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Abstract 

Omics data contains signal from the molecular, physical, and kinetic inter- and intra-

cellular interactions that control biological systems. Matrix factorization techniques can 

reveal low-dimensional structure from high-dimensional data that reflect these 

interactions. These techniques can uncover new biological knowledge from diverse 

high-throughput omics data in topics ranging from pathway discovery to time course 

analysis. We review exemplary applications of matrix factorization for systems-level 

analyses. We discuss appropriate application of these methods, their limitations, and 

focus on analysis of results to facilitate optimal biological interpretation. The inference of 

biologically relevant features with matrix factorization enables discovery from high-

throughput data beyond the limits of current biological knowledge—answering questions 

from high-dimensional data that we have not yet thought to ask. 
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Determining the dimensions of biology from omics data 

High-throughput technologies ushered in an era of big data in biology [1,2] and 

empowered in silico experimentation which is poised to characterize complex 

biological processes (CBPs) (RNAseq example given in Fig 1)[3]. The natural 

representation of high-dimensional biological data is a matrix of the measured values 

(expression counts, methylation levels, protein concentrations, etc.) in rows and 

individual samples in columns (Fig 2, Key Figure). Columns corresponding to 

experimental replicates, or samples with similar phenotypes will have values from the 

same distribution of biological variation. The related structure in the data is observed 

because they share one or more CBP. The activity of CBPs need not be identical in 

each sample. In these cases, the values of all molecular components that are 

associated with a CBP will change proportionally to the relative activity of that CBP.  

These phenotypes and CBP activities are often unknown a priori, requiring 

unsupervised computational techniques to learn them directly from the biological data. 

The relationships between CBPs and similarities between samples constrain 

high-dimensional datasets to have low-dimensional structure. The number of genes, 

proteins, and pathways that are concurrently active within any cell is constrained by its 

energy and free-molecule limitations [4]. Only a characteristic subset of CBP will be 

active in any cell at a given time. Thus for a dataset where columns share CBP, a low 

dimensional structure can be extracted which is smaller than either the number of rows 

or the number of columns. Matrix Factorization (MF) is a class of unsupervised 

techniques provide a set of principled approaches to parsimoniously reveal the low-
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dimensional structure while preserving as much information as possible from the 

original data (see Box 1).  

When applied to high-throughput omics data, MF techniques learn two matrices: 

one describes the structure between features (e.g., genes) and another the structure 

between samples (Fig 2). Here, we call the former gene-level matrix the Amplitude 

matrix and the latter sample-level matrix the Pattern matrix. There are numerous 

approaches to MF, including both gradient-based and probabilistic methods (Box 1). 

Additional terms have been coined for the Amplitude and Pattern matrices based upon 

the MF problem applied and on the specific application to high-throughput biological 

data. Other reviews discuss the mathematical and technical details of MF techniques 

[5–8] and their applications to microarray data [9].  

Here, we focus on the biological applications of MF techniques and the 

interpretation of their results since the advent of sequencing technologies. We describe 

a variety of MF techniques applied to high-throughput data analysis and compare and 

contrast their use for biological inference. Many techniques described are for 

sequencing data that is preprocessed with log transformation [10] or models of 

sequencing depth [11], while others directly model read counts [12]. We focus on 

examples in pathway analysis, subtype and clonal identification, time course analysis, 

multi-omics integration, and single cell data to present a field with much wider 

applications.  

 

Data-driven gene sets from MF provide context-dependent coregulated gene 

modules and pathway annotations  
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Genomics data are often interpreted by identifying molecular changes in sets of 

genes annotated to functionally related modules or pathways, called gene sets [13,14]. 

Often the association between gene sets and functions used are based upon human 

curation of the literature [15,16]. Such set-level interpretations often lack important 

contextual information [13,17,18] and cannot describe genes with unknown function or 

genes associated with new functional mechanisms. 

The amplitude matrix from MF analysis can be used both for literature-based 

gene set analysis and to define new data-driven gene signatures (Fig 3). The values in 

each column of these amplitude matrices are continuous weights describing relative 

contribution of a molecule in each inferred factor. In cases where factors distinguish 

CBPs, the relative weights of these molecules can be associated with functional 

pathways. The same molecule may have high values in multiple columns of the 

amplitude matrix. Thus, MF techniques are able to account for the cumulative effect of 

genes that participate in multiple pathways. The properties of the amplitude matrix, and 

subsequently the interpretation of their values, depend critically on the specific MF 

problem and algorithm selected for analysis.  

