cell therapies [19, 20]. In our next steps, we will ex-
tend the modeling framework to incorporate these ef-
fects, and import it into the EMEWS framework. We
will start exploring the emergent tumor response to
immune therapy under a variety of immune cell hy-
potheses and cancer phenotypes. Ultimately, we will
generate hypotheses that elucidate the most and least
ideal patient characteristics for immunotherapies.

In our pilot work to date, we have run a single it-
eration of the hypothesis testing loop; our next step
is to complete the loop and iteratively optimize the
treatment response over the current “design” parame-
ters (attachment lifetime, migration bias, and attach-
ment rate). This should yield testable hypotheses on
immune system conditions for effective and ineffec-
tive tumor suppression. We also plan separate can-
cer hypothesis investigations in the PhysiCell-EMEWS
framework. In ongoing breast cancer projects, we are
evaluating families of cell-cell interaction hypotheses
for “leader cells” (highly motile, less proliferative)
and “follower cells” (less motile, more proliferative)
that best explain time series morphologic data [54].
This work will further test the potential of PhysiCell-
EMEWS to not merely explore large parameter spaces,
but to optimally match hypotheses to experimental
observations. We would then develop independent ex-
periments to validate or refine the optimal hypotheses.

We note that the generalized description of hypothe-
ses is not yet mature. Standards have emerged to de-
scribe molecular-scale systems biology (generally sys-
tems of ODEs) as SBML [55], and more recently to ex-
press multicellular biology as MultiCellDS, but cell-cell
interaction rules will likely require a different descrip-
tion, such as by using elements of the Cell Behavior
Ontology [56].

PhysiCell-EMEW’s computational performance could
be further improved. In particular, the diffusion solver
(BioFVM) is well-suited to leveraging GPU resources
available on today’s typical HPC/HTC compute nodes
using, for example, OpenACC, CUDA, or OpenCL.
Scientifically, complex molecular-scale systems biology
is typically written as SBML (systems biology markup
language) models, and so to integrate these into high
throughput multiscale mechanistic hypothesis testing,
we plan to implement an SBML model integrator, such
as the cross-platform libRoadrunner platform [57].

Lastly, we note that there were other benefits to com-
bining PhysiCell and EMEWS to run a large number
of simulations: we estimate that the cancer-immune
investigation included on the order of 1 to 100 billion
calls to the of the tumor-immune mechanical and bio-
chemical interaction codes. This allowed us to “stress
test” PhysiCell and identify rare bugs for future code
releases. 39 simulations in our investigation terminated
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prematurely due to rare events, such as multiple im-
mune cells attempting to apoptose the same tumor
cell, or a tumor cell necrosing while still attached to an
immune cell; these rare events removed dead cells from
memory while memory pointers were still in active
use, occasionally causing segmentation faults. Without
high-throughput simulation investigations (which in-
cluded over a year of compute time), these bugs would
likely remain undetected and unfixed for years. We an-
ticipate that other open source computational biology
projects could similarly benefit from high-throughput
testing in EMEWS.

Conclusions
We have demonstrated a 3-D mechanistic tumor-
immune interaction model (and more generally, a
mechanistic agent-based cancer modeling platform, us-
ing PhysiCell) that has an appropriate balance of flex-
ibility, efficiency, and realism for efficient single sim-
ulations, that predict the emergent systems behaviors
for a given set of cancer hypotheses. It is self-contained
code (can be distributed as a ZIP file) enabling very
simple deployment.

We have shown how a previously-developed extreme-
scale model exploration and optimization platform
(EMEWS) can compatibly deploy PhysiCell for model
exploration in high throughput. We have outlined the
overall platform to perform high-throughput hypoth-
esis testing on using PhysiCell and EMEWS, and we
gave an early example on a simple (but spatially non-
trivial) model system of hypoxic tumor growth. We
then demonstrated PhysiCell-EMEWS with a large
parameter space investigation of a mechanistic 3-D
cancer-immune model, obtaining significant and non-
intuitive insights on immune cell homing and adhesion
dynamics that would not have been feasible without
HTC. The next natural step is to iterate past this first
investigation and find therapeutic design optima that
maximize tumor regression; this would represent a full
test of PhysiCell-EMEWS as a hypothesis optimiza-
tion tool.

