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Abstract

Humans are remarkably adept at generalizing knowledge between experiences in a way that can be
difficult for computers. Often, this entails generalizing constituent pieces of experiences that do not
fully overlap, but nonetheless share useful similarities with, previously acquired knowledge.
However, it is often unclear how knowledge gained in one context should generalize to another.
Previous computational models and data suggest that rather than learning about each individual
context, humans build latent abstract structures and learn to link these structures to arbitrary
contexts, facilitating generalization. In these models, task structures that are more popular across
contexts are more likely to be revisited in new contexts. However, these models can only re-use
policies as a whole and are unable to transfer knowledge about the transition structure of the
environment even if only the goal has changed (or vice-versa). This contrasts with ecological
settings, where some aspects of task structure, such as the transition function, will be shared
between context separately from other aspects, such as the reward function. Here, we develop a
novel non-parametric Bayesian agent that forms independent latent clusters for transition and
reward functions, affording separable transfer of their constituent parts across contexts. We show
that the relative performance of this agent compared to an agent that jointly clusters reward and
transition functions depends environmental task statistics: the mutual information between
transition and reward functions and the stochasticity of the observations. We formalize our analysis
through an information theoretic account of the priors, and propose a meta learning agent that
dynamically arbitrates between strategies across task domains to optimize a statistical tradeoff.

Author summary

A musician may learn to generalize behaviors across instruments for different purposes, for example,
reusing hand motions used when playing classical on the flute to play jazz on the saxophone.
Conversely, she may learn to play a single song across many instruments that require completely
distinct physical motions, but nonetheless transfer knowledge between them. This degree of
compositionality is often absent from computational frameworks of learning, forcing agents either to
generalize entire learned policies or to learn new policies from scratch. Here, we propose a solution
to this problem that allows an agent to generalize components of a policy independently and
compare it to an agent that generalizes components as a whole. We show that the degree to which
one form of generalization is favored over the other is dependent on the features of task domain,
with independent generalization of task components favored in environments with weak
relationships between components or high degrees of noise and joint generalization of task
components favored when there is a clear, discoverable relationship between task components.
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Furthermore, we show that the overall meta structure of the environment can be learned and
leveraged by an agent that dynamically arbitrates between these forms of structure learning.

Introduction 1

Compared to artificial agents, humans exhibit remarkable flexibility in our ability to rapidly, 2

spontaneously and appropriately learn to behave in unfamiliar situations, by generalizing past 3

experience and performing symbolic-like operations on constituent components of knowledge [1]. 4

Formal models of human learning have cast generalization as an inference problem in which people 5

learn a shared (latent) task structure across multiple contexts and then infer which causal structure 6

best suits the current scenario [2,3]. In these models, a context, typically an observable (or partially 7

observable) feature of the environment, is linked to a learnable set of task statistics or rules. Based 8

on statistics and the opportunity for generalization, the learner has to infer which environmental 9

features (stimulus dimensions, episodes, etc.) should constitute the context that signals the overall 10

task structure, and, simultaneously, which features are indicative of the specific appropriate 11

behaviors for the inferred task structure. This learning strategy is well captured by Bayesian 12

nonparametric models, and neural network approximations thereof, that impose a hierarchical 13

clustering process onto learning task structures [3, 4]. A learner infers the probability that two 14

contexts are members of the same task cluster via Bayesian inference, and in novel situations, has a 15

prior to reapply the task structures that have been more popular across disparate contexts, while 16

also allowing for the potential to create a new structure as needed. Empirical studies have provided 17

evidence that humans spontaneously impute such hierarchical structure, which facilitates future 18

transfer, whether or not it is immediately beneficial – and, indeed, even if it is costly – to initial 19

learning [3–5]. 20

These clustering models can account for aspects of human generalization that are not well 21

explained by standard models of learning. This approach to generalization, treating multiple 22

contexts as sharing a common task structure, is similar to artificial agents that reuse previously 23

learned policies in novel tasks when the statistics are sufficiently similar [6–9]. However, a key 24

limitation to these clustering models of generalization is that policies of the agent are generalized as 25

a unit. That is, in a new context, a previously learned policy can either be reused or a new policy 26

must be learned from scratch. This can be problematic as policies are often not robust to untrained 27

variation in task structure [10–12]. Thus, a previously learned policy can lead to a poor outcome in 28

a new context even if there is a substantial degree of shared structure. 29

Because task structures are either reused or not as a whole, the ability to reuse and share 30

component parts of knowledge is limited; that is, they are not compositional. Compositionality, or 31

the ability to bind (compose) information together in a rule governed way, has long been thought to 32

be a core aspect of human cognition [1, 13]. Importantly, ecological contexts often share a partial 33

structure, limiting the applicability of previously learned policies but nonetheless providing a 34

generalization advantage to a compositional agent. 35

To provide a naturalistic example, an adept musician can transfer a learned song between a 36

piano and a guitar, even as the two instruments require completely different physical movements, 37

implying that goals can be generalized and reused independently of the actions needed to achieve 38

them. A clustering model that generalizes entire task structures cannot account for this behavior, 39

and would require instead that an agent would need to relearn a song from scratch to play it on a 40

new instrument. Worse, this clustering scheme would predict an unlikely interference effect where 41

the similar outcome of playing the same song on two instruments results in the model incorrectly 42

pooling motor policies across instruments. 43

Here, we propose a framework to address one aspect of compositionality by decomposing task 44

structures – and their separable potential for clustering – into reward functions and transition 45

functions. These two independent functions of a Markov decision process are suitable units of 46

generalization: if we assume that an agent has knowledge of a state-space and the set of available 47

actions, then the reward and transition functions are sufficient to determine the optimal policy. In 48
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real-world scenarios, a reward function may correspond to the objective of an agent (what it would 49

like to achieve and the environmental states that produce these goals). A transition function 50

determines how the agent’s actions affect its environment (i.e., the subsequent states). For example, 51

when playing music a reward function might correspond to the desired sequence of notes (a scale, or 52

a song) while the transition function might correspond to the actions needed to produce notes on an 53

instrument. When picking up a new form of guitar, it may be sufficient for a musician to play one 54

or two strings which may then afford inference of the entire transition functions (the tuning: strings 55

and frets needed to obtain each note). Here, we are concerned with how the inference of one 56

(reward or transition) function affects generalization of the other. 57

We consider two approaches to clustering and compare their relative generalization advantages 58

as a function of environmental statistics. The independent clustering agent supports generalization 59

by clustering contexts into independent sets defined by the reward and transition statistics, 60

respectively. In contrast, the joint clustering agent clusters contexts into a single set of clusters that 61

binds together the transition and reward functions (hence amounting to previous models of task-set 62

structure that cluster and re-use policies [3–5]). Necessarily, independent clustering is compositional 63

and requires the binding of two independent functions. 64

We show that these two models lead to different predictions depending on the task environment, 65

and we provide an information theoretic analysis to formalize and quantify the bounds of these 66

advantages/disadvantages. In environments where there is a clear, discoverable relationship between 67

transitions and rewards, joint clustering facilitates generalization by allowing an agent to infer one 68

function based on observations that are informative about the other. Nonetheless, we show that 69

independent clustering can lead to superior generalization even in such cases when the 70

transition-reward relationship is weak, difficult to discover, or costly to do so. Finally, we develop a 71

meta-structure learning agent that can infer whether the overall environment is better described by 72

independent or joint statistics. 73

Models 74

To provide a test-bed for characterizing the effects compositional structure, we consider a series of 75

navigation tasks by utilizing grid worlds as a simplification of real-world environments. In these 76

grid worlds, an agent learns to navigate by learning transition functions (the consequences of its 77

actions in terms of subsequent states) and separately learns a reward function (the reward values of 78

locations, or goals) as it navigates. At each point in time, the agent is given a state tuple 79

s =< x, c > where x 2 Rd is a vector of state variables (for example, a location vector in coordinate 80

space) and c 2 Rn is a context vector. Here, we define “context” as a vector denoting some mutable 81

property of the world (for example, the presence or absence of rain, an episodic period of time, etc.) 82

that constrain the statistics of the task domain, whereby these task statistics are consistent for each 83

context that cues the relevant task. Formally, for each context we can define a Markov decision 84

process (MDP) with state variables x 2 X, actions a 2 A, a reward function mapping state 85

variables and actions to a real valued number R : X ⇥A! R, and a transition function mapping 86

state variables and actions to a probability distribution over successors T : X ⇥A! ⇧(X). 87

For the purpose of simplicity, we assume that the agent knows the spatial relationship between 88

states (i.e., it has access to a spatial map of its current position and adjacent positions) but has to 89

learn how its actions take it from one state to another. Specifically, we assume the agent knows a 90

set of cardinal movements A 2 Acard, where each cardinal movement is a vector that defines a 91

change in the state variables with regard to the known spatial structure per unit time. (For 92

example, in a two dimensional grid world we can define North = hdx/dt, dy/dti = h0, 1i as a 93

cardinal movement). We can thus define a transition function in terms of cardinal movements 94