The three most prominent MF approaches are Principal Component Analysis 

(PCA), Independent Component Analysis (ICA), and Non-negative Matrix 

Factorization (NMF). Each of these techniques has a distinct mathematical formulation 

of a distinct MF problem that is described in the Box 2 and other reviews [5,8,19–22]. 

Briefly, PCA finds dominant sources of variation in high-dimensional datasets, inferring 

genes that distinguish samples. Maximizing the variability captured in certain factors, as 
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opposed to spreading relatively evenly among factors, may mix the signal from multiple 

CBPs in a single component. Therefore, PCA may conflate processes that sometimes 

occur and make interpretation of the amplitude matrix for define data-driven gene sets 

difficult.  

To learn distinct processes, ICA learns factors that are statistically independent, 

resulting in more accurate associate with literature-derived gene sets [23–25]. 

Comparison analyses in Rotival et al [26] found that ICA could identify modules with 

known biological function. NMF methods constrain all elements of the amplitude and 

pattern matrices to be greater than or equal to zero [27,28]. NMF is well suited to 

transcriptional data, which is typically non-negative itself, and semi-NMF is also 

applicable to data that can have negative values. The assumptions of NMF model both 

the additive nature of CBPs and parsimony, generating solutions that are biologically 

intuitive to interpret [29].  

The solutions from both ICA and NMF may vary depending upon the initialization 

of the algorithm, leading to disparate amplitude matrices. Therefore, it is critical to 

ensure that particular solution used for analysis provides an optimal and robust solution 

before using the amplitude matrix to define data-driven gene signatures. Bayesian 

techniques to solve NMF were found to have more robust amplitude matrices than 

gradient-based techniques, and thus more accurate associations of the values in the 

amplitude matrix with functional pathways [5,30]. These associations also depend 

critically on the input data. Therefore, to learn context dependent genes sets, MF can be 

applied to datasets with well-defined experimental perturbations [31].   
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Standard gene set analysis can be applied directly to the values in each column 

of the amplitude matrix to associate the inferred factors with literature-curated sets. 

New, context dependent gene sets can also be learned from the values in the amplitude 

matrix. Gene set annotations are often binary. Thresholding techniques to select which 

genes belong to a pathway from the amplitude matrix for binary membership provide an 

output similar to gene sets in databases [31,32]. Other studies also integrate the 

literature-derived gene signatures in these thresholds to refine the context of pathway 

databases [30,33]. The genes derived from these binarizations can be used as inputs to 

pathway analyses from differential expression statistics in independent datasets (Fig 3, 

right) and are analogous to the hierarchical-clustering based gene modules [34] and 

gene expression signatures from public domain studies in the MSigDB gene set 

database [35]. Another means of binarizing the data is to find genes that are most 

uniquely associated with a specific pattern to use as biomarkers of the cell type or 

process associated with that pattern [36,37]. Selecting genes based upon these 

statistics can facilitate visualization of the CBPs in high-dimensional data [36]. Whereas 

binarization of genes with high weights can associate a single gene with multiple CBPs, 

the statistics for unique associations link a gene with only one CBP. Therefore, these 

statistics also define specific genes that may be biomarkers of the cell type/state or a 

process [36] (Fig 3, right).   

Although binary pathway models are substantially easier to interpret, continuous 

values from the original factorization provide a better model of the input data. Weighted 

gene signatures have been shown to be more robust to noise and missing values in the 

data [38]. If a gene’s expression level is poorly measured in a sample, other genes in 
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the same factor can imply the actual expression level of the gene in question. By 

considering each gene in the context of all other genes, factorization improves the 

robustness of findings. Further, continuous signatures can be associated directly with 

other samples using projection methods [38,39] or profile correspondence methods [40]. 

 MF has also been applied to learn functional gene modules on non-

transcriptional datasets. Alexandrov et al applied NMF to the mutational landscape of 

tumors defined from the number of nucleotides that differ from the reference genome in 

the context of the preceding and following nucleotides [41]. This analysis defined 

mutational signatures associated with distinct cancer driving processes [42]. Additional 

extensions have been applied to learn allele combinations in phenotypes [43], 

transcript-regulation of genes [44], distributions of transcript lengths [45], and 

discriminate peptides in mass spectrometry proteomics [46].  