Cancer biology—particularly cancer-immune inter-
actions—occurs in complex dynamical, multiscale sys-
tems that frequently yield surprising emergent be-
haviors that can impair treatment. High-throughput
model investigation and hypothesis testing affords a
new paradigm to attacking these complex problems,
gaining new insights, and improving cancer treatment
strategies.

We close by noting that this framework has appli-
cations beyond cancer. In general, testing multiscale
hypotheses in high throughput is valuable in deter-
mining the rules underlying (often puzzling) experi-
mental data, and even to evaluate the limitations of ex-
periments themselves [29, 30]. The PhysiCell-EMEWS

system could be used as a multicellular design tool: for
any given multicellular design including single-cell and
cell-cell interaction rules (which map onto hypotheses
in this framework), PhysiCell-EMEWS can test the
emergent multicellular behavior against the target be-
havior (the design goal), and iteratively tune the cell
rules to achieve the design goal. In [32], we began to
design cell-cell interaction rules to create a multicel-
lular cargo delivery system to actively deliver a can-
cer therapeutic beyond regular drug transport limits
to hypoxic cancer regions. In that work, we manually
tuned the model rules to achieve this (as yet unop-
timized) design objective, requiring weeks of people-
hours to configure, code, test, visualize, and evaluate.
Integrating such problems into a high-throughput de-
sign testing system such as PhysiCell-EMEWS would
be of clear benefit.
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Figures

Figure 1 Sample 3-D cancer-immune simulation. 3-D
simulation of adaptive immune response to a heterogeneous
tumor (cells ranging from blue (low proliferation and
immunogenicity) to yellow (high proliferation and
immunogenicity). Immune cells are red; cyan cells have
undergone apoptosis due to immune attack. A high-resolution
animation can be viewed at
https://www.youtube.com/watch?v=nJ2urSm4ilU. Adapted
with permission (via CC-BY 4.0) from [32].

Figure 2 Hypothesis testing as an optimization problem. If
scientific users can (1) formulate a range of hypotheses, (2)
supply an efficient 3-D mechanistic simulator
(BioFVM+PhysiCell), (3) provide validation behaviors and/or
data, and (4) supply an error metric, then the combined
PhysiCell-EMEWS system can automatically explore the space
of hypotheses, initiate simulations on HPC/HTC resources,
collect data to evaluate the error metric, and then make
further decisions on which hypotheses and parameter values to
explore next. The framework iteratively sharpens hypotheses
that bring new biological and clinical insights.
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Figure 3 First PhysiCell-EMEWS test on cancer hypoxia:
tumor plots. Here necrotic cells (dead by oxygen starvation)
are brown, non-cycling cells are blue, and cycling cells are
green and magenta. Increasing the initial cell count increases
the final cell count, but also increases the final dead cell
fraction (seen as the increasing prevalence of brown).

Figure 4 First PhysiCell-EMEWS test on cancer hypoxia:
analytics. Live tumor cell count (top) and live cell fraction
(bottom) after 48 hours, as a function of oxygenation
conditions (each curve is a different condition) and initial cell
count (horizontal axis). For intermediate oxygenation
conditions, increasing the initial cell count increases the final
live cell count (top) but decreases the live cell fraction
(bottom). Once oxygenation is high enough, any initial cell
count yields nearly 100% live fraction at 48 hours.

Figure 5 High-throughput 3-D cancer-immune simulation:
impact of migration bias and and attachment lifetime. We
plot a heatmap for final live cell tumor count (blue is lowest,
or most effective immune response; yellow is worst immune
response) for varied migration bias (horizontal axis) and
immune cell attachment lifetime (vertical axis). Characteristic
final tumor cross sections are labeled i-iv. In particular,
decreasing migration bias improves the response.

Figure 6 High-throughput 3-D cancer-immune simulation:
impact of migration bias and and attachment rate. We plot
a heatmap for final live cell tumor count (blue is lowest, or
most effective immune response; yellow is worst immune
response) for varied migration bias (horizontal axis) and
immune cell attachment rate (vertical axis). Characteristic
final tumor cross sections are labeled i-iv. The impact of both
parameters was nonlinear.

Figure 7 High-throughput 3-D cancer-immune simulation:
impact of attachment rate and and attachment lifetime. We
plot a heatmap for final live cell tumor count (blue is lowest,
or most effective immune response; yellow is worst immune
response) for varied immune cell attachment rate (horizontal
axis) and immune cell attachment lifetime (vertical axis).
Characteristic final tumor cross sections are labeled i-iv. The
impact of both parameters was nonlinear.
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