T (x,A, x0|c) = Pr(x0|x,A, c) and cast the navigation problem as the learning of some function that 95

maps primitive actions to cardinal movements �c : A! Acard, which we assume to be independent 96

of location. 97

This simplifying assumption has the benefit of providing a model of human navigation, whom 98
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we assume understand spatial structure. Note that the function mapping motor actions onto 99

cardinal movements can depend on environmental conditions, and thus, context (for example, wind 100

condition can change the relationship between primitive actions and movements in space for an 101

aerial drone). A similar mapping between arbitrary button presses and movements in the “finger 102

sailing” task has been used to provided evidence for model-based action planning in human 103

subjects [14, 15]. Similarly, we can express the reward function in terms of cardinal movements 104

based on a location in space, Rc(x,A) = Pr(r|x,A, c). This allows us to consider how the agent 105

receives reward as it moves through coordinate space (as opposed to how it receives reward as a 106

function of its actions). Alternatively, we can express the reward function as R(x, x0) or more 107

simply as R(x0). The key assumption here is that the reward function is not a function of the 108

agent’s actions but is a function of the consequences of those actions. 109

The task of the agent is to generate a policy (a function mapping state variables to primitive 110

actions, for each context; ⇡⇤|c : X ! A) that maximizes its expected future discounted reward [16]. 111

Given a known transition function and reward function, the optimal policy given this task can be 112

defined as: 113

⇡
⇤
c (x) = argmax

a

"
X

A2Acard

�c(a,A)
X

x02X

Tc(x,A, x
0) [Rc(x

0) + �Vc(x
0)]

#
(1)

where Vc(x) is the optimal value function is defined by the Bellman equation: 114

Vc(x) = max
A

"
X

x02X

Tc(x,A, x
0) [Rc(x

0) + �Vc(x
0)]

#
8 x 2 X (2)

As the relationship between locations in space, Tc, is known to the agent, it is sufficient to learn the 115

cardinal mapping function �c(a,A) and reward function Rc(x,A) to determine an optimal policy. 116

While the optimal policy is dependent on both the mapping function and reward function, 117

crucially, the optimal value function is not: it is dependent only on the reward function (and the 118

known transition function Tc). Consequently, an agent can determine an optimal policy as a 119

function of movements through space: 120

⇡
⇤
c (x) = argmax

A

"
X

x02X

Tc(x,A, x
0) [R(x0) + �Vc(x

0)]

#
(3)

This allows the agent to learn how it can take an action to move through space – the mapping 121

function �c(a,A) – independently from the desirability of the consequences of these moves Rc(x0). 122

This distinction allows for compositionality during generalization, as we will discuss in the following 123

section. 124

Context clustering as generalization 125

A common strategy to support task generalization is to cluster contexts together, assuming they 126

share the same task statistics, if doing so leads to an acceptable degree of error [7]. This logic 127

underlies models of animal Pavlovian learning and transfer [2], human instrumental learning and 128

transfer [3, 4], and category learning [17,18]. Clustering models of human generalization typically 129

rely on a non-parametric Dirichlet process, commonly known as the Chinese restaurant process 130

(CRP), which acts as a clustering prior in a Bayesian inference process. Used in this way, the CRP 131

enforces popularity-based clustering to partition observations, so that the agent will be most likely 132

to reuse those tasks that have been most popular across disparate contexts (as opposed to across 133

experiences; [4]), and has the attractive property of being a non-parametric model that grows with 134

the data [19]. Consequently, it is not necessary to know the number of partitions a priori and the 135

CRP will tend to parsimoniously favor a smaller number of partitions. 136
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As in prior work, we model generalization as the process of inferring the assignment of contexts 137

k = {c1:n} into clusters that share common task statistics. But here, we decompose these task 138

statistics to consider the possibility that that all contexts c 2 k share either the same reward 139

function and/or mapping function, such that Rk(x,A) = Rc(x,A) 8 c 2 k and/or 140

�k(a,A) = �c(a,A) 8 c 2 k. (We return to the “and/or” distinction, which affects whether 141

clustering is independent or joint across reward and mapping functions, in the following section). 142

Formally, we define generalization as the inference 143

Pr(c 2 k|D) / Pr(D|k) Pr(c 2 k) (4)

where Pr(D|k) is the likelihood of the observed data D given cluster k, and Pr(c 2 k) is a prior over
the clustering assignment. As in previous models of generalization, we use the CRP as the cluster
prior. If contexts {c1:n} are clustered into N  n clusters, then the prior probability for any new
context cn+1 62 {c1:n} is:

Pr(ct+1 2 k|c1:n) =
(

Nk
N+↵ if k  Kn
↵

N+↵ if k = Kn + 1
(5)

where Nk is the number of contexts associated with cluster k and Kn is the number of unique 144

clusters associated with the n observed contexts. If k  Kn, then k is a previously encountered 145

cluster, whereas if k = Kn + 1, then k is a new cluster. The parameter ↵ governs the propensity to 146

assign a new context to a new cluster, that is to create a new task. Higher values of ↵ lead to a 147

greater prior probability that a new cluster is created and favors a more expanded task space 148

overall, leading to reduced likelihood of reusing old tasks. Thus, the prior probability that a new 149

context is assigned to an old cluster is proportional to the number of contexts in that cluster 150

(popularity), and the probability that it is assigned to a new cluster is proportional to ↵. As a 151

non-parametric generative process, the prior allows the number of clusters to grow as new contexts 152

are observed. This process is exchangeable, and as such, the order of observation does not alter the 153

inference of the agent [19], though approximate inference algorithms can induce order effects. 154

Independent and joint clustering 155

As we noted above, there are two key functions the agent learns when navigating in a context: 156

�c(a,A) and Rc(x,A). These functions imply that the agent could cluster �c(a,A) and Rc(x,A) 157

jointly, or it could cluster them independently, such that it learns the popularity of each 158

marginalizing over the other. Formally, the independent clustering agent [Fig 1, left] assigns each 159

context c into two clusters via Bayesian inference as in [Eq. 4] and using the CRP prior for each 160

cluster [Eq. 5]. The likelihood function for the two assignments are the mapping and reward 161

functions 162

L(D|k�) = �k(a,A) (6)

and 163

L(D|kR) = Rk(x,A), (7)

respectively. Conversely, the joint clustering agent [Fig 1, right] assigns each context c into a single 164

cluster k via Bayesian inference [Eq. 4] and, like the independent clustering agent, uses the CRP as 165

the prior over assignments [Eq. 5]. The likelihood function for the context-cluster assignment is the 166

product of the mapping and reward functions 167

L(D|k) = �k(a,A)Rk(x,A) (8)

The joint clustering agent is highly similar to previous non-compositional models of task 168

structure learning and generalization, which have previously been shown to account for human 169

behavior (but without specifically assessing the compositionality issue) [3, 4]. For the purpose of 170

comparison with the independent clustering agent, here the joint clustering agent separately learns 171
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Fig 1. Schematic example of independent and joint clustering agents. Top Left: The
independent clustering agent groups each context into two clusters, associated with a reward (R)
and mapping (�) function, respectively. Planning involves combining these functions to generate a
policy. The clustering prior induces a parsimony bias such that new contexts are more likely to be
assigned to more popular clusters. Arrows denote assignment of context into clusters and creation
of policies from component functions. Top Right: The joint clustering agent assigns each context
into a cluster linked to both functions (i.e., assumes a holistic task structure), and hence the policy
is determined by this cluster assignment. In this example, both agents generate the same two
policies for the three contexts but the independent clustering agent generalizes the reward function
across all three contexts. Bottom: An example mapping (left) and reward function (right) for a
gridworld task.

the functions R and �. Previous models, in contrast, have learned model-free policies directly. In 172

the general case, joint clustering does not require the separate representation of policy components 173

(R and �) nor does it require a binding operation in the form of planning. However, independent 174

clustering does require the separate representation of policy components that must be bound via 175

planning. Hence, one potential difference between the two approaches is algorithmic complexity, 176

where joint clustering may permit a less complex and computationally costly learning algorithm 177

than independent clustering. In the simulations below, we have equated the agents for algorithmic 178

complexity and examine how inferring the reward and transition functions separately or together 179

affect performance across task domains. 180
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Results 181

We first consider two minimal sets of simulations to illustrate the complementary advantages 182

afforded by the two sorts of clustering agents depending on the statistics of the task domain, using 183

a common set of parameters. A third simulation explores how the benefits of compositional 184

clustering can compound in a modified form of the Rooms problems previously used to motivate 185

hierarchical RL approaches [20, 21]. We show that our independent clustering model with 186

hierarchical decomposition of the state space can facilitate more rapid transfer than that afforded 187

by standard approaches. Finally, we conduct an information theoretic analysis to formalize the 188

more general conditions under which each scheme is more beneficial. Code for all of the simulations 189

presented here have been made available in our GitHub repository: 190

https://github.com/nicktfranklin/IndependentClusters 191

Simulation 1: Independence of Task Statistics 192

In the first set of simulations, we simulated a task domain in which four contexts involving different 193

combinations of reward and transition functions. In every trial, a “goal” location was hidden in a 194

