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Abstract1

Despite major strides in the treatment of cancer, the development of drug resistance remains2

a major hurdle. To address this issue, researchers have proposed sequential drug therapies with3

which the resistance developed by a previous drug can be relieved by the next one, a concept4

called collateral sensitivity. The optimal times of these switches, however, remains unknown.5

6

We therefore developed a dynamical model and study the effect of sequential therapy on7

heterogeneous tumors comprised of resistant and sensitivity cells. A pair of drugs (DrugA,8

DrugB) are utilized and switched in turn within the therapy schedule. Assuming that they9

are collaterally sensitive to each other, we classified cancer cells into two groups, and explored10

their population dynamics: AR and BR, each of which is subpopulation of cells resistant to the11

indicated drug and concurrently sensitive to the other.12

13

Based on a system of ordinary differential equations for AR and BR, we determined that14

the optimal treatment strategy consists of two stages: initial stage in which a chosen better drug15

is utilised until a specific time point, T , and afterward; a combination of the two drugs with16

relative durations (i.e. f∆t-long for DrugA and (1− f)∆t-long for DrugB with 0 ≤ f ≤ 117

and ∆t ≥ 0). Of note, we prove that the initial period, in which the first drug is administered,18

T , is shorter than the period in which it remains effective in lowing total population, contrary19

to current clinical intuition.20

21

We further analyzed the relationship between population makeup, ApB = AR/BR, and ef-22

fect of each drug. We determine a specific makeup, ApB∗, at which the two drugs are equally23

effective. While the optimal strategy is applied, ApB is changing monotonically to ApB∗ and24

then remains at ApB∗ thereafter.25

26

Beyond our analytic results, we explored an individual based stochastic model and pre-27

sented the distribution of extinction times for the classes of solutions found. Taken together,28

our results suggest opportunities to improve therapy scheduling in clinical oncology.29

1 Introduction30

Drug resistance is observed in many patients after exposure to cancer therapy, and is a major hurdle31

in the cancer therapy [1]. Treatment with appropriate chemo- or targeted therapy reliably reduces32

tumor burden upon initiation. However, resistance inevitably arises, and disease burden relapse [2].33

The disease recurrence is visible, at the earliest, when disease burden reaches a threshold of detec-34

tion, at which first therapy is considered failed and a second line drug is used, to control the disease35
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in more efficient way (see Figure 1 (a)). Redesign of treatment is required to start earlier than the36

time point, not only because the detection threshold is higher than the minimum disease burden,37

but also because first drug could become less efficient as duration of therapy reaches to Tmax. In38

this research, we focus on the latter reason and figure out how much earlier we should switch drug39

in advance of Tmax, assuming that the former reason is less important (tDT − to ≈ Tmax).40

41

In preexisting tumor, both resistant and sensitive types of cells against a therapy are thought42

to co-exist even before the beginning of the therapy [3], and the cellular composition is shaped43

according to choices of drugs (diagrammed at Figure 1 (b)). Such alteration of cell populations is44

toward gaining resistant properties against the drug being administered, due to (i) kinetic changes45

affecting DNA synthesize during S-phase [4], (ii) drug induced genetic (point) mutations [5], or46

(iii) phenotypic plasticity and resulting epigenetic modifications [6].47

48

To deal with the resistance developed by a drug, one can prescribe a different drug as a follow-49

up therapy targeting the resistance issue. Researchers have sought specific combinations that induce50

sensitivity, this is the concept of collateral sensitivity [7, 8, 9]. In specific cases, an order of several51

drugs complete a collateral sensitivity cycle [8], and corresponding periodic drug sequence can be52

used in prescription of a long term therapy – though we recently showed that the continued effi-53

cacy of the same cycle is not guaranteed [10]. In this research, we focused on such drug cycling54

comprised by just two drugs, each of which can be used as a targeted therapy treating non-cross55

resistant factors occurring after the therapy of the other drug (diagrammed on Figure 1 (b)).56

57

(a) Drug resistance

(b) Tumor heterogeneity and collateral sensitivity

Figure 1: (a) General dynamical pattern of disease burden. It increases initially and then decreases
as of the therapy starting point (t0), and eventually rebounds after the maximum period with positive
therapy effect (Tmax). Relapse is found, at the earliest, when disease burden reaches detection
threshold at tDT . (b) Change in composition of tumor cell population when a pair of collaterally
sensitive drugs are given one after another.

The underlying dynamics of resistance development has been studied by looking cell popula-58
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tions mixed by sensitive and resistant types against therapy/therapies, whether it is genotypic or59

phenotypic classifications [11]. Additionally, many researchers have accounted for their choices of60

detailed cellular heterogeneities like: (i) stages in evolutionary structures [12, 13], (ii) phases of61

cell cycle [14, 15, 16, 17], or (iii) spatial distribution of irregular therapy effect [18, 19]. Among62

them, many researches (including [11, 15, 16, 20]) studied the effect of a pair of non-cross resistant63

drugs like us, using the Goldie-Coldman model or its variations [12, 21, 22]. Those models are ba-64

sically utilizing population structure of four compartments each of which represents subpopulation65

(i) sensitive to the both drugs, (ii) and (iii) resistant to one of them respectively, or (iv) resistant to66

both.67

68

In this research, we want to propose a simpler modeling structure including only two types69

of subpopulations (see Section 2 for the detail), which is still appropriate in the study of collater-70

ally sensitive drug effect and whose simplicity facilitates mathematical derivations of interesting71

concepts and quantities (see Section 3 for the detail of the analytical derivations). The model we72

propose at Section 2 has a potential to be expanded with other important considerations as well,73

like comparable stochastic simulations described in Section 4 and other future works explained in74

Section 5.75

2 Modeling setup76

2.1 Basic cell population dynamics under a single drug administration77

Before describing the comprehensive model for collateral sensitive network in Section 2.2, let us78

go over a fundamental modeling structure describing dynamical behavior of cell populations under79

a single drug. Based on the sensitivity and resistance to the therapy, cell population can be split80

into two groups. Then, we call the populations of the sensitive cells and the resistant cells by CS81

and CR respectively, and use total cell population, CP = CS + CR, in measuring disease burden82

and drug effect.83

84

We account three dynamical events in our model: proliferation of sensitive (s) and resistant85

cells (r), and transition between the cell types (g). Here, net proliferation rate represents combined86

birth and death rate, so can be positive if birth rate is higher than death rate or negative otherwise. It87

is reasonable to assume that, under the presence of drug, sensitive cell population declines (s < 0),88

resistant cell population increases (r > 0), and g > 0 for transition.89

90

(
ĊS
ĊR

)
=

(
−(g − s) 0

g r

)(
CS
CR

)
(1)