 

MF learns relationships between samples that represent population stratification, 

tissue composition, cell types, disease subtypes, and clonality 

 

Whereas each column of the amplitude matrix describes the relative contribution 

of molecules to a factor, each row of the pattern matrix describes the relative 

contribution of samples to a factor (Fig 2, Fig 4). Sample groups can be learned by 

comparing the relative weights in each row of the pattern matrix (Fig 4). The pattern 

matrix from MF can also be binarized to perform clustering [47,48] or kept as continuous 

values to define relationships between samples [49–51]. Just as molecules with high 

weights within a column of the amplitude matrix are associated with a common 
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pathway, samples with high weights within a row of the pattern matrix can be assumed 

to share a common phenotype or CBP. Although here we refer to each of these sample-

level matrices as the Pattern matrix, numerous other terms have been adapted based 

on the MF method and its application (Box 3). 

The application of PCA to SNP data from 3,000 European individuals [52] 

demonstrates inference of sample co-relationships using the pattern matrix and found 

that much of the variation in DNA sequence is explained by the longitude and latitude of 

an individual’s country of origin. Additionally, statistical models can be formulated 

assuming that inheritance of an individual arises from proportions of ancestry in distinct 

populations through genetic admixture [52]. A MF based technique called sparse factor 

analysis also distinguishes these populations using GWAS data [53]. These analyses 

demonstrate that the ancestry of each individual is a dominant source variation in DNA 

sequence. Additional sources of variation in GWAS data arise from variants that give 

rise to disease risk, which can be shared among individuals with diverse genetic 

backgrounds [54]. These different sources of signal can give different sample groupings 

that reflect the biology of population genetics. For example, biologically a grouping 

inferred from GWAS which distinguishes ancestry is equally valid to a grouping inferred 

from the same GWAS data which distinguishes disease risk.  

A single factorization of complex datasets can find multiple distinct sources of 

variation. For example, the power of MF to identify multiple sources of variation was 

seen when multiple technical factors from sample processing and biological factors 

were discovered in an ICA of gene expression profiles of 198 bladder cancer samples 

[55]. One factor in the pattern matrix of this analysis defined a CBP associated with 
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gender. Because ICA simultaneously accounts for multiple factors in the data as 

separate rows in the same matrix, each row can fully distinguish a single biological 

grouping from the data.  

Applying multiple types of MF techniques to the same dataset or a single MF to 

distinct subsets of a dataset can also find distinct sources of variability. For example, an 

NMF-class algorithm separated tissue-specific patterns from gene expression data for 

postmortem samples in the Genotype-Tissue Expression (GTEx) project [56]. This 

algorithm found a pattern that combined all samples from brain regions when applied to 

all tissue samples in GTEx, but separated the distinct brain regions when applied to only 

tissue samples from the brain. A different sparse NMF algorithm called CoGAPS 

simultaneously separated these brain regions from GTEx with additional patterns that 

are associated with the individual who donated those samples [36,57]. Both of these 

algorithms are equally valid, and their distinct formulation gives rise to the distinct 

features observed in the data. Applications of multiple types of MF techniques, or even 

the same MF algorithm with different parameters, may infer several CBPs or 

phenotypes within a single dataset, in essence providing answers to different questions.  

Analysis of a single dataset with one MF algorithm using different numbers of 

factors can reflect a hierarchy of biological processes. For example, applying CoGAPS 

to data from a set of head and neck tumors and controls for a range of dimensionalities 

was able to separate tumor and normal samples when limited to two patterns, but 

further decomposed the tumor samples into the two dominant clinical subtypes of head 

and neck cancer when identifying five patterns for the same data [58]. The hierarchical 

relationship between patterns has been used to assess the robustness of patterns to 
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quantify the optimality of the factorization [59] and learn the optimal dimensionality of 

the factorization [60]. Other algorithms use statistical metrics to estimate the number of 

factors [12,61]. While these algorithms quantify fit to the data, they may disregard the 

hierarchical nature of distinct CBPs learned by factoring biological data into multiple 

dimensions. This observation highlights the complexity of estimating the number of 

factors for optimal MF analysis of biological data (see Outstanding Questions).  