6x6 grid world. Agents were randomly placed in the grid world and explored action selection until 195

the goal was reached, at which point the trial ended and the next trial began, with the agent again 196

randomized to a new location. The agent’s task is to find the goal location (encoded as +1 reward 197

for finding the goal and a 0 reward otherwise) as quickly as possible. The agents had a set of eight 198

actions available to them A = {a1, ...a8}, which could be mapped onto one of four cardinal 199

movements Acard = {North, South,East,West}. The agents were exposed to four trials, in which 200

goal locations and mappings were stationary, for each context. Each of the four contexts had a 201

unique combination of one of two goal locations and one of two mappings [Fig 2, A], and hence 202

knowledge about the reward function or mapping function for any context was not informative 203

about the other function. However, because the reward and mapping functions were each common 204

across two contexts, the independent clustering agent can leverage the structure to improve 205

generalization without being bound to the joint distribution of mappings and rewards. 206

In addition to the independent and joint clustering agents, for comparison, we also simulated a 207

“flat” (non-hierarchical decomposition of “context” and “state”) agent that does not cluster contexts 208

at all and hence has to learn anew in each context. (The flat agent is a special case of both the 209

independent and joint clustering agents such that ki = {ci} 8 i). We used hypothesis-based 210

inference, where each hypothesis comprised a proposal assignment of contexts in to clusters, 211

h : c 2 k, defined generatively, such that when a new context is encountered the hypothesis space is 212

augmented. For each hypothesis, maximum likelihood estimation was used to generate the 213

estimates �̂k(a,A) = P̂r(A|a, k) and R̂k(x) = P̂r(r|x). To encourage optimistic exploration, R̂k(x) 214

was initialized to the maximum observable reward (Pr(r|x) = 1) with a low confidence prior using a 215

conjugate beta distribution of Beta(0.01, 0). 216

The belief distribution over the hypothesis space is defined by the posterior probability of the 217

clustering assignments [Eq. 4]. Calculating the posterior distribution over the full hypothesis space 218

is computationally intractable, as the size of the hypothesis space grows combinatorially with the 219

number of contexts. As an approximation, we pruned hypotheses with small probability (less than 220

1/10x posterior probability of the maximum a posteriori (MAP) hypothesis) from the hypothesis 221

space. We further approximated the inference problem by using the MAP hypothesis, rather than 222

sampling from the entire distribution, during action selection [3, 22]. Value iteration was used to 223

solve the system of equations defined by [Eq. 3] using the values of �̂k(a,A) and R̂k(x) associated 224

with the MAP hypothesis(es). A state-action value function, defined here in terms of cardinal 225

movements 226

Q̂k(x,A) = R̂k(x,A) + �

X

x02X

T (x,A, x
0)V̂k(x

0) (9)
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Fig 2. Simulation 1 A: Schematic representation of the task domain. Four contexts (blue circles)
were simulated, each paired with a unique combination of one of two goal locations (reward
functions) and one of two mappings. B : Number of steps taken by each agent shown across trials
within a single context (left) and over all trials (right). Fewer steps reflect better performance. C :
KL-divergence of the models’ estimates of the reward (left) and mapping (right) functions as a
function of time. Lower KL-divergence represents better function estimates. Time shown as the
number of trials in a context (left) and the number of steps in a context collapsed across trials
(right) for clarity.

was used with a softmax action selection policy to select cardinal movements: 227

Pr(A|x, k) = e
�Q̂k(a,A)

P
A2Acard

e�Q̂k(a,A)
(10)

where � is an inverse temperature parameter that determines the tendency of the agents to exploit 228

the highest estimated valued actions or to explore. Lower level primitive actions (needed to obtain 229

the desired cardinal movement) were sampled using the mapping function: 230

Pr(a|x, k) =
X

A2Acard

�̂k(a,A) Pr(A|x, k) (11)

We first simulated the independent and joint clustering agents as well as the flat agent on 150 231

random task domains using the parameter values � = 0.75, � = 5.0 and ↵ = 1.0 (below we consider 232

a more general parameter-independent analysis). Each of the four contexts was repeated 4 times for 233

a total of 16 trials. The independent clustering agent completed the task more quickly than either 234

other agent, completing all trials in an average of 205.2 (s=20.2) steps in comparison to 267.4 235

(s=22.4) and 263.5 (s=17.4) steps for the joint clustering and flat agents, respectively [Fig 2, B]. 236

(We confirmed here and elsewhere that these differences were highly significant (e.g., here, the 237

relevant comparisons are a minimum of p < 1e�77)). Repeating these simulations with agents 238

required to estimate the full transition function (instead of just the mapping function) led to the 239

same pattern of results, with the independent clustering agent completing the tasks in fewer steps 240

than either the joint clustering or flat agents [Fig S1, A]. 241
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In this case, the performance advantage of independent clustering is largely driven by faster 242

learning of the reward function, as indexed by the KL-divergence between the agents’ estimates of 243

the reward function compared to a flate learner [Fig 2, C, left]. In contrast, both joint and 244

independent clustering show generalization benefit when learning the mapping function [Fig 2, C, 245

right]. This difference reflects an information asymmetry: in a new context, more information is 246

available earlier to an agent about the mappings than the rewards, given that the latter are largely 247

experienced when reaching a goal. (For example, in these environments, the first action in a novel 248

context yields 2 bits of information about the mappings and an average of 0.07 bits of information 249

about the rewards). As a consequence of this asymmetry, observing an element of a mapping can 250

facilitate generalization of the rest of the mapping via the likelihood function, whereas observing 251

unrewarded squares in the grid world tells the agent little about the location of rewarded squares. 252

In sum, as expected, independent clustering exhibited advantages over joint clustering in a task 253

environment for which the transition and reward functions were orthogonally linked across contexts. 254

Simulation 2: Dependence in Task Statistics 255

We next simulated all three agents on separate task domain in which there was a discoverable 256

relationship between the reward and mapping functions across contexts, such that knowledge about 257

one function is informative about the other. There were with four orthogonal reward functions and 258

four orthogonal mappings across eight contexts, with each pairing of a reward and mapping 259

function repeated across two contexts, permitting generalization [Figure 3, A]. As before, 150 260

random task domains were simulated for each model using the parameter values � = 0.75, � = 5.0 261

and ↵ = 1.0. Each of the eight contexts was repeated 4 times for a total of 32 trials. In these 262

simulations, both clustering agents show a generalization benefit, completing the task more quickly 263

than the flat agent [Fig 3, B]. The joint clustering agent showed the largest generalization benefit, 264

completing all trials in average of 384.2 (s=23.6) steps in comparison to 441.5 (s=33.4) for the 265

independent clustering agent and 526.0 (s=26.4) steps for the flat agents. Again, these differences 266

were highly significant and the agents that estimated the full transition function displayed the same 267

pattern of results [Fig S1, B]. 268

As is the previous simulations, the differences in performance between the clustering agents was 269

largely driven by learning of the reward function. Both the independent and joint clustering agents 270

had similar estimates of mapping functions across time [Fig 3, C, right] whereas the independent 271

clustering agent uniquely shows an initial deficit in generalization of the reward function, as 272

measured by KL divergence in the first trial in a context [Fig 3, C, left]. The difference in 273

performance between the two clustering models largely occurs for the first trial in a new in a new 274

context, during which time the joint clustering agent had a better estimate of the reward function. 275

As before, this reflects an information asymmetry between mappings and rewards. 276

Simulation 3: Compounding effects in the “diabolical rooms” problem 277

Generalization is almost synonymous with a reduction of exploration costs: if an agent generalizes 278

effectively, it can determine a suitable policy without fully exploring a new context. In the above 279

simulations, exploration costs were uniform across all contexts. But in real world situations, the 280

cost of exploring can compound as a person progresses through a task. Exploration can become 281

more costly as resources get scarce: for example, on a long drive it is far more costly to drive 282

around looking for a gas station with an empty tank than with a full one because running out of gas 283

is more likely. Likewise, in a video game where taking a wrong action can mean starting over, it is 284

more costly for an RL agent to randomly explore near the end of the game than at the beginning. 285

Thus, the benefits and costs of generalization can compound in task with a sequential structure over 286

multiple subgoals in ways that are not often apparent in a more restricted task domain. Here, we 287

consider a set of task domains in which each context has a different exploration cost, which 288

increases across time. 289
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Fig 3. Simulation 2 A: Schematic representation of the second task domain. Eight contexts
(blue circles) were simulated, each paired with a combination of one of four orthogonal reward
functions and one of four mappings, such that each pairing was repeated across two contexts,
providing a discoverable relationship. B: Number of steps taken by each agent shown across trials
within a single context (left) and over all trials (right). C: KL-divergence of the models’ estimates
of the reward (left) and mapping (right) functions as a function of time.