Figure 2: Diagram of dynamics between sensitive cells population, CS , and resistant cells popu-
lation, CR, (on the left panel) and the differential system of {CS, CR} (on the right panel) with
s−proliferation rate of sensitive cells, r−proliferation rate of resistant cells, g−transition rate from
CS to CR

Figure 2 shows the diagrams of such population dynamics, and the system of ordinary differen-91

tial equations that {CS, CR} obey. The solution of the system (1) is92
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(
CS(t)
CR(t)

)
=

 e−(g−s) t 0
g (er t − e−(g−s) t)

g + r − s
er t

( C0
S

C0
R

)
(2)

where {CS(0), CR(0)} = {C0
S, C

0
R}. By (2), total population is93

94

CP (t) =

(
r − s

g + r − s
C0
S

)
e−(g−s) t +

(
g (C0

S + C0
R) + (r − s) C0

R

g + r − s

)
er t. (3)

95

96

CP (t) is a positive function comprised of a linear combination of exponential growth (er t) and97

exponential decay (e−(g−s) t) with positive coefficients. Despite the limitations of simple expo-98

nential growth models [23], we feel it is a reasonable place to start, since the relapse of tumor size99

starts when it is much smaller than its carrying capacity which results in almost exponential growth.100

101

CP has one and only one minimum point in {−∞,∞}, after whichCP increases monotonically.102

If C ′P (0) = s C0
S + r C0

R ≥ 0, the drug is inefficient. (CP (t) is increasing on t ≥ 0, see an example103

on Figure 3 (a)) Otherwise, if C ′P (0) < 0, the drug is effective in reducing tumor burden at the104

beginning, although it will eventually regrow (drug resistance; see an example on Figure 3 (b)).105

(a) (b)

Figure 3: Representative population histories of sensitive and resistant cells and their summa-
tion with initial population makeup, {C0

S, C
0
R} = {0.9, 0.1}. (a) increasing total population with

{s, r, g} = {−0.01, 0.1, 0.001}; C ′P (0) = 0.001 > 0. (b) rebounding total population with
{s, r, g} = {−0.09, 0.08, 0.001}; C ′P (0) = −0.073 < 0.

2.2 Cell population dynamics with a pair of collateral sensitivity drugs106

Here, we describe the effect of a combined therapy with two drugs switched in turn, by extending107

the model for a single-drug administration (System (1)). Assuming that the drugs are collaterally108

sensitive to each other, cell population is classified into just two groups reacting to the two types109

of drugs in opposite ways. Depending on which drug to be administered, cells in the two groups110

will have different proliferation rates and direction of cell-type transition (see Figure 4). That is,111

the population dynamics of the two groups follow a piecewise continuous differential system con-112

sisting of a series of the system (1), each of which is assigned on a time slot bounded by times of113
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drug-switch.114

115

Figure 4: Population dynamics between AR− population of cells resistant only to DrugA and
BR− population of cells resistant only to DrugB under the presence of DrugA, or DrugB. For
each drug therapy, three drug-parameters of proliferations (colored red and green) and transition
(colored blue) are involved.

In summary, we assume that116

• there is a pair of collaterally sensitive drugs, DrugA and DrugB, which are characterized117

by their own model parameters, pA = {sA, rA, gA} and pB = {sB, rB, gB} respectively,118

• cell population can be split into two subpopulations, AR - resistant toDrugA and at the same119

time sensitive to DrugB, and BR - resistant to DrugB and sensitive to DrugA, and120

• three types of factors determine the dynamical patterns, (i) drug parameters, {pA, pB}, (ii)121

initial population ratio ApB0 = AR(0)/BR(0) (assuming that AR(0) +BR(0) = 1), and (iii)122

drug switch schedule.123

An example of histories of {AR, BR, AR + BR} with a choice of the three factors is shown at124

Figure 5.125

3 Analysis on therapy scheduling126

3.1 Drug-switch timing127

We explored possible strategies on choosing drug switch timing within our modeling setup. The128

first idea is relevant to clinical intuition: switching drug at the global minimum point of tumor size129

(Tmax; see Figure 1 (a)), which is shown to exist uniquely in the previous section if and only if130

CR(0)/CS(0) < −s/r. The expression of Tmax derived from our model is131

Tmax({s, r, g}, RpS0) =

ln

[
(g − s)(r − s)

r(g(RpS0 + 1) +RpS0(r − s))

]
g + r − s

with RpS0 =
CR(0)

CS(0)
. (4)

Tmax depends on (i) the parameters of drug being administered, and (ii) initial population makeup.132

In theDrugA-based therapy, it is Tmax(pA, ApB0), and in theDrugB-based therapy, it is Tmax(pB, 1/ApB0).133

134
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Figure 5: Representative plots describing dynamics during drug switches (blue - AR, yellow - BR,
green - (AR +BR)). Here, pA = pB = {−0.9, 0.08, 0.1}/day and {A0

R, B
0
R} = {0.5, 0.5}.

In addition to Tmax, another time point with significant meaning is Tmin, explained below. Since135

the decreasing rate is almost zero around Tmax with no switch (see the black curve of Figure 5), we136

seek to find a way to expedite the decreasing rate by switching drug before Tmax. To decide how137

much earlier to do so, we compared the derivative of AR + BR under constant selective pressure138

(no switch) at an arbitrary time point, t1, and compared it to the right derivative of AR + BR with139

the drug-switch assigned at t1. For example, if the first drug is DrugA and the follow-up drug is140

DrugB, we compared141

C ′P (t1 given {s, r, g} = pA and {C0
S, C

0
R} = {BR(t1), AR(t1)}) from (3),142

and143

C ′P (t1 given {s, r, g} = pB and {C0
S, C

0
R} = {AR(t1), BR(t1)}) also from (3).144

This comparison reveals that the two derivatives are equal at a specific point (this is Tmin, see the145

yellow curve on Figure 6), the derivative of drug-switch is lower (higher in absolute value; higher146

decreasing rate) if t1 > Tmin (see the blue and green curves on Figure 6), and the derivative of147

no-switch is lower if t1 < Tmin (see the red curve on Figure 6).148

149

Tmin depends on the parameters for the first drug {s1, r1, g1} and for the second drug {s2, r2},150

and initial population ratio between resistant cells and sensitive cells for the first drug RpS0. Here,151

transition parameter of second drug (g2), and respective values of the two populations are unneces-152

sary in the evaluation of Tmin, which is found to be153

Tmin({s1, r1, g1}, {s2, r2}, RpS0) =

ln

[
(r1 − s1)(r2 − s1) + g1(r1 + r2 − s1 − s2)