Intra- and inter-tumor heterogeneity introduce a further degree of complexity to 

MF analysis of biological variation in their molecular data. Computational 

microdissection algorithms estimate the proportion of distinct cell types within a bulk 

samples by applying MF to genes whose expression are uniquely associated with each 

cell type [62]. Subsetting the data to different genes may give rise to different factors 

that represent different CBPs. Nonetheless, CoGAPS analysis of data subsets that were 

obtained by selecting equally sized sets of random genes found that the pattern 

matrices were consistent for each random gene set in expression data[36,63]. These 

results suggest that the dependency of a MF on the specific genes used for analysis 

may depend on the heterogeneity of the signal in the data matrix. 

Even a pure tumor tissue can contain numerous subclones due to the 

accumulation of different driver events during tumor evolution. New MF techniques have 

been developed to estimate the proportion of the tumor that arises from each subclone 

[61,64–67]. Assumptions about the evolutionary mechanisms of the accumulation of 

molecular alterations can also be encoded in the factorization to model the resulting 

heterogeneity of these clones [12,61]. These studies demonstrate that encoding prior 
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knowledge into MF can focus the resulting factors to reflect one of the equally valid 

biological groupings within the data.   

 

From snapshots to moving pictures: simplifying time course analysis  

 

Entwined in the challenge of decomposing cell types and subpopulations is the 

fact that CBPs change over time. High-throughput time course datasets are emerging in 

the literature to account for the dynamics of biological systems. The central goal of time 

course analysis is to determine the extent to which molecules change over time in 

response to perturbations (e.g. developmental time, environmental factors, disease 

processes, or therapeutic treatments). Associating molecular alterations often relies on 

specialized bioinformatics techniques for time course analysis [68,69].  MF analyses 

can naturally infer changes in CBPs over time when applied to time course data 

because the continuous weights for each sample in the pattern matrix can vary across 

samples collected across distinct time points. The relative weights of rows of the pattern 

matrix can encode the timing of regulatory dynamics directly from the data (Fig 4A).  

Both ICA and NMF were found to have signatures characterizing the yeast cell 

cycle and metabolism in early time-course microarray experiments [70,71]. The Sparse 

NMF techniques using Bayesian method had patterns that reflected the smooth 

dynamics of these phases [30,70]. This approach has been shown to simultaneously 

learn pathway inhibition and transitory response to chemical perturbation of cancer cells 

[72] and relate the the changes in phospho-proteomics trajectories between multiple 

therapies [73].  Similar analysis of healthy brain tissues learned the dynamics of 
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transcriptional alterations common to the ageing process from multiple individuals [63]. 

MF techniques designed for cancer subclones described in the previous section have 

also been applied to repeat samples to learn the dynamics of cancer development, 

elucidating the molecular mechanisms that give rise to therapeutic resistance and 

metastasis. Even if the same number of biological features exist, the rate or timing of 

related features in different molecular modalities may be offset [74]. These 

discrepancies by data modality suggest that different regulatory mechanisms may be 

responsible for initiating and stabilizing the malignant phenotype [74].  

 

Integrated analysis of multiple omics data  

 

Multi-omics data are generated in order to elucidate the molecular networks that 

govern phenotypes. MF can be applied to learn shared features between datasets 

[7,8,75]. Integration may occur between datasets with distinct samples measured with 

the same molecular type using different measurement technologies or in distinct 

technical batches. For example, an analysis of multiple microarray studies of the same 

cell lines across different platforms with an MF approach designed to find components 

that maximize covariance or correlated information discovers which microarray 

platforms have the most informative set of genes [76]. Gene regulation can also be 

inferred by applying MF to data with different molecular components of the same 

samples. For example, repression of gene expression by promoter methylation had 

been encoded to integrate gene expression and DNA methylation data of tumor 

samples [58]. Other techniques have used joint modeling of features learned separately 
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in different data types to perform integrated inference [77–79]. Techniques that extend 

this integrated MF framework, including Bayesian group factor analysis [8] and tensor 

decomposition [80] can also identify common and specific factors among different 

molecular levels [81]. Developing such data integration techniques is an active area of 

research in both genomics and computational sciences. When mature, these 

techniques will be able to formulate complete gene regulatory networks to further 

systems biology. 