We define a modified ‘rooms’ problem as a task domain in which an agent has to navigate a 290

series of rooms (individual grid worlds) to reach a goal location in the last room [Fig 4, A]. In each 291

room, the agent must choose one of three doors, one of which will advance the agent to the next 292

room, whereas the other two doors will return the agent to the starting position of the very first 293

room (hence the ‘diabolical’ descriptor). Additionally, the mappings that link actions to cardinal 294

movements can vary from room to room, such that the agent has to discover this mapping function 295

separately from the location of the reward (goal door). All of the rooms are visited in order such 296

that if an agent chooses a door that returns it to the starting location, it will need to visit each 297

room before it can explore a new door. Consequently, the cost of exploring a door in a new room 298

increases with each newly encountered room. 299

Botvinick et al. [21] have previously used the original ‘rooms’ problem introduced by Sutton et 300

al. [20] to motivate the benefit of the “options” hierarchical RL framework as a method of reducing 301

computational steps. However, in the traditional options framework, there is no method for reusing 302

options across different parts of the state-space (for example, from room to room). Each option 303

needs to be independently defined for the portion of the state-space it covers. In contrast, 304

hierarchical clustering agents that decompose the state space can facilitate generalization in the 305

rooms problem by reusing task structures when appropriate [3]. However, because it was a joint 306

clustering agent, this previous work would not allow for separate re-use of mapping and reward 307

functions. 308

In this new, diabolical, variant of the rooms problem, we have afforded the opportunity for reuse 309

of subgoals across rooms, but have modified the task not only to allow for different mapping 310

functions, but where there is a large cost when the appropriately learned subgoal (choosing the 311

correct door) is not reused, and where this cost is varied parametrically by changing the size or 312

number of the rooms. The rooms problem here is qualitatively similar to the “RAM 313

combination-lock environments” used by Leffler and colleagues [9] to show that organizing states 314
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Fig 4. “Diabolic Rooms Problem”A: Schamatic diagram of rooms problem. Agents enter a
room and choose a door to navigate to the next room. Choosing the correct door (green) leads to
the next room while choosing the other two doors leads to the start of the task. The agent learns
three mappings across rooms B : Distribution of steps taken to solve the task by the three agents
(left) and median of the distributions (right). C,D : Regression of the number of steps to complete
the task as a function of grid area (C) and the number of rooms in the task (D) for the joint and
independent clustering agents.

into classes with reusable properties (analogous to clusters presented in the present work) can 315

drastically reduce exploration costs. In the RAM combination-lock environments, agents navigated 316

through a linear series of states, in which one action would take agents to the next state, another to 317

a goal state, and all others back to the start. The rooms task environment presented here is highly 318

similar but allows us to vary the cost of exploring each room parametrically by varying its size. 319

We simulated an independent clustering agent, a joint clustering agent, and a flat agent on a 320

series of rooms problems with the parameters ↵ = 1.0, � = 0.80 and � = 5.0. Each room was 321

represented as a new context (for example, to simulate differences in surface features). There were 322

three doors in the corners of the room, and the same door advanced the agent to the next room for 323

every room (for simplicity, but without loss of generality – i.e., the same conclusions apply if the 324

rewarded door would change across contexts). Agents received a binary reward for selecting the 325

door that advanced to the next room. 326

In the first set of simulations, we simulated the agents in 6 rooms, each comprising a 6x6 grid 327

world, with three mappings �c 2 {�1,�2,�3}, each repeated once. Because the cost of exploration 328

compounds as an agent progresses through a task, the ordering of the rooms affects the exploration 329

costs. For simplicity, we simulated a fixed order of the mappings encountered by rooms, defined by 330

the sequence X
� = �1�1�2�2�3�3. In this task domain, independent clustering performed the best 331

with both clustering agents show a generalization benefit as compared to the flat agent [Fig 4, B], 332

with the flat agent completing the task in approximately 1.9x and 4.5x more total steps than joint 333

and independent clustering, respectively. 334

We further explored how these exploration costs change parametrically with the geometry of the 335

environment. First, we varied the dimensions of each room from 3x3 to 12x12. While both 336
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clustering models show increased exploration costs as the area of the grid world increases, the 337

exploration costs for the joint clustering model grow at a faster exponential rate than the 338

independent clustering model [Fig 4, C]. Similarly, we can increase the exploration costs by 339

increasing the number of rooms in the task domain. We varied the number of rooms in the rooms in 340

the task domain from 3 to 27 in increments of three. As before, the same door in all rooms 341

advanced the agent and three mappings were repeated across the rooms. The order of the mappings 342

encountered is defined by the sequence X
� = �

(k)
1 �

(k)
2 �

(k)
3 for k 2 {1, 2, ..., 9}, where k is the 343

number of times a mapping is repeated. Again, both clustering agents experience an increased cost 344

of exploration as the number of rooms increases, but the cost of exploration increases at a faster 345

linear rate for the joint clustering agent than the independent clustering agent [Fig 4, D]. 346

Thus, in environments where the benefits of generalization compound across time, difference 347

between strategies can be dramatic. Here, we have simulated an environment in which independent 348

clustering leads to better generalization than joint clustering but we could equivalently create an 349

example in which joint clustering leads to better performance (for example, joint clustering would 350

do better if each mapping uniquely predicted the correct door). Consequently, any fixed strategy 351

has the potential to face an exploration costs that grows exponentially with the complexity of the 352

task domain. 353

Information Theoretic Analysis 354

Thus far, we have examined the performance of hierarchical clustering variants in specific situations 355

in order to demonstrate a tradeoff between strategies. However, while these examples are 356

illustrative, they impose strong assumptions about the task domain, the agents’ knowledge of its 357

structure, exploration policies and planning. In contrast, we are more concerned with the suitability 358

of generalization across ecological environments, rather than the specific task domains we have 359

simulated and the assumptions of planning and exploration. 360

To make a more general normative claim, it is desirable to abstract away the implementation 361

and strictly address the normative basis of context-popularity based clustering as a generalization 362

algorithm by itself. While addressing optimality requires knowledge of the generative process of 363

ecological environments, which is beyond the scope of the current work, we can more formally and 364

generally assess when, and under what conditions, each of the clustering models might be more 365

suitable than the other. 366

To do so, we can frame generalization as a classification problem and quantify how well an agent 367

correctly identifies the cluster in which a context belongs without regard to learning the associated 368

task statistics. This simplifying assumption allows us to examine the CRP as a mechanism for 369

generalization and abstracts away the effect of the likelihood function on generalization. Let k 2 K 370

be a cluster associated with a Markov decision problem and let context c 2 C be a context 371

experienced by the agent. Given a history of experienced contexts and associated clusters 372

{c1:n, k1:m}, we cast the problem of generalization as learning the classification function k = f(c) 373

that minimizes the risk of misclassification.1 374

More formally, we define risk as the expectation E[L(p, f)], where L(p, f) is the loss function for 375

misclassification and p is the generative distribution over new contexts p = Pr(k|ct+1). For our 376

purposes here, we will abstract away domain specificity in the loss function L(p, f). Because the 377

CRP is a probability distribution, a reasonable domain-independent loss function is the information 378

gain between the CRP’s estimate of the probability of k and the realized outcome, or 379

L(p, f) = � log2 qK (12)

where qk is the CRP’s estimate of the probability of the observed cluster k in context c. The 380

1 Misclassification risk here is loosely defined: some misclassification errors are worse than others and misidentifying
a cluster (and consequently, its MDP) may or may not result in a poor policy if the underlying MDPs are sufficiently
similar. As such, the loss function in ecological settings can be a highly non-linear, domain specific function (as we
demonstrate with the diabolical rooms problem).
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misclassification risk is thus the cross entropy between the CRP and the generative distribution: 381

E[L(p, f)] = Ep[� log2 q] = H(p, q) (13)

Thus, by casting generalization as classification and assuming information gain as a 382

domain-general loss function, we are in effect evaluating the degree to which the CRP estimates the 383

generative distribution. Risk is minimized when q = p, that is, when the CRP perfectly estimates 384

the generative process. There is no upper bound to poor performance, but in many task domains it 385

is possible to make a näıve guess over the space of clusters (for example, a uniform distribution over 386

a known set of clusters). Because any useful generalization model will be better than a näıve guess, 387

we can evaluate whether the CRP will lead to lower information gain than a näıve estimate in 388

different task domains as a function of their statistics. We consider this more quantitatively in the 389

appendix, but the result is intuitive: overall, the CRP will facilitate generalization when the 390

generalization process is more predictable (less entropic) and the CRP can lead to worse than 391

chance performance in sufficiently unpredictable domains [Fig S2]. 392

Independent vs Joint clustering 393

A question of primary interest is under what conditions is it better to cluster aspects of the task 394

structure (such as reward functions and transition or mapping functions) independently or jointly. 395

To do so, we rely on the assumption that a reward function is typically substantially sparser than a 396

transition function: as an agent interacts with a task it will gain more information about the 397

transition function early in the task than it will about the reward function (unless the environment 398

is very rich with rewards at most locations, in which case any random agent would perform well). 399

Consequently, for an agent that clusters rewards and transitions together, the information 400

gained about transitions will dominate the likelihood function, such that the inference of rewards 401

can be thought of as approximately conditional on knowledge of the transition structure. 402