(r1 − s2)(g1 +RpS0(g1 + r1 − s1))

]
g1 + r1 − s1

. (5)

In DrugA-to-DrugB switch, it is Tmin(pA, pB, ApB0), and in DrugB-to-DrugA switch, it is154

Tmin(pB, pA, 1/ApB0).155

156
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Figure 6: Comparison of total population curves with one-time drug-switch from DrugA to
DrugB at different time points, (i) at < Tmin (worse than without-switch; red curve), (ii) at Tmin
(same as without-switch; yellow curve), (iii) between Tmin and Tmax (better than without-switch;
green curve), and (iv) Tmax (better than without-switch; blue curve). Each color of dot/curve rep-
resents cell population level on and after drug-switch of each switching strategy. The dashed curve
mixed by yellow and black colors represent the yellow and black curves overlapped. Parameters:
pA = pB = {−0.9, 0.08, 0.001}/day and {A0

R, B
0
R} = {0.1, 0.9}.

An important issue observed in Figure 6 is that the population curve with only one-time drug-157

switch after Tmin (and before Tmax, assuming that Tmin < Tmax) is not guaranteed to be lower158

than that of one-time switch at Tmax over an entire time range. (i.e., the green curve relevant to the159

switch at (Tmin + Tmax)/2 and the blue curve relevant to the switch at Tmax intersect at t ≈ 58 and160

the blue curve is lower after the time of the intersection). However, sequential drug switches started161

between Tmin and Tmax leave a possibility of finding a better drug schedule than the Tmax−based162

strategy. Figure 7 shows possible choices of follow up switches (green and black curves) which163

achieve better results than Tmax−switch (red curves), unlike the drug-switches started before Tmin164

remaining less effective (magenta curve).165

166

Optimal drug switch scheme will be discussed in detail in Section 4.2. The optimal scheduling167

for the example of Figure 5 starts with the first drug until Tmin (blue curve for 0 < t ≤ Tmin)168

followed by rapid exchange of the two drugs afterward (black curve for t > Tmin). Switching169

before Tmax, that is, before the drug has had its full effect, goes somewhat against clinical intuition,170

and is therefore an opportunity for unrealized clinical improvement based on a rationally scheduled171

switch at Tmin. In order to realize this however, there are conditions about the order of Tmax and172

Tmin which must be satisfied. In particular:173 
Tmin < Tmax if and only if rArB < sAsB
Tmin = Tmax if and only if rArB = sAsB
Tmin > Tmax if and only if rArB > sAsB.

(6)

In our analysis and simulations, we will deal with the cases mostly satisfying rArB < sAsB, as174

otherwise we cannot expect improvement of clinical strategy using Tmin, and more importantly as175

the choice of drugs not satisfying rArB < sAsB is not powerful to reduce cell population (explained176

in detail in the next section and Figure 8).177

178
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(a) (b)

Figure 7: Total population curves with different therapy strategies with pA = pB =
{−0.9, 0.08, 0.001}/day and {A0

R, B
0
R} = {0.1, 0.9} (a) full range of relative population (b) en-

largement of the shaded areas on (a)

The difference between Tmin and Tmax (Tgap), provides intuition on how much shorter the first179

drug administered than it is used to be.180

Tgap({s1, r1, g1}, {s2, r2}) := Tmax({s1, r1, g1}, RpS0)− Tmin({s1, r1, g1}, {s2, r2}, RpS0)

=

ln

[
(g1 − s1)(r1 − s1)(r1 − s2)

r1((r1 − s1)(r2 − s1) + g1(r1 + r2 − s1 − s2))

]
g1 + r1 − s1

(7)

We studied sensitivity analysis on Tgap over a reasonable space of non-dimentionalized drug pa-181

rameters in Appendix B. Expectedly, as the proliferation rates under the second drugs increases182

(r2 ↑ and/or s2 ↑), the optimal switching timing to the second drug is delayed (Tmin ↑ and Tgap ↓).183

As r1 increases, both Tmin and Tmax decrease. However, Tmax decrease more than Tmin does, so in184

overall Tgap decreases. s1 and Tgap do not have a monotonic relationship. Tgap is increasing as s1 is185

increasing in a range of relatively low values, but it turns into decreasing in relatively high values186

of s1.187

3.2 Population makeup and drug effect188

In this section, we study how the degree of cellular heterogeneity and therapy effect are related,189

and checked the roles of Tmin and Tmax in the relationships. We defined a function of population190

makeup ApB based on the ratio between the two cell types,191

ApB(t) :=
AR(t)

BR(t)
.192
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Then, the ratio at Tmin with DrugA-to-DrugB switch (TAmin) and with DrugB-to-DrugA switch193

(TBmin) are equivalent.194

ApB(TAmin) = ApB(TBmin) =
rB − sA
rA − sB

:= ApB∗. (8)

At Tmax with DrugA (TAmax), and with DrugB (TBmax), we have195

ApB(TAmax) =
−sA
rA

, ApB(TBmax) =
rB
−sB

,196

And, as s < 0 and r > 0, those values of ApB are all positive.197

198

We next consider the level of drug effect at each ApB by taking the derivative of cell popula-199

tion under the presence of the drug. Fixing the total population, the derivative is defined by ApB200

in addition to the model parameters. We define this effect by201

202

Ef(ApB) :=
d

dt
(AR(t) +BR(t))

∣∣∣∣pA or pB

t=0,ApB0=ApB

with AR(0) +BR(0) = 1.203

The effects ofDrugA (specified by pA) andDrugB (specified by pB) defined in this way are equiv-204

alent atApB∗, by the definitions of Tmin andApB∗. The effect ofDrugA is larger ifApB < ApB∗,205

since the cell population resistant to DrugA is relatively larger than the population of the other cell206

type. Otherwise, DrugB has a better effect. At the makeup of TAmax, DrugA has no effect on207

population reduction. If ApB is getting smaller than that, DrugA becomes effective. And, the208

smaller ApB is, the better effect DrugA has. Similarly the effect of Drug B is zero at ApB(TBmax)209

and increases as ApB increases above ApB(TBmax) (see Figure 8).210

211

(a) rArB < sAsB (b) rArB > sAsB

Figure 8: Effect of DrugA and DrugB over the axis of ApB. The two drugs have same effect
at ApB = ApB∗, and have no effect at ApB = −sA/rA (in case of DrugA) or ApB = −rB/sB
(in case of DrugB). The drug effect is getting bigger, as ApB is getting farther from the no-effect
level to the direction of getting less cell population resistant to the drug.