  

MF enables unbiased exploration of single cell data for phenotypes and 

molecular processes 

 

MF approaches are a natural choice in Single-cell RNA-sequencing (scRNA-seq) 

data analysis due to its high dimensionality and are used to identify and remove batch 

effects, summarize CBPs, and annotate cell types in the data [82–85]. Whereas the 

analysis in bulk data dissects groups from a small subset of samples, the analysis in 

scRNA-seq data aggregates cells into groups of common cell types or CBPs [37,86]. 

Often these analyses are performed on a subset of the data containing the most 

variable genes. Newer computationally efficient methods are being developed to enable 

factorization of large omics datasets for genome-wide analysis [79]. Biological 

knowledge can be encoded with a class of MF algorithms that summarizes factors using 

gene sets [82,87,88].  

Most MF techniques developed for bulk omics data are linear, namely they 

assume the gene expression changes from CBPs are additive. This assumption is 
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violated in scRNA-seq data.  One reason for the violation of the linearity assumption in 

MF is the the inability to distinguish true zeros from missing values. Imputation methods 

for preprocessing [84,89] or newer MF algorithms that model missing data are essential 

for scRNA-seq data. Branching of trajectories of cellular states and lack of 

synchronization of cell cycle in scRNA-seq data further violate the linearity assumption 

in MF. New non-linear factorization techniques are being developed to enhance 

visualization of trajectory structures in single cell data [83,90–92] in these cases.  

 

Concluding remarks 

 

MF is a versatile class of techniques with broad applications to unsupervised 

clustering, biological pattern discovery, component identification, and prediction. Since 

MF was first applied to microarray data analysis in the early 2000s [70,93–95], the 

breadth of MF problems and algorithms for high-throughput biology has grown with their 

broad applications. MF problems are ubiquitous in the computational sciences, with 

examples including unsupervised feature learning [96–101] clustering and metric 

learning [102–104], subspace learning [105–110],  multiview learning [111], matrix 

completion [112], multi-task learning [113] semi-supervised learning [114], compressed 

sensing [115], and similarity-based learning [116,117]. Dimension reduction of biological 

data with MF highlights perspectives and questions that investigators have not yet 

considered, and also enables tractable exploration of otherwise massive datasets.  

Different classes of techniques solve MF, including gradient-based and 

probabilistic methods (see Box 1). Distinct MF problems each aim to identify certain 
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types of features, in some cases different algorithms will learn distinct features from the 

same dataset. Therefore, investigators may benefit from applying multiple techniques 

with different properties, or by carefully considering the dataset and question to select 

exactly the right technique for that question. The features MF techniques extract are 

constrained by the dataset used to train them. These algorithms cannot learn 

unmeasured features nor can they correct for complete overlap between technical 

artifacts and biological conditions. Thus, being mindful of experimental design when 

selecting datasets and choosing those that are broad enough to cover the relevant 

sources of variability are essential. Advances to MF and related techniques will be 

essential to powering systems level analyses from big data (see Outstanding 

Questions). 
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Box 1:  Technical description of matrix factorization (400 words) 

Matrix factorization approximates an input matrix �, as a product of two matrices, � and 

� , also referred to as factors.  

In genomics, the input matrix � typically represents a preprocessed data matrix that has 

� molecular measurements as rows and � biological samples as columns (i.e., a matrix 

of size � � �). Often, not all of the row and column vectors of the data are equally 

informative. Exploratory data analysis aims to find a set of � most informative 

dimensions or features, where�is smaller than either � or �. A �-dimensional 

representation that captures most of the “information” (say, for example, most of the 

variation) contained in the original data can then be used in its place in subsequent 

analysis.  

MF solves this problem by approximating � as a product of two “factor” matrices: � ≈ 

��, where the factor � is of size � � � and the factor � is of size � � �. Here, we refer 

to � as the amplitude matrix and � as the pattern matrix. We note that alternative 

variable names to � and � and terminology are often used in the literature, depending 

on the application.  

Finding matrices � and � requires a quantitative definition of how well the product �� 

approximates �.  One method for providing this definition is to use a loss function that 

quantifies the discrepancy between the approximation and the data, such as the mean 

square error and median absolute error. A common approach to solve for � and � is to 

apply an iterative approach such as a gradient-based method to minimize a loss 
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function. Bayesian approaches to MF are alternatives to approximate the probabilistic 

relationship between �� and �. Additional conditions can also be incorporated in both 

gradient-based and Bayesian MF to learn useful features, such as sparsity constraints 

to limit the number of non-zero matrix elements.  