Conversely, an agent that clusters rewards and transition independently will not consider the 403

mapping information when it predicts the reward function. Thus, we can compare the two agents 404

by evaluating the consequences of clustering rewards conditional on transitions as compared to 405

clustering rewards independent of transitions. Formally, we can consider the comparison of 406

independent and joint clustering as the comparison between two different classifiers, R = f(c) and 407

R = f(c, T ), one of which classifies reward functions solely as a function of contexts and the other 408

as a function of contexts and observed transition statistics. 409

Interestingly, this approximation leads to the conclusion that independent clustering is a simpler 410

statistical model than joint clustering. Estimating a marginal distribution is a simpler statistical 411

problem than estimating its composing set of conditional distributions. As such, we might expect a 412

tradeoff where independent clustering provides better generalization with little experience whereas 413

joint clustering provides better generalization asymptotically. We can evaluate the latter claim by 414

noting that given random variables R and T , H(R|T )  H(R). This statement implies that given a 415

known joint distribution between two random variables, knowledge of one of the random variables 416

cannot increase the uncertainty of the other; an agent can simply learn when there is no relation 417

between the two, in which case the joint distribution doesn’t hurt. Intuitively, this claim is based on 418

the notion that more information is always better (or at least, no worse) in the long run. 419

Note that this relationship is only guaranteed if the true generative process is known and as 420

such, experience in the task domain plays an important role. As we discuss in the following section, 421

there needs to be sufficient experience to determine whether the joint distribution is useful or not 422

(and in fact, assuming conditional dependence when there is no such relationship can slow down 423

learning dramatically). Nonetheless, the CRP prior will converge asymptotically on the conditional 424

and marginal distributions, Pr(R|T ) and Pr(R), for the joint and independent clustering agents, 425

respectively. If we consider the CRP to be an estimator, we can define its bias as 426

Biasp [q] ⌘ Ep [q]� p =
�↵

↵+Nc
(14)
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where Nc is the total number of contexts observed and ↵ is the concentration parameter governing 427

new clusters. Asymptotically, the CRP is unbiased as limNc!1 Biasp[q] = 0 and the CRP converges 428

to the generative distribution. As a consequence, joint clustering has lower information gain than 429

independent clustering asymptotically as the CRP for a joint clustering agent will converge to the 430

conditional distribution Pr(R|T ) whereas the CRP for an independent clustering agent will 431

converge to the marginal distribution Pr(R). 432

Mutual Information 433

As alluded to above, that joint clustering is guaranteed to produce a better estimate is only true as 434

Nc !1 whereas here we are concerned with task domains in which an agent has little experience. 435

Intuitively, we might expect independent clustering to be favorable in task domains where there is 436

no relationship between transitions and rewards. Conversely, we might expect joint clustering to be 437

more favorable when there is relationship between transition and rewards. While we considered two 438

extremes of these cases in simulations 1 and 2, we can also vary the relationship parametrically. 439

Formally, we can consider the relationship between transitions and rewards with mutual 440

information. Let each context c be associated with a reward function R 2 R and a transition 441

function T 2 T and let Pr(R, T ) be the joint distribution of R and T in unobserved contexts. The 442

mutual information between R and T is defined 443

I(R;T ) =
X

R2R,T2T
Pr(R, T ) log2

Pr(R, T )

Pr(R) Pr(T )
(15)

Mutual information represents the degree to which knowledge of either variable reduces the 444

uncertainty (entropy) of the other, and can be used as a metric of the degree to which a task 445

environment should be considered independent or not. As such, it satisfies 446

0  I(R;T )  min (H(R), H(T )) 447

To evaluate how mutual information affects the relative performance of independent and joint 448

clustering, we constructed a series of task domains that allow us to monotonically increase I(R;T ) 449

by with a single parameter m while holding all else constant. We define R = {A,B} and T = {1, 2} 450

and we define two sequences XR and X
T such that XR

i and X
T
i are the reward and transition 451

function for context ci. We define the sequence X
R = A

(2n)
B

(2n), where A
(k) refers to a k repeats 452

of A, and the sequence X
T = 1(n+m)2(2n)1(n�m), where 1(k) refers to k repeats of 1. To provide a 453

concrete example, if n = 2 and m = 0, the sequence X
R = AAAABBBB and the sequence 454

X
T = 11222211. Similarity, if n = 2 and m = 2, then the sequence X

R is unchanged while X
T is 455

now 11112222. Critically, these sequences have the property that I(R;T ) = 0 if and only if m = 0 456

and that I(R;T ) monotonically increases with m. In other words, the residual uncertainty of R 457

given T , H(R|T ), declines as a function of m. This allows us to vary I(R;T ) independently of all 458

other factors by changing the value of m. 459

We evaluated the relative performance of the independent and joint clustering agents by using 460

the CRP to predict the sequence X
R, either independent of XT (modeling independent clustering), 461

or conditionally dependent on X
T (modeling joint clustering) for values of n = 5 and m = [0, 5]. 462

For these simulations, we first assume both sequences XR and X
T are noiseless, but below we show 463

that noise parametrically affects these conclusions. For low values of m (m  2), independent 464

clustering provides a larger generalization benefit [Fig 5, left]. This has the intuitive explanation 465

that as the features of the domain becomes more independent, independent clustering provides 466

better generalization. Importantly, there are cases in which independent clustering provides a better 467

evidence even thought there is non-zero mutual information [0 < I(R;T ) . 0.2bits]. 468

Noise in observation of transition functions 469

Above, we assumed that transition functions were fully observable with no uncertainty. But in 470

many real-world scenarios, the relevant state variables are only partially observable and the 471

transition functions may be stochastic. In this section, we therefore relax this noiseless assumption 472
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Fig 5. Performance of independent vs. joint clustering in predicting a sequence X
R, measured in

bits of information gained by observation of each item. Left : Relative performance of independent
clustering over joint clustering as a function of mutual information between the rewards and
transitions. Right : Noise in observation of XT sequences parametrically increases advantage for
independent clustering. Green line shows relative performance in sequences with no residual
uncertainty in R given T (perfect correspondence), orange line shows relative performance for a
sequence with residual uncertainty H(R|T ) > 0bits.

to characterize the effect of noisy observations on inference and generalization. As before, we model 473

generalization as the degree of predictability of XR
i+1 given X

R
1:i either independent of X

T
474

(independent clustering) or conditionally on X
T (joint clustering). 475

We first construct reward and transition sequences in which knowledge of the transition function 476

completely reduces the uncertainty about the reward function (I(R;T ) = H(R), and hence 477

H(R|T ) = 0). Consider XR = A
(20)

BCD and X
T = 1(20)234, where A

(20) and 1(20) refer to 20 478

repeats of A and 1, respectively. As such, we would expect joint clustering to produce better 479

generalization than independent clustering if observations are noiseless. To simulate noise / partial 480

observability, we assume each observation of XT
i is mis-identified as some new function 481

T
⇤ 62 {1, 2, 3, 4} with some probability. Importantly, this simulation has the desideratum that noise 482

does not affect I(R;T ) or H(R) themselves (the true generative functions). We compare the 483

inference of XR independent of XT (modeling independent clustering) or conditionally dependent 484

on X
T (modeling joint clustering) for various noise levels � = [0, 1.0]. When noise is sufficiently 485

high (� > 0.71), independent clustering produces a better estimate of XR than joint clustering [Fig 486

5, right, green line] even for this extreme case where the two functions have perfect mutual 487

information. 488

Next, we assessed how mutual information and noise interact by decreasing the correspondence 489

of the sequences. As noted above, in the sequences used above (XR = A
(20)

BCD and 490

X
T = 1(20)234), there is no residual uncertainty of R given T . We can decrease the correspondence 491

between the two sequences by shifting X
T by one to X

T
new = 1(19)2341, and thus decrease the 492

mutual information [I(XR;XT ) ⇡ 0.77; I(XR;XT
new) ⇡ 0.52]. As we have previously noted, this 493

decline in mutual information reduces the benefit of joint clustering, ceteris paribus. Nonetheless, 494

there is still a strong relationship between rewards and transition that can be leveraged by joint 495

clustering. 496

Simulating independent and joint clustering on these new sequences as a function of � = [0, 1.0] 497

reveals a lower level of noise needed to see a benefit of independent clustering [Fig 5, right]. As 498

expected, joint clustering provides a better estimate in the no-noise case, as well as for low noise 499

levels (� < 0.33), as it can take advantage of the shared structure, while independent clustering 500
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results in a better estimate for larger noise levels. Importantly, these effect are cumulative; in 501

ecological settings where observations are noisy and there is only weak mutual information, 502

independent clustering will likely provide a better estimate of the prior over rewards. 503