The population makeup changes in the opposite direction. As DrugA (or DrugB) therapy212

continues, ApB continues to increase (or decrease). So, if DrugA (or DrugB) is given too213

long, it should go through a period of no or almost no effect around ApB = −sA/rA (or around214

ApB = −rB/sB), but once the drug is switched after that, there will be a higher therapy effect with215

DrugB (or with DrugA). Such two opposite aspect has shown to be balanced by switching drug216

when the population makeup reaches ApB∗.217

218
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Depending on the condition (6), the order of the three ratios at Tmin, TAmin and TBmax changes.219

In particular, if rArB < sAsB, there exists an interval of ApB, (−rB/sB,−sA/rA), in which220

both drugs are effective in decreasing population, given the condition is satisfied. Otherwise, if221

rArB < sAsB, no drug is effective when ApB ∈ (−sA/rA,−rB/sB). These results are schema-222

tized in Figure 8.223

224

3.3 Optimal scheduling and its clinical implementation225

In this sections, we describe a drug-switch strategy to achieve the best effect possible with a pair of226

collaterally sensitive drugs. It is numerically found, and consists of two stages.227

• (Stage 1) to reach to the population makeup with balanced drug effect (ApB∗), so the period228

lasts as long as Tmin of the first drug229

• (Stage 2) to give the two drugs with a proper ratio in period (represented by k; see Figure230

9) in order to keep ApB being constant at ApB∗, and switching them in a high frequency,231

represented by ∆t ≈ 0232

Figure 9: Diagram of the relationship between therapy duration (like ∆t, k∆t, or ∆t/k) and change
in ApB around ApB∗. ∆t represents an arbitrary time interval (supposed to be small, ∆t ≈ 0), and
k represents a specific quantity corresponding to such ∆t and parameters of DrugA and DrugB.

k represents relative duration of DrugA compared to duration of DrugB in Stage 2. The ex-233

plicit formulation of k can be derived from the solution of the differential equations (2) by (i) eval-234

uating the level of ApB after ∆t-long DrugA therapy started with ApB(0) = ApB∗ (ApBDrugA
∆t ),235

and then, (ii) by measuring the time period taken to achieve ApB∗ back from ApBDrugA
∆t through236

DrugB therapy (∆t′), and finally (iii) taking ratio between the two therapy periods (k = ∆t/∆t′).237

Such k is consistent to the ratio similarly evaluated with DrugB as first therapy and DrugA as238

follow-up therapy. k depends on drug switch frequency and model parameters,239

k = k(∆t, pA, pB). (9)

In the optimal case of instantaneous switching,

k∗(pA, pB) := lim
∆t→0

k(∆t, pA, pB)

=
(rA − sB)((rA − sA)(rB − sA) + gA(rA + rB − sA − sB))

(rB − sA)((rB − sB)(rA − sB) + gB(rA + rB − sA − sB))
. (10)

We studied how sensitive k∗ (or f ∗ = k∗/(1+k∗)) is over a reasonable range of non-dimentionalized240

{pA, pB} (see Appendix B for the detail). k∗ (or f ∗) increases, as rA and/or sB increases and as sA241
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(a) (b)

Figure 10: Comparison between dynamical trajectories of the optimal (Tmin switch; blue curves)
and a non-optimal (Tmax switch; red curves) therapeutic strategies. Part of curves over Stage 1 and
Stage 2 are drawn in gray and white backgrounds respectively. Parameters/conditions: {sA, sB} =
{−0.18,−0.09}/day, {rA, rB} = {0.008, 0.016}/day, {gA, gB} = {0.00075, 0.00125}/day and
{A0

R, B
0
R} = {0.1, 0.9}

and/or rB increases.242

243

Figure 10 shows examples of population curves with the optimal strategy (Tmin switch) and244

one non-optimal strategy (Tmax switch) using the same choice of parameters/conditions. The vi-245

sual comparison validates the better effect of the optimal strategy than the other strategy over a246

range of time (see Figure 10 (a)). Figure 10 (b) shows the typical pattern of ApB in the optimal247

therapy compared to the other, which is monotonically changing toward ApB∗ in the first stage and248

staying still in the second stage.249

250

For the sake of practicality of clinical application, instantaneous drug switch in Stage 2 could251

be approximated by high frequency switching with ∆t & 0 along with the corresponding k(∆t)252

from (9), or k∗ (10) independent from ∆t. Expectedly, the smaller ∆t is chosen, the closer to the253

ideal case with ∆t = 0 (see Appendix C for the details).254

255

Additionally, we have proved that the effect of instantaneous drug switch, with an arbitrary256

ratio in duration between two drugs (k), is consistent to the effect of mixed drug with relative257

dosage ratio which is also k (Theorem A.8 in Appendix). The theorem is used in the derivation258

of differential system/solution of optimal strategy (Theorem A.11 in Appendix). According to the259

results, in Stage 2 of optimal regimen, all types of populations, AR, BR andAR+BR, changes with260

same constant proliferation rate,261

λ =
rArB − sAsB

rA + rB − sA − sB
.262

4 Stochastic studies on eradication time263

In previous sections we utilized an entirely deterministic model of cancer. Cancers, however, are264

not deterministic, and without stochasticity in our system we could not model an important part265

of cancer treatment: extinction. We therefore constructed a simple individual based model using a266
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Gillespie algorithm to study this aspect of cross-sensitivity.267

268

(a) (b)

Figure 11: (a) Illustration of possible events and their assignment in the stochastic model. (b) Com-
parison between the stochastic process and the ODE model. The mean (thick curves) of multiple
stochastic simulations (thin curves) are compared to the ODE solution (dashed curves). Parameters
are {sA, rA, gA|sB, rB, gB|A0

R, B
0
R}{−0.05, 0.005, 0.0001|−0.05, 0.005, 0.0001|1000, 9000}, birth

+ death = 1.0.