Both gradient-based and Bayesian MF approaches have numerous applications beyond 

genomics. These techniques are ubiquitous in unsupervised feature learning for big 

data analysis.  
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Box 2: PCA, ICA, and NMF (400 words) 

MF can start with the same data matrix � and then solve different problems to learn 

amplitude (�) and pattern (�) matrices with specific properties. An MF method requires: 

1) the desired dimension �; 2) a loss function that measures  the approximation � ≈ ��; 

and 3) constraints on � and/or � that enforce a desired structure on the low-dimensional 

representation. Changes to any of these give rises to different MF problems with 

different low-dimensional representations of the data. Three common MF approaches 

are applied to genomics: PCA, ICA, and NMF.  

PCA finds a low-dimensional representation of the data that maximizes the variation 

contained in the original data. In PCA, the columns of �are orthogonal to each other 

describing non-overlapping structure in the data. Each column of represents the weight 

or loading of the data vector in the corresponding column of matrix �. In PCA, the 

columns of �and rows of � are ranked by the relative amount of variance they explain in 

the data. Thus, the first column of � and row of � explain most of the variation across 

molecular measurements and samples, respectively. Together, the k vectors learned 

with PCA maximize the total variance in the data captured using any rank k 

factorization. Geometrically, the vectors can be thought of as a set of orthogonal 

coordinate axes in high dimensional space, which represent the directions of maximal 

variation in the data.     

ICA assumes that there are a set of � independent sources of variation that give rise to 

the observed data matrix �. This method enforces that the columns of � yields 
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components that are statistically independent of each other. ICA is solved by minimizing 

the total mutual information between the � estimated components. The resulting factors 

ideally represent independent sources of variation in the biological system. 

Non-negative matrix factorization (NMF) is a group of algorithms that constrains all 

elements of the � and � matrices to be greater than or equal to zero. The non-negativity 

constraint makes the representation purely additive, with no sources that can explain 

the data by removing signal. This non-negativity often results in NMF producing a 

sparse representation of the data. The additivity and sparsity make the � features 

inferred from NMF easy to interpret as the set of active components of the data that will 

give the original data when added together.  
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Box 3: Common terminology in the literature (400 words) 

Historically, the independent discovery of MF in multiple fields including mathematics, 

computer science, and statistics created distinct terminologies that are often used 

interchangeably as analytical orthologs in genomics. For example, the term factorization 

is often used interchangeably with decomposition. Other terms, such as features, 

components, latent variable, or latent factors are both used to to refer to relationships 

between molecular measurements or samples, depending on the context.  

 

The specific terminology for the amplitude and pattern matrices also varies by method 

and preferably labeled with different variable name. In PCA, the amplitude matrix �is 

often called the score or rotation matrix; and pattern matrix � is called the loadings. In 

ICA, the amplitude matrix is called the unmixing matrix (labeled as 	) and the pattern 

matrix is called the source matrix (labeled as 
).  In NMF, the amplitude matrix is 

commonly called the weights matrix (labeled as �) and the pattern matrix is called the 

features matrix (labeled as �).  

 

Throughout this paper, we use the amplitude matrix to refer to matrix that contains 

vectors which represent relationships between molecular measurements. Other terms 

used in the literature for these molecular relationships include modules, meta-pathways, 

or signatures. Similarly, we use the pattern matrix to refer to the matrix that contains 

vectors which represent relationships between samples. Other literature terms for these 

sample-level relationships include patterns, metagenes, eigengenes, sources, or 

controlling factors.   
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Glossary (450 words) 

Amplitude matrix The matrix learned from MF that contains molecules in rows and 

factors in columns. Each column represents the relative contribution of the genes in 

a factor, which can be used to define a molecular signature for a CBP.  

Complex biological process (CBP) The coregulation or coordinated effect of 

multiple molecular species resulting in one or more phenotypes examples can 

range from activation of multiple proteins in a single cellular signaling pathway to 

epistatic regulation of development. 

Computational microdissection A computational method to learn the composition 

of a heterogeneous sample, e.g., the cell types in a tissue sample.  

Independent Component Analysis (ICA) A MF technique that learns statistically 

independent factors. 

Matrix Factorization (MF) A technique to approximate a data matrix by the product 

of two matrices (see Box 1), one of which we call the amplitude matrix and the 

other the pattern matrix.   