Meta-agent 504

Given that the optimality of each fixed strategy varies as a function of the statistics of the task 505

domain, a natural question is whether a single agent could optimize its choice of strategy effectively 506

by somehow tracking those statistics. In other words, can an agent infer whether the overall 507

statistics are more indicative of a joint or independent structure and capitalize accordingly? Here, 508

we address this question by implementing a meta-agent that infers the correct policy across the two 509

strategies (below we also consider a simple model-free RL heuristic for arbitrating between agents, 510

which produces qualitatively similar results). 511

For any given fixed strategy, the optimal policy maximizes the expected discounted future
rewards and is defined by equation 1. Let ⇡⇤

m be the optimal policy for model m. We are interested
in whether ⇡⇤

m is the global optimal policy ⇡
⇤, which we can define probabilistically as

Pr(⇡⇤
m = ⇡⇤) = Pr(⇡⇤

m = ⇡⇤|m) Pr(m|D) (16)

= Pr(m|D) (17)

where Pr(m|D) is the Bayesian model evidence and where Pr(⇡⇤
m = ⇡⇤|m) ⌘ 1. The Bayesian 512

model evidence is, as usual, 513

Pr(m|D) =
1

Z
Pr(D|m) Pr(m) (18)

where Pr(D|m) is the likelihood of observations under the model, Pr(m) is the prior over models 514

and Z is the normalizing constant. The likelihood function for the independent and joint clustering 515

models is the product of the mapping and reward functions (as defined conditionally for a cluster in 516

equations 6, 7 and 8). However, estimates of the mapping function is highly similar for both models 517

(Fig. 2C, Fig. 3C). Thus, as a simplifying assumption, we can approximate the model evidence with 518

how well each model predicts reward: 519

Pr(m|D) ⇡ 1

Z

 1Y

t=1

Pr(rt|m)

!
Pr(m) (19)

where rt is the reward collected at time t. Independent and joint clustering can be interpreted as 520

special cases of this meta-learning agent with the strong prior Pr(m) = 1. Under a uniform prior 521

over the models, this strategy reduces to choosing the agent based on how well it predicts reward, 522

an approach repeatedly used in meta-learning agents [3, 23, 24]. 523

We simulated the meta-learning agent with a uniform prior over the two models and used 524

Thompson sampling [25] to sample a policy from joint and independent clustering at the beginning 525

of each trial [Fig 6, A]. In the first task domain, where independent clustering results in better 526

performance than joint clustering, the performance of the meta-agent more closely matched the 527

performance of the independent clustering agent [Fig 6, B]. The meta-agent completed the task in 528

an average of 235.2 (s=35.3) steps compared to 205.2 (s=20.2) and 267.5 (s=22.4) steps for the 529

independent and joint clustering agents. In addition, the meta-agent became more likely to choose 530

the policy of the independent clustering agent over time [Fig 6D]. In the second task domain, where 531

joint clustering outperformed independent clustering, the meta-agent completed the task in an 532

average of 417.5 (s=42.0) steps compared to an average of 384.2 (s=21.2) and 441.6 (s=35.9) steps 533

for the joint and independent clustering agents, respectively. Likewise, overtime the meta-agent was 534

more likely to choose the policy of the joint clustering agent [Fig 6, E]. 535

A computationally simple approximation to estimating the model responsibilities is to select 536

agents as a function of their estimated value. In this approximation, a reward prediction error 537

learning rule estimates the value for each model, Qm, according to the updating rule: 538

Qm  Qm + ⌘(rt � r̂t,m) (20)
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Fig 6. Meta-Agent A: On each trial, the meta-agent samples the policy of joint or independent
actor based on model evidence for each strategy. Both agents, and their model evidences, are
updated at each time step. B: Overall performance of independent, joint and meta agents on
simulation 1 C: Overall performance of independent, joint and meta agents on simulation 2 D,E:
Probability of the selecting the policy joint clustering over time in simulation 1 (D) and simulation
2 (E).

where ⌘ is a learning rate and r̂t,m is the reward predicted by the model at time t. These values can 539

be used to sample the models via a softmax decision rule 540

m ⇠ 1

Z
exp{�Qm} (21)

Simulation with this arbitration strategy with the parameter values � = 5.0, ⌘ = 0.2 led to a 541

qualitatively similar pattern of results. Performance in both simulations 1 and 2 were not 542

distinguishable from the Bayesian meta agent, with the agent completing simulation 1 in 237.2 543

(s=41.2) steps as compared to the 235.2 (s=35.3) found for the Bayesian implementation (p < 0.65) 544

and completing simulation 2 in 418.7 (s=45.9) steps as compared to 417.5 (s=42.0) steps for the 545

Bayesian agent (p < .81). 546

Thus, while for both inference and RL versions, the meta-agent did not equal the performance of 547

the best agent in either environment, it outperformed the worse of the two agents in both 548

environments. Normatively, this is a useful property if an agent cares about minimizing the worst 549

possible outcome across unknown task domains (as opposed to maximizing their performance 550

within a single domain), similar to a minimax decision rule in decision theory [26]. This can be 551

advantageous if agent has little information about the distribution of task domains and if the costs 552

of choosing the wrong strategy are large as in the ‘diabolical rooms’ problem. Furthermore, while 553

we have used a uniform prior over the two strategies, varying the prior may result in a better 554

strategy for a given set of task domains. 555

In our information theoretic analysis above, we showed that the task statistics determines the 556

normative strategy depending on which agent is more efficacious in reducing Bayesian surprise 557

about reward. The meta-learning agent capitalizes on this same intuition by using predicted 558

rewards to arbitrate among strategies. More specifically, we argued that the normative value of 559

each strategy varies with mutual information between rewards and mappings. Thus, we assessed 560

whether the the meta-learning agent is also sensitive to mutual information, without calculating it 561

directly, and hence be more likely to choose joint clustering when the mutual information is higher. 562

In simulations 1 and 2 above, we calculated the mutual information each time a new context was 563

added and used this to predict the probability of selecting the joint agent at the end of that trial. 564
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Specifically, we define 565

I(R;�|D) = H(Pr(R|D))�H(Pr(R|� = �k,D)) (22)

where Pr(R|D)) is the probability each location is rewarded across all contexts seen so far and 566

Pr(R|� = �k,D)) is conditioned on the current mapping. Using logistic regression, we find that 567

I(R;�|D) positively correlates with the probability of selecting the joint agent across both 568

simulations, consistent with expectations [Simulation 1: � = 3.3, p < 0.003; Simulation 2: � = 9.4, 569

p < 5⇥ 10�41]. 570

Discussion 571

In this paper, we provide two alternative models of context-based clustering for the purpose of 572

generalization, a joint clustering agent generalizes reward and transition functions together and an 573

independent clustering agent that separately generalizes reward and transition functions. These 574

models are motivated by human learning and performance, which is thought to be structured and 575

compositional [27–29]. 576

Generalization can be seen as a solution to a dimensionality problem. In real-world problems, 577

perceptual space is typically high-dimensional. In order to learn a policy, agents need to learn a 578

mapping between the high-dimensional perceptual space and the effector space. Learning this 579

mapping can require a large set of training data, perhaps much larger than a human would have 580

access to [12, 21]. Clustering can reduce the dimensionality by projecting the perceptual space onto 581

a lower dimensional latent space in which multiple percepts share the same latent representation. 582

Thus, an agent does not need to learn a policy over the full state space but over the lower 583

dimensional latent space. This is an explicit assumption of the models presented here as well as in 584

other clustering models of human generalization, allowing agents to collapse across irrelevant 585

features and preventing interference between stimulus-response mappings across latent distinct 586

rules [3, 23]. Related principles have been explored in lifelong learning [6–8], object-based, and 587

symbol-based approaches [11, 30–33]. 588

Incorporating compositionality takes this argument further, as multiple policies often share 589

component features. For example, playing the saxophone involves the use of the same movements to 590

produce the same notes for different effect in different songs. Learning a policy as a direct mapping 591

from the low level effector space to reward values fails to take advantage of the structure, even if 592

that policy can be reused as a whole with another instrument. Thus, learning at the component 593

level as opposed to the policy level reduces a high-dimensional problem into multiple 594

lower-dimensional problems. While this adds the additional complexity of the choice of a good set 595

of component features, here we argue the Markov decision process provides a natural decomposition 596

into reward and transition functions. Importantly, this decomposition of the task structure is not 597

equivalent to a decomposition of the policy, which is itself dependent on the joint reward and 598

transition functions. Of course, other decompositions are also possible and useful (and not mutually 599

exclusive). For example, the state-outcome and action-dependent state transition functions of the 600

active inference framework can both be decomposed into “what” and “where” aspects [34, 35]. 601

While these functions, analogous to reward and transition functions, are linked by a shared latent 602

state representation, this decomposition facilitate generalization across states that share features. 603

Regardless of the choice of component features, a compositional generalization model needs to 604

make assumptions about the relationship between components. We argue here that the proper 605

choice depends on the generative structure, which as an empirical matter, is largely unknown for 606

the ecological environments faced by humans and artificial agents. As we demonstrated in the 607

grid-world simulations above, when there is a strong relationship between components, an agent 608

that assumes as much outperforms an agent that assumes no relationship, and vice-versa [Figs. 2 & 609