Our stochastic model depends not only on net proliferation rates (s, r, see Equation (1)) but269

also on the combination of birth rates (bS , bR) and death rates (dS , dR) where s = bS − dS and270

r = bR + dR. These five parameters (bs, br, ds, dr, g) govern the probabilities of events occurring271

(Figure 11 (a)). The time at which one of these events occurs is determined by an exponential272

probability distribution, and we represent the algorithm as pseudo-code thus:273

274

(Step 1) Initialize {S(0), R(0)} = {C0
S, C

0
R}.275

276

(Step 2) Update from t to t+ dt:277

(random number generation)278

rt ∼ U [0, 1], re ∼ U [0, 1]279

a = (bS + dS + g)S(t) + (bR + dR)R(t)280

dt = − log(rt)/a281

{p1, p2, p3, p4, p5} = {bSS(t), dSS(t), bRR(t), dRR(t), g S(t)}/a282

283

if re < p1, then S(t+ dt) = S(t) + 1284

else if re < p2 + p1, then S(t+ dt) = S(t)− 1285

else if re < p3 + p2 + p1, then R(t+ dt) = R(t) + 1286

else if re < p4 + p3 + p2 + p1, then R(t+ dt) = R(t)− 1287

else, S(t+ dt) = S(t)− 1 and R(t+ dt) = R(t) + 1288

289

(Step 3) t← t+ dt and repeat (Step 2) until a set time has passed or extinction has occurred.290

291

We expanded the stochastic process for a single drug into the process of two drugs being292

switched in turn, like what we did with our ODE system. Figure 11 (b) shows the consistency293

between the mean population based on the stochastic model and the ODE system.294

295

12

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 2, 2017. ; https://doi.org/10.1101/196824doi: bioRxiv preprint 

https://doi.org/10.1101/196824
http://creativecommons.org/licenses/by/4.0/


(a) (b)

Figure 12: 20 stochastic simulation runs using the same parameters:
{sA, rA, gA|sB, rB, gB|A0

R, B
0
R} = {−0.05, 0.005, 0.0001| − 0.05, 0.005, 0.0001|1000, 9000}

with: Birth - Death = 0.1 (a) and Birth - Death = 1.0 (b). Dark lines show the median cell number.

Increased birth/death rates result in larger fluctuations (Figure 12), these fluctuations then in-296

crease the probability of reaching an absorbing state, in this case extinction. The relationship297

between birth/death rates and extinction time is shown in Figure 13. The relationship is significant298

(p < 0.05) and strong (slope= -93.68 days2).299

300
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Figure 13: Relationship between birth-death combinations (0.1 to 1.0 with intervals of 0.1) and
simulated extinction time in 200 replicates. Parameters are {sA, rA, gA|sB, rB, gB|A0

R, B
0
R} =

{−0.05, 0.005, 0.0001| − 0.05, 0.005, 0.0001|1000, 9000}. Regression (red line) is y = −93.68x+
414 (slope has p<0.05).Blue lines show mean values.

5 Conclusions and discussion301

In this paper, we have proposed a simple, but informative dynamical systems model of tumor evo-302

lution in a heterogeneous tumor composed of two cell phenotypes. While cell phenotype can take303

a large range of definitions, here we completely describe it by considering only sensitivity (or re-304

sistance) to a pair of collaterally sensitive drugs, which is encoded in their differential growth rates.305
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While the resulting mathematical model conveys only simple, but essential, features of cell popu-306

lation dynamics, it does yield analytical solutions that more complex models can not. Our original307

motivation was to consider more complicated sequences, or cycles of drug therapy, however, the308

model presented herein is difficult to apply for an expanded system of more than two drugs. For309

an example of a collateral sensitivity cycle of three drugs, DrugA, DrugB and DrugC, we can310

consider with three population groups of AR, BR and CR which are resistant to the indicated drugs311

and sensitive to DrugC, DrugA and DrugB respectively following the cycle. However, we need312

further assumptions on how to decide sensitivity and resistance against the third drug for each313

populations makes the model unwieldy. On the other hand, the cell classification used by other314

[11, 12, 21, 24] considers sensitivity and resistance independently, or even specifically to a given,315

abstracted, genotype [25, 26]. Therefore, in case of 2 drugs, there are 22 = 4 groups, (i) sensitive to316

both drugs, (ii) (iii) resistant to only one drug, and (iv) resistant to both drugs. This formulation is317

easily expanded and applied to more than two drugs [11, 24], and we will consider it in future work.318

319

Another limitation of our model is the assumption of constant growth rate which follows an320

exponential growth/decay model, which is likely oversimplified. However, this is likely not overly321

inappropriate, as we are most interested in the development of resistance – and resistance is typi-322

cally thought to begin when tumor burden is much smaller than carrying capacity. However, non-323

exponential patterns of cell growth could be reasonably considered, as is done by others (e.g. lo-324

gistic growth [23, 27, 28]), due to the limited space and resource of human body for tumor growth,325

as well as increasing levels of resistance (increasing growth rates) in the face of continued selective326

pressure [29].327

328

The usefulness of our analytic results are challenged by the availability of drug parameters,329

since the derived expressions in optimal scheduling and dynamical pattern of population make-330

up are dependent on the parameters. Drug parameters for several drugs are known based on in331

vitro experiment or clinical studies [30, 31]. However, it is not available for all drugs, and even332

the results measured in vitro would likely change from one patient to the next. Because of this,333

we propose focusing our future work on learning to parameterize models of this type from indi-334

vidual patient response data. Examples of parameterizing patient response from imaging [32] as335

well as blood based markers [33] already exist, suggesting this is a reasonable goal in the near term.336

337

Other possible ideas of future work involve comparison between different models. A recent338

area of debate concerns whether cycling, or directly mixing therapies is superior. In our simplified339

model, we show under certain regimes of (timing of) drug switching, the effect of drug cycling and340

drug mixing strategies are equivalent (Theorem A.8). Further exploring the ramifications of this341

through modeling of timing and combinations would be of value [34, 35].342
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Appendix A Derivations of explicit expressions436

Definition DA :=

(
rA gA
0 sA − gA

)
, DB :=

(
sB − gB 0
gB rB

)
, V (t) :=

(
AR(t)
BR(t)