Non-negative Matrix Factorization (NMF) A MF technique for which all elements 

of the amplitude and pattern matrices are greater than or equal to zero.  

Pattern matrix The matrix learned from MF that contains factors in rows and 

samples in columns. Each row represents the relative contribution of the samples in 

a factor, which can be used to define the relative activity of CBPs in each sample.  
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Principal Component Analysis (PCA) A MF technique that learns orthogonal 

factors ordered by the relative amount of variation of the data that they explain. 
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Figure Legends       

Figure 1 Pipeline for matrix factorization analysis of RNA-seq data. First, the RNA-seq 

data is preprocessed by alignment, gene-level quantification, and normalization. The 

data must aslo be log transformed for most matrix factorization methods, with the 

exception of specialized methods that have been developed for count data. Three 

dominant types of MF problems can be applied to analyze this data: Principle 

Component Analysis (PCA), Non-negative Matrix Factorization (NMF), or Independent 

Component Analysis (ICA). Each of these problems find distinct molecular and sample 

relationships in the amplitude and pattern matrices, respectively. The Amplitude matrix 

learned that reflects molecular relationships can be used for gene set analysis, pathway 

analysis, and biomarker discovery. The Pattern matrix that reflects sample relationships 

can be used for clustering, subtype / subclone discovery, and timecourse analysis. 
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Figure 2 Omics technologies yield a data matrix that has each sample as a column and 

each observed molecular value (expression counts, methylation levels, protein 

concentrations, etc.) as a row. This data matrix is preprocessed with techniques specific 

to each measurement technology and then input to an MF technique for analysis. MF 

decomposes the preprocessed data matrix into two related matrices that represent its 

sources of variation: an amplitude matrix and a pattern matrix. The rows of the 

amplitude matrix quantify the sources of variation among the molecular observations 

and the columns of the pattern matrix quantify the sources of variation among the 

samples. The matrix product of the amplitude and pattern matrices approximates the 

preprocessed input data matrix. The number of columns of the amplitude matrix equals 

the number of rows in the pattern matrix, and represents the number of dimensions in 

the low-dimensional representation of the data. Ideally, a pair of one column in the 

amplitude matrix and the corresponding row of the pattern matrix represents a distinct 

source of biological, experimental, and technical variation in each sample (called 

complex biological processes, CBPs). The values in the column of the amplitude matrix 

then represent the relative weight of each molecule in the CBP and the values in the 

row of the pattern matrix its relative role in each sample. 
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Figure 3 The amplitude matrix from MF can be used to derive data-driven molecular 

signatures associated with a CBP. The columns of the amplitude matrix contain 

continuous weights describing relative contribution of a molecule in a CBP (middle). The 

resulting molecular signature can be analyzed in a new dataset to determine the 

samples in which each previously detected CBP occurs, and thereby assess function in 

a new experiment. This comparison may be done by comparing the continuous weights 

in each column of the amplitude matrix directly to the new dataset (left). The amplitude 

matrix may also be used in traditional gene set analysis (right). Traditional gene set 

analysis using literature curated gene sets can be performed on the values in each 

column of the amplitude matrix to identify whether a CBP is occurring in the input data. 

Data-driven gene sets can also be defined from this matrix directly using binarization, 

and used in place of literature curated gene sets to query CBPs in a new dataset. Sets 

defined from molecules with high-weights in the amplitude matrix comprise signatures 

akin to many curated gene set resources whereas molecules that are most uniquely 

associated with a specific factor (purple box) may be biomarkers.   
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Figure 4 The pattern matrix from MF describes sample participation in a CBP. Trends 

or groupings of samples in a row of the pattern matrix can be tested against additional 

sample metadata to further define the biological details of a given CBP. Depending on 

the MF method used different visualizations can highlight specific aspects of the 

biology. A. Nonnegative matrix factorization method find the relative values of correlated 

or dependent measures just as pathway usage or time course data. If sample grouping 

are known a priori the relative usage of a CBP can then be inferred by comparing the 

weights of the pattern matrix between groups. Similarly, if samples correspond to time 

points the rows of the pattern matrix can be plotted as a function of time and sample 

condition to infer the dynamics of CBPs. B. Principal component analysis (PCA) on the 

other hand, uses an orthogonality constraint to maximize the amount of variance 

captured in each principal components (PC). Thus, it is often informative to plot samples 

projected into the first two PCs (right) to assess sample clustering.  
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