3]. With sufficient (and stationary) experience, we might expect a model that assumes a learnable 610

relationship between components (joint clustering) to perform better in new contexts, since 611

assuming a potential relationship between goals and mappings can be no worse asymptotically than 612
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assuming independence (i.e., the agent can simply learn that the correlation is zero). Nonetheless, 613

how much experience is sufficient for joint clustering to provide a better model is difficult to define 614

in general, and will depend on the statistics of the relationships and the combinatorial explosion of 615

the state space that arises. Furthermore, noise or partial observability further complicates the 616

picture: even when there is exploitable mutual information, independent clustering can yield a 617

better estimate when experience is limited [Fig 5]. 618

Why is this the case? It may appear puzzling given the asymptotic assurances that joint 619

clustering will be no worse in stationary environments. Here, the comparison between classification 620

and generalization is instructive. We can think of joint clustering in terms of estimating a joint 621

distribution of the generative process and independent clustering in terms of estimating the 622

marginal distribution for each component independently (similar to a näıve Bayes classifier). In this 623

interpretation, independent clustering trades off an asymptotically worse estimate of the generative 624

process for lower variance, with a bias equal to the mutual information between mappings and goals. 625

In problems with limited experience, such as the type presented here, a biased classifier will often 626

perform better than an asymptotically more accurate estimator because misclassification risk is 627

more sensitive to variance than bias [36]. Thus, by ignoring the correlation structure and increasing 628

the bias to generalize goals that are most popular overall, independent clustering may minimize its 629

overall loss. 630

Intuitively, we can think of joint clustering as being potentially overly sensitive to noise. While 631

over infinite time it is always better to estimate the correlations between components, in practice it 632

may not be worth the cost of doing so. This happens when the correlations between transitions and 633

rewards is weak or difficult to determine. For a human learner, an example might be the 634

relationship between how hungry a person is and how heavy it is to carry a plate of food from a 635

buffet. Learning this relationship is guaranteed to be asymptotically better than ignoring it but 636

given the triviality of the benefit and the frequency of the context, it probably isn’t worth the 637

exploration cost. 638

Previous models of compositional generalization have attempted to decompose the space of 639

policies, rather than task structure, in to reusable pieces that can be re-executed [34,37]. Because 640

learned policies depend on both the reward and transition functions of a specific task, this 641

decomposition implicitly generalizes these two sources of information together, and thus does not 642

address the set of issues considered here (i.e., when the transition function is independent of the 643

reward function across contexts). The same issue applies to the options framework and other 644

hierarchical task representations [10, 32,38–40]. As a consequence, reusing policy components will 645

cause the agent to explore regions of the state space that have had high reward value in other 646

contexts, which as we have shown may or may not be an adaptive strategy. For example, successful 647

generalization in the “diabolical rooms” problem presented here, and the “finger sailing” task 648

presented by Fermin and colleagues [14, 15], requires a separation of reward from movement 649

statistics. Indeed, the generalization of policy-dependent successor state representations works well 650

only under small deviations of the reward or transition function [10,38,39]. Thus, the choice of 651

components should be influenced by the robustness to changes in the reward and transition 652

function, which will not necessarily linked to an individual policy. 653

From the perspective of human cognition, compositional representation provides the flexibility to 654

create novel policies in a novel domains in a rule-governed manner. This flexibility, also known as 655

systematicity or generativity, has long been thought to be a key feature of cognition [29,41]. As 656

Lake and colleagues note, a person can re-use the learned knowledge of the structure of a task to 657

accomplish an arbitrary number of goals, such as winning a specific number of points in a video 658

game [12]. Strongly linking component properties may impede the potential for systematicity by 659

limiting the flexibility to recombine knowledge. As we have argued above, recombining reward and 660

transition information may be particularly valuable, such that agents that can only generalize 661

policies and reward-sensitive policy components may lack systematicity. 662

An altogether different possibility is that a mix of strategies is appropriate. While we argue that 663

independent clustering is a simpler statistical problem than joint clustering, there are clearly cases 664
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where joint clustering is advantageous. As noted before, generalization of successor-state 665

representation partially links transitions and rewards and is nonetheless sufficiently flexible to 666

handle small deviations in policy [10, 38,39]. Furthermore, joint clustering support simpler 667

algorithms, such as the form of temporal difference learning algorithms thought to underlie human 668

fronto-striatal learning [3, 42] as well as the proposed successor state representations recently 669

proposed to underlie hippocampal-based planning [38,39,43]. As we have suggested with the 670

meta-learning agent, trading off between joint and independent clustering can reduce the risk of the 671

decision problem. 672

Furthermore, it is not known what a human learner would typically consider to constitute a 673

higher order context variable separate from lower order state variables [3, 42]. Ecologically, the 674

number of contexts a human could potentially encounter is quite high, in which case they would be 675

able to form a more accurate estimate of the correlation structure between components over time. If 676

this speculation is true, then one potential adaptive strategy would be to assume a weak 677

relationship between components early in learning and increasingly relying on the correlation 678

structure as the evidence supports it. 679

Thus, a hybrid system is supported by both computational and algorithmic considerations. 680

From the perspective of biological implementation, the inference required for context-clustering 681

based generalization can be approximated by a hierarchical cortico-basal ganglia learning system [3]. 682

This framework could be extended to account for independent clustering by allowing for multiple 683

cortical clusters separately representing reward and mapping functions, each of which is learnable 684

by a neural network model [44]. Because joint clustering results in the same policy generalized to 685

each context in a cluster, joint clustering does not require separately estimating the reward and 686

transition functions and instead learned policies (such as stimulus-action values) can be generalized 687

directly. This can obviate planning, a challenge for any biological model of any model-based control. 688

Nonetheless, multiple lines of research suggest humans engage in model-based 689

control [14, 15, 39,45,46] and human subjects can re-use arbitrary action-movement mappings 690

(highly similar to the ones proposed here) for model-based control, suggesting a compositional 691

representation potentially mediated by the dorsolateral prefrontal cortex, dorsomedial striatum and 692

cerebellum [14,15]. 693

Finally, while we have presented independent clustering as motivated by human capabilities for 694

generalization, the question of whether human learning is better accounted for by independent or 695

joint clustering, or a mixture of the two, remains an open question. While models are a 696

generalization of previous models used to account for human behavior [2–4], they make separate 697

testable predictions for human behavior. Joint clustering predicts that in a generalization task, 698

human subjects will use transition formation to infer the location of an unknown goal. Independent 699

clustering, in contrast, predicts human subjects will ignore transition information when searching 700

for goals, and ignore goals when inferring the transition function. By providing humans subjects an 701

initial set of contexts where the popularity of reward function varies across contexts as a function of 702

the mapping, a novel set of test contexts can be chosen to differentiate the model predictions. 703

Future work will address these predictions and the underlying brain mechanisms. 704

References

1. Marcus G, Marblestone A, Dean T. The atoms of neural computation. Science. 2014 Oct
31;346(6209):551-2.

2. Gershman SJ, Blei DM, Niv Y. Context, learning, and extinction. Psychological review. 2010
Jan;117(1):197.

3. Collins AG, Frank MJ. Cognitive control over learning: creating, clustering, and generalizing
task-set structure. Psychological review. 2013 Jan;120(1):190.

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2018. ; https://doi.org/10.1101/196923doi: bioRxiv preprint 

https://doi.org/10.1101/196923
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. Collins AG, Frank MJ. Neural signature of hierarchically structured expectations predicts
clustering and transfer of rule sets in reinforcement learning. Cognition. 2016 Jul 31;152:160-9.

5. Collins AG, Cavanagh JF, Frank MJ. Human EEG uncovers latent generalizable rule
structure during learning. Journal of Neuroscience. 2014 Mar 26;34(13):4677-85.

6. Rosman B, Hawasly M, Ramamoorthy S. Bayesian policy reuse. Machine Learning. 2016 Jul
1;104(1):99-127.

7. Mahmud MM, Hawasly M, Rosman B, Ramamoorthy S. Clustering markov decision
processes for continual transfer. arXiv preprint arXiv:1311.3959. 2013 Nov 15.

8. Wilson A, Fern A, Tadepalli P. Transfer learning in sequential decision problems: A
hierarchical bayesian approach. In Proceedings of ICML Workshop on Unsupervised and
Transfer Learning 2012 Jun 27 (pp. 217-227).

9. Leffler BR, Littman ML, Edmunds T. Efficient reinforcement learning with relocatable action
models. In AAAI 2007 Jul 22 (Vol. 7, pp. 572-577).