)
,437

438

MA(t) :=

 erA t gA (erA t − e−(gA−sA) t)

gA + rA − sA
0 e−(gA−sA) t

, MB(t) :=

 e−(gB−sB) t 0
gB (erB t − e−(gB−sB) t)

gB + rB − sB
erB t

,439

440

Aε := MA(f ε), Bε := MB((1− f)ε),441

442

min [V (t1), V (t2), · · · , V (tn)] :=

(
min [AR(t1), AR(t2), · · · , AR(tn)]
min [AR(t1), AR(t2), · · · , AR(tn)]

)
,443

444

max [V (t1), V (t2), · · · , V (tn)] :=

(
max [AR(t1), AR(t2), · · · , AR(tn)]
max [AR(t1), AR(t2), · · · , AR(tn)]

)
.445

Proposition A.1. Under the therapy with Drug A,446

V ′(t) = DA V (t), V (t0 + ∆t) = MA(∆t) V (t0).447

Under the therapy with Drug B,448

V ′(t) = DB V (t), V (t0 + ∆t) = MB(∆t) V (t0).449

A.1 Differential system of instantaneous drug switch450

Proposition A.2. Both AR and BR are monotonic functions under either therapy. Under the pres-451

ence of Drug A, AR is increasing, and BR is decreasing. And, under the presence of Drug B, AR is452

decreasing, and BR is increasing.453

Proposition A.3. Aε|ε=0 = Bε|ε=0 = I2 for all 0 ≤ f ≤ 1454

Proposition A.4.
d

dε
Aε

∣∣∣∣
ε=0

= f DA,
d

dε
Bε
∣∣∣∣
ε=0

= (1− f)DB for all 0 ≤ f ≤ 1455

Lemma A.5. lim
ε→0

BεAε − I2

ε
= f DA + (1− f)DB for all 0 ≤ f ≤ 1456
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Proof.

lim
ε→0

BεAε − I2

ε
= lim

ε→0

d
dε

(BεAε − I2)
d
dε
ε

(by L'Hospital's Rule)

= lim
ε→0

dBε
dε
Aε + Bε dAεdε

1
= f DA + (1− f)DB (by Propositions A.3 - A.4)

457

Lemma A.6. lim
ε→0

(BεAε)
n − I2

n ε
= f DA + (1 − f)DB for any positive integer, n, and for all458

0 ≤ f ≤ 1459

Proof. Let F (n) := lim
ε→0

(BεAε)
n − I2

n ε
and L := f DA + (1− f)DB.

Then, we need to prove that F (n) = L for n = 1, 2, 3, ...
If n = 1,

F (n) = F (1) = L (by Lemma A.5)

Otherwise, if n ≥ 2 and F (m) = L for all 1 ≤ m ≤ n− 1,

F (n) = lim
ε→0

(BεAε)
n − I2

n ε

= lim
ε→0

((BεAε)
n−1 − I2)(BεAε) + (BεAε − I2)

n ε

=
n− 1

n
lim
ε→0

((BεAε)
n−1 − I2)(BεAε)

(n− 1) ε
+

1

n
lim
ε→0

BεAε − I2

ε

=
n− 1

n
F (n− 1) +

1

n
F (1)

=
n− 1

n
L+

1

n
L (by the inductive assumption)

= L

Therefore, proved.460

Lemma A.7. lim
ε→0

Aε(BεAε)
n − I2

(n+ f) ε
=

(n+ 1)f

n+ f
DA +

n(1− f)

n+ f
DB for any positive integer, n, and461

for all 0 ≤ f ≤ 1462

Proof. Using mathematical induction, if n=1,

18

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 2, 2017. ; https://doi.org/10.1101/196824doi: bioRxiv preprint 

https://doi.org/10.1101/196824
http://creativecommons.org/licenses/by/4.0/


lim
ε→0

Aε(BεAε)− I2

(1 + f) ε

=
1

1 + f
lim
ε→0

Aε(BεAε − I2) + (Aε − I2)

ε

=
1

1 + f

[
lim
ε→0

Aε lim
ε→0

BεAε − I2

ε
+ lim

ε→0

Aε − I2

ε

]
=

1

1 + f

[
I2(f DA + (1− f)DB) +

d

dε
Aε

∣∣∣∣
ε=0

]
(by Proposition A.3 and Lemma A.5)

=
1

1 + f
[(f DA + (1− f)DB) + k DA] (by Proposition A.4)

=
2 f

1 + f
DA +

1− f
1 + f

DB The equality is true for n = 1

If n ≥ 2, and the equality works for all integers 1 ≤ m ≤ n− 1,

lim
ε→0

Aε(BεAε)
n − I2

(n+ f) ε

=
1

n+ f

[
lim
ε→0

(Aε(BεAε)
n−1 − I2)(BεAε) + (BεAε − I2)

ε

]
=

1

n+ f

[
((n− 1) + f) lim

ε→0

(Aε(BεAε)
n−1 − I2)

((n− 1) + f)ε
lim
ε→0

(BεAε) + lim
ε→0

BεAε − I2

ε

]
=

1

n+ f

[
((n− 1) + f)

(
n f

(n− 1) + f
DA +

(n− 1)(1− f)

(n− 1) + f
DB

)
(I2 I2)

+(f DA + (1− f)DB)]

(by the inductive assumption and Proposition A.3 and Lemma A.5)

=
(n+ 1)f

n+ f
DA +

n(1− f)

n+ f
DB (The equality is true for n ≥ 2)

Therefore, proved.463

Theorem A.8. If Drug A and Drug B are prescribed in turn with relative intensity f and 1 − f ,464

and are switched instantaneously, V obeys465

dV

dt
= (f DA + (1− f)DB)V466

Proof. For any time point t0, let us define Vε(t) as a vector-valued function of AR(t) and BR(t)
describing cell population dynamics under periodic therapy started on t0 with Drug A assigned on
t0 +m ε ≤ t < t0 +(m+f)ε and Drug B on t0 +(m+f)ε ≤ t < t0 +(m+1)ε form = 0, 1, 2, 3, ....
Then, by Proposition A.1 and the definitions of A and B,

Vε(t0 +m ε) = (BεAε)
m V (t0), Vε(t0 + (m+ f)ε) = Aε(BεAε)

m V (t0) · · · (∗1)

where V (t0) =

(
AR(t0)
BR(t0)

)
. And, V0(t) represents instantaneous drug switch.

For any ∆t > 0 and any positive integer n, there exists ε = ε(n,∆t) such that

∆t

n+ 1
< ε ≤ ∆t

n
or 1 ≤ ∆t

n ε
< 1 +

1

n
.
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Then by the squeeze theorem,

lim
∆t→0

ε(n,∆t) = 0 for any positive integer n, and lim
n→∞

∆t

n ε(n,∆t)
= 1 for any ∆t > 0. · · · (∗2)

For such ∆t, n and ε(n,∆t), Vε(t0 + ∆t) is bounded, since local extrema can occur only at which
drugs switch by Proposition A.2. That is,

min [Vε(t0 + n ε), Vε(t0 + (n+ f)ε), Vε(t0 + (n+ 1)ε)] ≤ Vε(t0 + ∆t)

≤ max [Vε(t0 + n ε), Vε(t0 + (n+ f)ε), Vε(t0 + (n+ 1)ε)] , · · · (∗3)

Also,

lim
∆t→0

limn→∞ Vε(n,∆t)(t0 + n ε(n,∆t))− V (t0)

∆t

= lim
∆t→0

lim
n→∞

(BεAε)
n − I2

∆t
V (t0) (by (*1))

=
lim∆t→0 limn→∞ [(BεAε)

n − I2] /(n ε)

lim∆t→0 limn→∞∆t/(n ε)
V (t0)

=
limn→∞ [lim∆t→0 [(BεAε)

n − I2] /(n ε)]

lim∆t→0 [limn→∞∆t/(n ε)]
V (t0)

=
limn→∞ [limε→0 [(BεAε)

n − I2] /(n ε)]

lim∆t→0 1
V (t0) by (*2)

= lim
n→∞

[f DA + (1− f)DB]V (t0) (by Lemma A.6)

=(f DA + (1− f)DB)V (t0). · · · (∗4)

And,

lim
∆t→0

limn→∞ Vε(n,∆t)(t0 + (n+ f) ε(n,∆t))− V (t0)

∆t

= lim
∆t→0

lim
n→∞

Aε(BεAε)
n − I2

∆t
V (t0) (by (*1))

=
lim∆t→0 limn→∞ [Aε(BεAε)

n − I2] /((n+ f) ε)

lim∆t→0 limn→∞∆t/((n+ f) ε)
V (t0)

=
limn→∞ [lim∆t→0 [(BεAε)

n − I2] /((n+ f) ε)]

lim∆t→0 [limn→∞(∆t/(n ε))(n/(n+ f))]
V (t0)

=
limn→∞ [limε→0 [(BεAε)

n − I2] /((n+ f) ε)]

lim∆t→0 1
V (t0) by (*2)

= lim
n→∞

[
(n+ 1)f

n+ f
DA +

n(1− f)

n+ f
DB

]
V (t0) (by Lemma A.7)

=(f DA + (1− f)DB)V (t0) · · · (∗5)

Similar to (*4),

lim
∆t→0

limn→∞ Vε(n,∆t)(t0 + (n+ 1) ε(n,∆t))− V (t0)

∆t
= (f DA + (1− f)DB)V (t0) · · · (∗6)
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By (*4) - (*6),

min

[
lim

∆t→0

limn→∞ Vε(t0 + n ε)− V (t0)

∆t
, lim

∆t→0

limn→∞ Vε(t0 + (n+ f) ε)− V (t0)

∆t
,

lim
∆t→0

limn→∞ Vε(t0 + (n+ 1) ε)− V (t0)

∆t

]
= max

[
lim

∆t→0

limn→∞ Vε(t0 + n ε)− V (t0)

∆t
,

lim
∆t→0

lim
∆t→0

limn→∞ Vε(t0 + (n+ f) ε)− V (t0)

∆t
, lim

∆t→0

limn→∞ Vε(t0 + (n+ 1) ε)− V (t0)

∆t

]
= (f DA + (1− f)DB)V (t0) · · · (∗7)

Then, by (*3), (*7) and the squeeze theorem,467

d

dt
V0

∣∣∣∣
t=t0

= lim
∆t→0

limn→∞ Vε(t0 + ∆t)− V (t0)

∆t
= (f DA + (1− f)DB)V (t0)468

Therefore,469

dV

dt
= (f DA + (1− f)DB)V470

471

A.2 Population dynamics with the optimal regimen472

Lemma A.9.
{

rArB − sAsB
rA + rB − sA − sB

,

(
ApB∗

1

)}
is an eigen pair of f ∗ DA + (1 − f ∗)DB with473

ApB∗ and f ∗ from (8), (10) and (13).474

Proof. Let D∗ := f ∗ DA + (1− f ∗)DB, and λ =
rArB − sAsB

rA + rB − sA − sB
. Then,475

D∗ − λ I2 = C1

(
C2 U

T

C3 U
T

)
,476

where U =

(
1

−ApB∗
)

along with

C1 = −(gA(rA − sB) + gB(rB − sA) + (rB − sA)(rA − sB))(rA + rB − sA − sB)/(rA − sB),

C2 = gA((rA − sB)(rB − sB) + gB(rA + rB − sA − sB),

C3 = −gB((rB − sA)(rA − sA) + gA(rA + rB − sA − sB)).

Since UT V = 0 where V = ((rB − sA)/(rA − sB), 1)T , (λ, V ) is an eigen pair of D∗.477

Theorem A.10. In Stage 2 of the optimal strategy, both AR and BR changes with a constant net-478

proliferation rate,479

λ =
rArB − sAsB

rA + rB − sA − sB
.480

Proof. Without loss of generosity, let us prove it only when ApB(0) < ApB∗.481

482
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If ApB(0) < ApB∗, DrugA has a better effect initially. So following the optimal therapy
scheduling, DrugA is assigned alone at the beginning as long as TAmin = Tmin(pA, pB, ApB(0))
(Stage 1), and then Stage 2 starts at TAmin with initial condition

V (TAmin) = MA(TAmin)V (0) = C

(
ApB∗

1

)
· · · (∗1)

where C =
P (0)

1 + ApB(0)

(
(rA − sA)(rB − sA) + gA(rA + rB − sA − sB)

(rA − sB)(gA + ApB(0)(gA + rA − sA))