10. Lehnert L, Tellex S, Littman ML. Advantages and Limitations of using Successor Features
for Transfer in Reinforcement Learning. arXiv preprint arXiv:1708.00102. 2017 Jul 31.
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Compositional clustering in task structure learning
S1: Supporting Information

Grid world simulations with unknown transition functions 1

Here, replicate simulations 1 and 2 presented in the main article while relaxing the the assumptions 2

the agent knows the spatial relationship between states. Instead, we consider the case in which an 3

agent needs to learn the full transition functions over states, actions and successor states. The 4

simulations presented here are the same as simulations 1 and 2 in the main article but we redefine 5

the agents such that they no longer have access to the the transition function in terms of cardinal 6

movements Tc(x,A, x0). 7

We define the transition functions learned by the agents in terms of primitive actions a 2 A as
fc(x, a, x0) in context c by marginalizing over cardinal actions such that

fc(x, a, x
0) =

X

A2Acard

�c(a,A)Tc(x,A, x0) (S1)

= Pr(x0|x, a, c)

Correspondingly, the optimal policy can also be re-expressed in in terms of transition function fc as: 8

⇡⇤
c (x) = argmax

a

"
X

x02X

fc(x, a, x
0) [Rc(x

0) + �Vc(x
0)]

#
(S2)

Likewise, the optimal value function is thus: 9

Vc(x) = max
a

"
X

x02X

fc(x, a, x
0) [Rc(x

0) + �Vc(x
0)]

#
8 x 2 X (S3)

For the purpose of generalization, we assume the agents generalize the full transition functions, 10

as opposed to generalizing the mapping functions presented in the main manuscript. As Tc(x,A, x0) 11

was previously assumed to be known, generalizing mappings can be seen as a specific case of 12

generalizing full transition functions as a consequence of equation S1. 13

For the purpose of clustering contexts, the mapping function was used as a component of the 14

likelihood function. Specifically, the likelihood function for the context-clustering assignments in 15

joint clustering is the product of the mapping and reward functions L(D|k) = �k(a,A)Rk(x,A). 16

Independent clustering assigns contexts into clusters separately for mappings and rewards, using 17

L(D|k�) = �k(a,A) as the mapping cluster likelihood. As a consequence of equation S1, we can 18

create the more general case of these two likelihood functions, respectively, with the following: 19

L(D|k) = fk(x, a, x
0)Rk(x

0) (S4)
20

L(D|k�) = fk(x, a, x
0) (S5)

No further changes in the generative framework are needed to accommodate clustering full 21

transition functions. 22

In the following simulations, agents estimated f̂k(x, a, x0) = P̂r(x0|x, a, c 2 k) with maximum 23

likelihood estimation, assuming independence between fk(x, a, x0) for all values of x and a. Action 24

selection was performed by a combination of Thompson sampling [1] and ✏-greedy exploration. For 25
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joint clustering, a single context-clustering hypothesis was sampled on each time step proportionally 26

to its posterior probability. The estimates f̂k and R̂k from sampled hypothesis were used to 27

compute a state-action value function, defined 28

Q̂k(x, a) = R̂k(x
0) + �

X

x02X

fk(x, a, x
0)V̂k(x

0) (S6)

where the value function Vk(x0) is generated from equation S3] via dynamic programming [2]. The 29

sampled state-action value function is generated in the same manner for independent clustering, 30

except that f̂k and R̂k are sampled from the separate sets of clusters. Likewise, the flat model 31

assumes the singular hypothesis that each context belongs to its own cluster and thus always 32

samples the same hypothesis. 33

The state-action value function is used to generate a policy via an epsilon-greedy exploration 34

rule where the action with the highest value Q̂(x = xt, a) was chosen with probability 1� ✏ and a 35

random action was chosen with probability ✏ (ties were broken with equal probability). 36

Simulation 1 37

We first simulated the three agents on the same 150 random tasks presented in Simulation 1 of the 38

manuscript. In this set of simulations, each of two reward functions and each of two transition 39

functions were repeated across four contexts such that each context had a unique combination of 40

reward and transition functions. The models were simulated using the parameter values � = 0.75, 41

✏ = 0.5 and ↵ = 1.0. As in the main manuscript, the independent clustering model learned the task 42

more quickly than either of the other two models (p < 0.003 vs. joint; p < 0.004 vs. flat), 43

completing all trials in an average of 1021.0 steps (s=377.2) in comparison to 1160.3 (s=408.3) and 44

1159.7 (s=424.9) steps for the the joint clustering and flat agents, respectively [Figure S1A]. 45

Simulation 2 46

We then simulated the three agents on the same 150 random tasks presented in Simulation 2 of the 47

manuscript. In this set of simulations, each of four reward functions and each of four transition 48

functions were repeated across eight contexts such that each paring of reward and transition 49

functions was repeated across two contexts. As in the main manuscript, the joint clustering model 50

learned the task more quickly than either of the other two models (p < 0.08 vs. independent; 51

p < 10�26 vs. flat), completing all trials in an average of 1485.8 steps (s=496.4) in comparison to 52

1583.6 (s=449.1) and 2820.0 (s=653.8) steps for the the independent clustering and flat agents, 53

respectively [Figure S1B]. 54
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Supplementary Figure 1. A: Agents’ performance learning full transition function in
Simulation 1. Left: Cumulative number of steps taken by each model as a function of trials. Fewer
steps represents better performance. Right: Distribution of total number of steps required to
complete the task for each agent. B: Agents’ performance function in Simulation 2.
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Compositional clustering in task structure learning
S2: Supporting Information

CRP performance as a function of task structure 1

One question we can ask is how well the CRP prior generalizes as a function of the underlying 2

structure of the task domain. Intuitively, we might expect that a generalization agent should show a 3

generalization benefit in highly structured task domains and show a less of a generalization benefit 4

in unstructured domains. We can thus define a set of restricted task domains that vary in their 5

structure. Specifically, we can vary the predictability of the generative process p and evaluate the 6

agent as a function of this predictability. 7

Let K = {A,B,C,D} be the set of possible clusters in a task domain with probabilities 8

P = {pA, pB , pC , pD}. Let X = ABCD represent a sequence of contexts and cluster identities 9

experienced by an agent, such that cluster A is experienced in context c1, B is experienced in 10

context c2, etc. We assume that the cluster identity is observable from the statistics of the 11

associated MDP and that the agent knows the members of the set K. 12

We want to evaluate the ability of the CRP prior to predict each cluster in the sequence, 13

conditional on its own history. We do so by calculating the expected loss experienced by the CRP 14

over the sequence X. We define our loss function over sequence X as 15

L(p, f(X)) = � 1

||X||
X

X

log2 q
(t)
k (1)

where q
(t)
k is the CRP’s probability estimate for the value k = Xt given X1:t�1. As noted above, 16

this loss function is equivalent to the cross entropy H(q, p) between the CRP and the generative 17

process. That is, H(q, p) is the average degree of unpredictability (in bits of information content) of 18

experiencing each MDP given the estimate q. We can assess H(q, p) for the CRP by updating the 19

predictive distribution in each context and probing its estimate for the subsequent context. As the 20

CRP is exchangeable [1], H(q, p) is invariant to the order of the sequence, though the MAP 21

approximation in the previous set of simulations can introduce order effects. 22

We can similarly quantify the degree of predictability of X by evaluating the entropy of the 23

sequence, defined H(X) = �
P

P px log2 px. Here, we define a sequence X
(n) to allow us to 24

monotonically decrease H(X) with n. Let X(n) be the sequence A
(n)

BCD, where n denotes the 25

number of times A appears in the sequence. For example, X(1) is the sequence ABCD and X
(3) is 26

the sequence AAABCD. For simplicity, we assume the probability distribution P over the 27

ensemble K is exchangeable and that the probabilities over the members of its ensemble are 28

proportional to their frequency in the sequence such that pk = Nk/||X|| where Nk is the number of 29

times k appears in sequence X. Consequently, the entropy of the sequence X
(1) is H(X(1)) = 2 bits 30

and the entropy of the sequence X
(3 is H(X(3)) ⇡ 1.79bits. As n approaches infinity, the entropy 31

H(X(n)) asymptotically approaches 0 bits. Intuitively, as A is repeated more often in the sequence, 32

the sequence is more predictable (lower entropy). It is important to note that the sequence 33

predictability does not depend on order. Because the CRP is exchangeable, it will have the same 34

predictive error for the sequences ABCDABCD and ADBCDBAC. Order-dependent predictability 35

is beyond of the scope of the current work. 36

We evaluated the CRP on X
(n) for n = [1, 100] and compared it to a näıve guess (uniform 37

distribution over M). Because the CRP is parameterized by its tendency to generate a new cluster, 38

the value of its ↵ parameter alters the predictive distribution. To establish an upper limit on the 39

performance of the CRP, we used numerical optimization to determine ↵ for each value of n. In 40
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addition, we also evaluated the performance of an agent with a fixed ↵ = 1, which we believe is a 41

more accurate reflection of a generalizer in an unknown environment. As expected, as we increase 42

the structure of the sequences (lower entropy), the CRP advantage over a näıve guess increases [Fig 43

S2, left, green line]. Similarly, the optimal value of ↵ declines with the sequence structure, such that 44

it is more advantageous to cluster as the sequence becomes more predictable [Fig S2, right]. 45

However, this benefit is minimal for very unstructured sequences, and for fixed values of ↵, 46

clustering for highly unstructured sequences (H(X) . 1.45bits) yields worse CRP performance 47

compared to a näıve guess. 48

Supplementary Figure 2. Performance of the CRP as a function of task domain structure. Left :
Relative information gain of a näıve guess over the CRP as function of sequence entropy for a CRP
with an optimized alpha parameter (green) or fixed at ↵ = 1.0. Right : Optimized alpha value (log
scale) as a function of sequence entropy.
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