)− gA−sA
gA+rA−sA

.483

484

By Theorem A.8, in Stage 2, V (t) obeys485

dV

dt
= D∗V , where D∗ = f ∗DA + (1− f ∗)DB · · · (∗2)486

By Lemma A.9, V (TAmin) is an eigenvector of D∗ with the corresponding eigenvalue, λ. Then,487

the solution of (*2) with the initial value (*1) is488

V (t+ TAmin) = eλ tV (TAmin).489

490

Theorem A.11. With optimal therapy utilizing DrugA and DrugB, V obeys the following equa-491

tions and solutions.492

493

If ApB(0) < ApB∗,494

dV

dt
=

{
DAV if 0 ≤ t ≤ TAmin
λ V if t > TAmin

and V (t) =

{
MA(t)V (0) if 0 ≤ t ≤ TAmin

eλ (t−TAmin)V (TAmin) if t > TAmin
495

Similarly if ApB(0) ≥ ApB∗,496

dV

dt
=

{
DBV if 0 ≤ t ≤ TBmin
λ V if t > TBmin

and V (t) =

{
MB(t)V (0) if 0 ≤ t ≤ TBmin

eλ (t−TBmin)V (TBmin) if t > TBmin
497

Proof. Straightforward, by Theorem A.10498

Appendix B Sensitivity analysis on optimal scheduling499

The two determinant quantities of optimal control scheduling are (i) the duration of the first stage500

(T 1
min), and (ii) the relative intensity between two drugs in the second stage (k∗ or f ∗). Here, we501

show sensitivity analysis on the quantities related to them over a range of model parameters.502

503

Using g1, we non-dimentionalize all the values, like504

{s1, r1|s2, r2} :=
1

g1

{s1, r1|s2, r2} and Tgap := g1 Tgap505

then,506

Tgap({s1, r1}, {s2, r2}) :=

ln

[
(1− s1)(r1 − s1)(r1 − s2)

r1((r1 − s1)(r2 − s1) + (r1 + r2 − s1 − s2))

]
1 + r1 − s1

(11)
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In general, cells mutate in a slower way than they proliferate (ref), so we ran sensitivity analysis507

on Tgap for all a � 1 for a ∈ {−s1,−s2, r1, r2}. Figure 14 shows Tgap over the range of 20 ≤508

−s1,−s2, r1, r2 ≤ 100. So, under the assumption that g1 � min{−s1,−s2, r1, r2},509

Tgap({s1, r1}, {s2, r2}) ≈
ln

[
−s1(r1 − s2)

r1(r2 − s1)

]
r1 − s1

,510

which approximate the contour curves of Figure 14.511

512

Figure 14: Contour maps of Tgap over ranges of 20 ≤ a ≤ 100 for a ∈ {−s1,−s2, r1, r2} and
r1r2 < s1s2 (Condition (6))

Regarding the regulated intensities among the two drugs, k∗, we assumed that g1 ≈ g2 := g,513

similarly assuming that they are both much smaller than {−s1,−s2, r1, r2}. Then we normalized514

all the parameters with the unit of g, like515

{s1, r1|s2, r2} :=
1

g
{s1, r1|s2, r2}.516

k∗ can be rewritten in terms of the dimensionless parameters.517
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k∗({s1, r1}, {s2, r2}) =
(r1 − s2)((r1 − s1)(r2 − s1) + (r1 + r2 − s1 − s2))

(r2 − s1)((r2 − s2)(r1 − s2) + (r1 + r2 − s1 − s2))
(12)

In sensitivity analysis, we use518

f ∗ :=
k∗

1 + k∗
, (13)

which represents intensity fraction of initially better drug out of total therapy. We evaluated f ∗519

over the same ranges of {s1, s2, r1, r2} like the previous exercise. (see Figure 15) Over the ranges,520

max{g1, g2} � min{−s1,−s2, r1, r2}, so k∗ and f ∗ can be approximated by simpler forms.521

k∗ ≈ r1 − s1

r2 − s2

and f ∗ ≈ r1 − s1

r1 + r2 − s1 − s2

522

Figure 15: Contour maps of f ∗ over ranges of 20 ≤ a ≤ 100 for a ∈ {−s1,−s2, r1, r2} and
r1r2 < s1s2 (Condition (6))
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Appendix C Clinical implementation of instantaneous switch523

in the optimal strategy524

In clinical practice, the instantaneous drug-switch which is proposed in this research to apply in the525

second stage of the optimal control is not implementable. Therefore, we studied similar schedules526

to the optimal case, and compared the therapy effects between the different schedules of admin-527

istrations. In the ”similar” schedules, the first stage with an initial drug remained same to the528

optimal schedule, but the second part of instantaneous switch (with ∆t = 0) has been modified529

into fast switch (∆t & 0). Figure 16 shows how the effect on population with instantaneous switch530

(∆t = 0)and fast switches (multiple choices of ∆t & 0) are different for a choice of drug parameter531

values. Expectedly, the smaller ∆t is chosen, the closer to the ideal case of therapy effect. And,532

a choice of reasonably small ∆t (like 1 day or 3 days) results in the outcome quite close to the533

optimal scenario.534

535

We simulated same exercise with k∗ (from (10)) instead of k(∆t) modulated by ∆t (Figure536

17). Only invisibly small differences has been observed between Figure 16 and Figure 17, which537

justifies general usage of k∗ independent from ∆t.538

539

(a) (b)

Figure 16: Graphs of regular drug switch in Stage 2 with different {∆t, k(∆t, pA, pB)}: ∆t = 1
day (blue), ∆t = 4 days (red), ∆t = 7 days (green), and ∆t = 10 days (magenta). Pa-
rameters/conditions: pA = {−0.18, 0.008, 0.00075}/day, pB = {−0.9, 0.016, 0.00125}/day and
{A0

R, B
0
R} = {0.1, 0.9} (a) Time histories of total populations, Cn

P for n ∈ {1, 4, 7, 10} days (b)
Differences between the optimal population history C∗P , (i.e., when ∆t = 0) and each cases with
positive ∆t. (i.e., Cn

P − C∗P ). The inside smaller plots are same types of graphs with the bigger
graphs, and show enlargement of interesting ranges.
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(a) (b)

Figure 17: Graphs of regular drug switch in Stage 2 with different {∆t} and fixed k∗ from 10:
∆t = 1 day (blue), ∆t = 4 days (red), ∆t = 7 days (green), and ∆t = 10 days (magenta).
Parameters/conditions: pA = {−0.18, 0.008, 0.00075}/day, pB = {−0.9, 0.016, 0.00125}/day and
{A0

R, B
0
R} = {0.1, 0.9} (a) Time histories of total populations, Cn

P for n ∈ {1, 4, 7, 10} days (b)
Differences between the optimal population history C∗P , (i.e., when ∆t = 0) and each cases with
positive ∆t. (i.e., Cn

P − C∗P ). The inside smaller plots are same types of graphs with the bigger
graphs, and show enlargement of interesting ranges.
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